
Simulating Tropical Weather in

Emily Zhou
Technical Artist

Colin Weick
3D Programmer

Hello everyone and welcome to our talk! The topic we will be presenting today is Simulating Tropical 
Weather in Far Cry 6. 

1



Speakers

Emily Zhou
- 4 years at Ubisoft Montreal
- Far Cry 5, Far Cry New Dawn, Far Cry 6
- Technical Artist on Montreal 3D team

Colin Weick
- 5 years at Ubisoft Toronto
- Far Cry 5, Far Cry 6
- 3D Programmer on Toronto 3D team

Before we begin, let me first introduce myself.

My name is Emily Zhou, and I have been a technical artist at Ubisoft Montreal for the past 4 years.

Colin will introduce himself a little later when he covers the second half of this presentation.

2



Intro to Far Cry 6

• Welcome to Yara!

• Play as Dani Rojas

• A tropical open world needs a 
weather system

Far Cry 6, released Oct 6th, 2021

The game that our talk is centered around is Far Cry 6, the latest installment of the Far Cry franchise. If 
you are not familiar with Far Cry, it is an open-world first-person shooter series, where each title takes 
place in a new environment. In this case, we introduce the players to Yara, a fictional Caribbean island 
that was inspired by Cuba and other countries. Here, players will take on the role of Dani Rojas, a local 
rebel fighting to topple the regime of dictator Anton Castillo and his son Diego. 

Far Cry’s dynamic open worlds are a shining trait of the franchise – each world has a life of its own, 
with many systems constantly interacting with one another. 
To add a tropical island experience to the mix, we needed something that would be new to Far Cry – a 
complete, dynamic weather system.

[Artist: Vincent L]

3



To give you an idea of what dynamic weather entails, here is quick sneak peak at what you might see 
in Far Cry 6 as a player.

4



Outline

1. Inspiration 
2. Core controls of the weather system
3. Material wetness
4. Rendering features 
5. Conclusion

Today, we will be presenting to you our weather system in its entirety.  As such, we have condensed 
many topics into the following categories. 

To start, I will go over our inspiration and core controls.

I will then explain how we tackled material wetness, by covering each asset type.

Following that, Colin will step through the technical details for each rendering feature that supports 
weather.

Lastly, we will conclude with some final thoughts.

5



- 1 -

INSPIRATION

For our inspiration, we looked at the weather for various tropical locations, such as Cuba.

6



Tropical Weather References

Island locations are typically home to very distinct and varied tropical weather. 

At the start of the project, research was conducted on tropical scenery and weather so that we could 
give our players an authentic experience as they explored the world.

We soon found that we needed to incorporate both the iconic sunny weather shown here…

7



Tropical Weather References

…as well as the flip side of tropical weather, which includes heavy rain and thunderstorms.

We needed to emulate the way that weather could change back and forth drastically, sometimes 
within hours. 

[Stop]

We then took these elements that we wanted to highlight, and included them in our concept art.

8



Concept Artist: Vitalii Smyk

Yara was pitched as an ideal tropical paradise. It should serve as a convincing escape into our game’s 
fantasy.

[Concept Art: FC6 Fankit]

9



However, our art direction wanted to contrast the picture-perfect weather with foreboding 
thunderstorms.

[Concept Art: Stephanie Lawrence]

10



Concept Artist: Vitalii Smyk

When the player gets caught in a storm, the rain and wetness should be felt and convincing. 

[Concept Art: Vitalii Smyk]

11



And of course, Yara is an island so the ocean is a key part of the equation, even for weather.  

[Concept Art: Vitalii Smyk]

12



Goals

• Convincing weather states

• Dynamic weather

• Natural transitions

• Efficient

Remember: 

We are building a weather system 
for an open world game.

With that in mind, let’s translate the direction into goals for implementing weather. 

We want to have a collection of different weather states.

We want the weather to be dynamic and varied.

We want a system where the transitions make sense. For example, a storm should be preceded with 
darkening clouds and followed by remaining water puddles.

And of course, everything needs to be efficient and fit within our budgets.

We must emphasize here that this weather system will be for an open world game. Our decisions are 
often influenced by data and performance budgets, and the need to support all times of day and all 
locations in the world.

13



- 2 -

CORE CONTROLS

Let’s move on to our implementation, starting with the core weather controls.

14



The Weather Manager

• Contains information used to define and control weather

• Back-end: Weather Manager (code)

• Front-end: Weather Databases (settings exposed to artists)

The weather manager is the core code for our weather system and is what essentially drives weather 
behind the scenes.
It contains information used to define and control weather, some of which is exposed as settings in 
our weather database. 

Consider the weather manager as the back-end of the system, and the weather database as the front-
end.

Let’s go over the setup for our system, starting with the weather presets.

15



Weather Presets

Parameters exposed from 
the Weather Manager

Weather Preset Name

The collection of weather types is referred to on the project as weather presets. These are defined in 
the weather database using the exposed parameters from the weather manager. 

To get an idea of what we can achieve with these parameters, let’s step through some of our final 
presets and compare a few of their values.

16



Few Clouds

For the Few Clouds preset, we used low cloud coverage values, shown in the bottom right. 

17



Broken Clouds

In comparison, the Broken Clouds preset uses higher cloud coverage to give us big fluffy clouds.

18



Mist

Next we can see that the Mist preset has added light fog in the distance. 

19



Fog

In comparison to that, we have our heavy Fog preset, with fog values cranked up much higher.

20



Light Rain

The next few presets will show the progression of rain intensity, starting with Light Rain…

21



Moderate Rain

Then moderate rain…

22



Heavy Rain

Followed by heavy rain, which maximizes the rain intensity and darkens the sky.  

23



Thunderstorm

Which leaves us with our most intense preset, the Thunderstorm, which adds lightning.

24



Weather Forecast

• Initial idea
• Hourly weather description in text

• Use real world meteorological data from cities around the world

• Our implementation
• Kept the text file format with weather defined by the hour

• Each game region can have a looping forecast of 5 days

• Pick times of day that show off our weather presets the best!

Now that we have weather preset building blocks, we need to create a cycle or weather pattern. 

In the very beginning, our initial idea was to collect and use real world meteorological data from cities 
such as Miami. As shown in the image, we obtained the description of the weather at every hour from 
a period of time 2013.

Although it would have been nice to use real world data to drive our forecast, we wanted more artistic 
control. 

The method that we ended up going with was a similar text file, but we timed our chosen weather 
presets ourselves, and designed up to 5 full day cycles per region.
This freedom also allowed us to showcase our weather presets where they looked the best!

25



Regional Weather

East

Central

West

Now we need to take some time to discuss regions. The world of Far Cry 6 has been subdivided into 3 
main regions, West, Central and East, each with it’s own visual identity. 
The west was the dry region, central was the wetlands, and the east was the jungle region. 

To enhance these distinctions, we wanted our weather to differ between each region.

26



Regional Weather

• Regions also include zones like interiors, caves, etc.

• Each region has limits to certain weather settings
• E.g. interior limits fog to 0

• Moving around the world blends min/max values

Note that our definition of regions also extends to smaller zones, such as interiors, caves, and anything 
else that artists might need to define.

For each region, we exposed min and max curves to limit certain weather properties. This was how we 
altered weather based on where the player is moving in the world. 

An example usage case would be how we set the max fog curve to 0 for the indoor zone, to prevent 
fog from appearing inside.
The limitation to this is that, if your indoor area has windows, you would see the fog disappear outside 
as soon as you walked in. This was why we assigned our zones carefully.

Our weather manager then took in all the potentially overlapping regions around the player, and 
interpolated the curves accordingly to output the adjusted weather.

27



Weather at Runtime

• Overrides
• Missions

• Pre-rendered cutscenes 

• Replicated weather for 
co-op players

Opening mission of Far Cry 6

The weather manager also needed to allow for overrides, such as for gameplay missions and pre-
rendered cutscenes. 
For example, the opening mission of the game has the player fleeing through the city streets in the 
middle of a nighttime thunderstorm.

Additionally, our game is available in multiplayer co-op, so weather needed to be replicated for all 
players.

28



Weather State Flow

Weather Manager

Regional Weather

Previous Weather

Upcoming Weather
Current Weather

Time of Day Location

Scripting Override

Accumulate 
Wetness

Apply 
Lightning

Elapsed Time

Weather Database

Weather Override

Weather 
Parameters

Apply 
Rain

Start here!

Output

This flow chart illustrates the final order of operations. 

To summarize, we first consult the forecast to get the weather preset at the current time of day. Then, 
based on where the player is, we apply regional adjustments. This gives us the current weather state, 
which can be overridden for gameplay.
Finally, we use this weather state to update the wetness, rain and lightning with time, and output the 
final parameters. These are variables like WetnessFactor, RainFactor, etc., which we can now access to 
drive visuals, audio, gameplay and so on.

29



- 3 -

MATERIAL WETNESS

Now that we’ve established the inner workings of our weather manager, we need our materials to 
respond. In other words, how did we make our assets wet?

30



How should we implement wetness?

Every asset requires a wet state!

Risks:
• Lots of assets, tight production schedule
• Different workflows and shaders

Solution:
• Keep it simple and unified
• Tech art driven
• Wetness should work ‘out of the box’

Wetness is a huge component of weather; when it rains, we need to see the world change. This means 
that every asset needs a wet state, so that we can blend between dry and wet.

The risks associated with creating a wet version of every asset are:
1. There are too many assets, so requiring extra data will add a lot of production time
2. Our art teams all have their own asset pipelines and shaders. We could be risking a lack of 

cohesion, which would be hard to control given our project’s scale.

Our solution was to work in parallel with asset creation. To do this, it needed to be simple and unified 
as much as possible.
We also decided that it would be primarily tech-artist driven and it should work "out of the box“.
This means that we should be able to drag and drop assets in the world, and they should get wet in the 
rain. Of course, some materials receive more detail and polish, but for the simplest props or legacy 
assets, wetness should work without revisiting them.

So, let’s dive into our wetness implementation.

31



Wetness Type

Two types: Static and Dynamic

Use Case
Wetness Level 

Calculation
Applied In… Pros Cons

Static
Props and 
structures

WetnessFactor, 
wetness shadow map

Deferred 
lighting pass

• Simple and unified
• Does not require unique 

textures to work
No flexibility

Dynamic
Characters and 

gameplay assets
Raycasts, 

local wetness
Individual 
shaders

• Wetness is dynamically 
detected, even underwater

• Customizable visuals, can 
use additional texture data

Manage many 
shaders

First and foremost, we split our solution into two parts by having two wetness types: Static and 
Dynamic

As their names imply, static wetness is for objects that will never move, and dynamic is for objects that 
will move.

Static wetness applies mostly to our Object Bank assets which includes props and structures. 
The wetness level is determined by using the WetnessFactor parameter provided by the weather 
manager. We also use a wetness shadow map to mask out wetness where appropriate. 
Static wetness will be the simplest visually, and will be applied in the deferred lighting pass, which 
means it will be applied in one place,
The pros to static wetness is its simplicity and the fact that everything can be tweaked at once. But the 
con is that there is no flexibility.

Dynamic wetness is reserved primarily for weapons, vehicles, and characters. 
Their wetness level is calculated by raycasts to detect exposure to rain. Their wetness also includes a 
bonus feature called local wetness which handles submersion in water. 
For dynamic wetness, the visual change will be applied in each individual shader; which means that we 
can tailor the look a bit more. 
The con to this is that we have to manage every shader that could be used for dynamic assets.

32



Static Wetness: Wetness Shadow Map

• Objects without direct exposure to rain should not get wet
• E.g. indoors, under a balcony

• Store the wetness shadow in the deferred shadow pass

• Wetness = wetnessShadowFactor * WetnessFactor

First, let’s look into the static wetness type. The main wetness calculation needed is the wetness 
shadow map, which occludes objects that are, for example, under a balcony or indoors. This is 
important because we reuse our props, so their wetness should be accurate no matter where they are 
placed.

Since our static wetness is applied in the deferred lighting pass, we stored the wetness shadow in our 
deferred shadow pass. 
We then multiply the sampled shadow with the weather manager’s WetnessFactor to get the final 
wetness.

33



Let’s look at a wetness shadow example. In this scene, there are lighter, dry areas on the concrete 
floor and on the wooden table. 

34



Here is a visualization of the wetness shadow. As you can see, it works quite well, but there are some 
precision limitations, particularly on vertical surfaces. 

[Click for animation]

If you look closely at the highlighted areas, you will see some speckled details. This is because the 
cutoff was originally a harsh line, which we softened using dithering.

35



Static Wetness: References

What happens when objects get wet?

Darker albedo (diffuse color) Increased smoothness

Now let’s move on to how we applied the visual of static wetness.

We first referred to photo references to analyze what inputs we would need and what changes they 
would drive.
The two visual changes that we identified as necessary were darkening the albedo and increasing the 
smoothness. Some materials like cardboard would darken but wouldn’t get too shiny. Materials like 
tiles would not darken but would get much shinier. Some materials fall in between. The key to all this 
was how absorbent the material was.

36



Static Wetness: Porosity

Porosity
The presence of tiny openings/spaces within a material, allowing for absorption of water

High porosity Max darkening  e.g. Dirt, fabric, unvarnished wood

Low porosity No darkening  e.g. Plastic, marble, metal

Problem: 

Not every material has the budget for a texture dedicated to porosity

As a result, the input we chose was Porosity. 

Porosity is most directly related to albedo change.
High porosity materials like dirt, fabric, and raw wood will become saturated and appear very dark.
Low porosity materials like plastic, marble, and metal will have water pooling on their surfaces rather 
than getting absorbed, which means that their colors should be unchanged.

Now that we have our input, we could just use a porosity map and move on.
Except for one problem - not every material can afford an extra texture map; that would exceed our 
budgets for not much reward.

So, we need a way to derive porosity whenever a porosity texture is not available. 

37



Static Wetness: Porosity Factors

Without a texture, use the formula:

Porosity = PorosityFactors.x * smoothness + PorosityFactors.y

This lets us curate the range of the generated porosity map:

Examples
Wood Matte
PF: (-0.2, 1.0)

Wood Glossy
PF: (-0.6, 0.9)

Ceramic Glossy
PF: (-0.2, 0.3)

Plastic
PF: (0.0, 0.0)

When smoothness = 0.0
-0.2 * 0.0 + 1.0 = 

Porosity = 1.0
Fully darkens

0.9 0.3 0.0

When smoothness = 0.5 0.9 0.6 0.2 0.0

When smoothness = 1.0 0.8 0.3 0.1 0.0
Never darkens

This is where we introduce porosity factors. Since porosity and smoothness are properties that are 
conceptually connected, our solution was the following basic formula, where the two PorosityFactor
values are floats that we could specify per material type.

This formula essentially generated a porosity map with all the details of the smoothness map, but with 
its values lying in the range that we curated. 

38



Static Wetness: Material Setup

Make use of the existing Material Selector with hardcoded preset values:

Artist material setup Material presets defined in the shader code

Properties = float4(Metallicity, PorosityFactors.y, Reflectance, PorosityFactors.x)

Luckily for us, our object shaders already had a dropdown of material presets with hardcoded PBR 
values. All we had to do was add in the porosity factors.

This kept the artist workflows unchanged and prevented any setup bugs.

39



Static Wetness: ApplyWetness()

• Darken the albedo using porosity
• Boost the smoothness 
• Not perfect - we judge the overall scene, not per asset

Now that we have the porosity input ready, we can look at the central ApplyWetness function that is 
called from the deferred lighting pass.

The code can be referred to later, but what we essentially did was:
• Darken the albedo according to porosity, except for if the material is metallic
• Boost the smoothness, note that we used porosity again to get even more control
• And replace the specular reflectance value with that of water

For an approximation with very few inputs, it would be impossible to get every material response 
correct.
It was more important to judge the bigger picture rather than individual assets. This helped us avoid 
an endless loop of tweaking values. 

40



Wetness = 0 Wetness = 1

Here is a dry vs wet comparison for some of our materials. 

41



Now let’s look at a full scene of assets transitioning from dry…

42



… to wet.

43



Dynamic Wetness: Wetness Component

• Characters, weapons, vehicles

• Perform a raycast every few frames to check if 
exposed to rain
• Vehicles need multiple raycasts

• Wetness increase/decrease happens gradually

• Additional feature: local wetness
• Handles wetness from submersion in water

Local Wetness

Now let’s switch over to dynamic wetness, used for our characters, weapons and vehicles.

These assets all have a wetness component that keeps track of their wetness level. 
Characters and weapons perform a raycast every few frames to check their exposure to rain. Since 
vehicles are larger in size, they will have more than one raycast. 

When exposed to rain, dynamic assets will increase in wetness level slowly before they are fully wet 
and, when no longer exposed, they will also dry slowly. 

The per-vertex local wetness calculation handled submersion, so if a character wades halfway into a 
lake, their lower half will appear wet.

44



Dynamic Wetness References

Now, if we recall, the benefits of dynamic wetness was that we could customize the way we apply 
wetness. To gather our ideas, we once again revisited real world reference, such as staring at parked 
cars outside in the rain.

45



Dynamic Wetness: Characters

• Clothing
• A clothing-specific drop-down menu this time
• Also included a max smoothness for each material type

• Hair
• Only one set of porosity factors

For character clothing, we utilized the same approach as for our props. We used an existing dropdown 
menu but also added an upper limit to the final smoothness, to give us better results for wet fabric.

Character hair was the simplest change we made; we only used one set of porosity factors. At the early 
stages of brainstorming, we wanted a way for hair to clump together when wet, but it was too 
ambitious for our scope of work.

46



Dynamic Wetness: Characters Cont.

• Skin
• Subtle approach: non-animated

• Water droplets with some light streak shapes

RG: Normal B: Wetness Mask

For skin, we wanted rain to be visible, but not in a way where scrolling could appear unnatural or 
distracting. We went with a subtle approach by using a single texture, which contained a droplets 
normal map and a wetness mask. With these effects applied, skin material wetness was quickly 
finalized.

47



Dynamic Wetness: Vehicles & Weapons

On our project, weapons and vehicles are closely related. They are both gameplay elements and are 
seen up close from the first-person perspective. For this reason, we gave these assets animated rain 
effects, which were applied using animated textures updated per frame. 

These effects were divided into two parts, streaks and droplets, which were applied on vertical and 
horizontal surfaces respectively.

48



Dynamic Wetness: Vehicles & Weapons

• Streaks: 
• Local space UVs
• Scrolling alpha channel 
• Applied on the sides of the object only 

when oriented upright or upside down

RG: Normal G: Heightmap A: Scroll

For the streaks, our input data was only one texture, which packed in a streak normal map, a 
heightmap, and a scroll mask.
The scroll mask drove the vertical movement of the streaks, which we applied with local space UVs. 
We made sure to only apply the streaks when the asset is oriented upright or upside down; in the 
latter case we reversed the scroll direction. 

49



Dynamic Wetness: Vehicles & Weapons

• Droplets: 
• Uses mesh UVs
• Applied to upward-facing surfaces only
• Two layers with different timing cycles 
• Tiny static droplets were added as well

RG: Normal G: ID A: Heightmap

For the droplets, we supplied another texture, containing a normal map, a heightmap and an ID map.
To drive the animation, we sampled the droplets two times to vary the pattern of droplets fading in 
and out with varying timing cycles, made possible with the ID map.

One thing we were still missing was the tiny static droplets that tend to build up over time on hard 
surfaces, so we managed to squeeze them into the heightmap texture later on. 

We also made sure to use manual mips on the droplets texture to reduce sparkling artifacts.

50



Dynamic Wetness: Vehicle Interiors

Problem #1: 

Vehicle interiors are getting wet!

Caused by shared materials 
between interior and exterior

Solution: 

Vertex paint interior mask
• Disable when convertible cars 

remove their tops
Interior Mask Debug

As we all know, adding a feature often results in unexpected issues and edge cases popping up. One 
issue we faced was that wetness effects were showing up inside vehicles.
This was because our vehicles sometimes share materials between the exterior and interior to save on 
drawcalls.

The fix for this was simply to use the red vertex paint channel as an interior mask. 

Once this was painted by artists, we were able to remove the interior rain effects, except of course in 
edge cases such as when our convertible cars put down their tops.

51



Dynamic Wetness: Windshields

Problem #2: 

Windshield wipers do not wipe rain!

Solution: 

Create a windshield gradient mask and 
fade rain streak effects accordingly

Windshield Gradient Map

Another problem came up when moving windshield wipers were implemented by our gameplay team, 
while rain streaks were added by our 3D team, resulting in no interaction between them! 

What we did was pack in a windshield gradient map and set up the shader to mask the rain according 
to the current gradient value. We then passed this value over to gameplay to hook everything up.

This was a small feature that we never initially planned, but inconsistencies like this can take players 
out of an experience very quickly, so we were happy to add it.

52



Dynamic Wetness: Vegetation

Reflection Issue Droplets Solution

• Initially used static wetness, but ran into issues
• Too much shadowing and extreme reflections

• Swapped to dynamic wetness and used a droplet texture

For vegetation, we originally used the static wetness approach but this led to two issues:
- Firstly, trunks and plants near the jungle floor were getting shadowed from the rain, which is strange 

to see in nature.
- Secondly, we were getting bugs explaining that the trees were appearing metallic. The was because 

the flat leaf cards were giving off a uniform reflection of the grey sky. This visual was so strong that it 
effectively reduced the realism of the trees by exposing where the cards were. 

To fix this, we converted vegetation over to the dynamic wetness type, just so that we could tailor the 
wetness in the shaders independently. Of course, this meant that there would no longer be any 
shadowing, but 99% of the time, our trees are not hand-placed indoors, so we went through with the 
swap. 

We used a water droplets texture on the leaves, which finally matched reality a lot more and fixed the 
reflection bugs.

53



Terrain: Wetness References

Terrain was the final area to conquer. Not only is it always in the player’s view, but as we can see from 
photo reference, it also requires far more detail.

54



Terrain: Data Setup

• Primary terrain textures include albedo, normal, smoothness, porosity

• Stored in a virtual texture atlas 
• See GDC 2018 talk: “Terrain Rendering in Far Cry 5”

• Roads and terrain decals are all included

RGB: Albedo RG: Normal G: Smoothness B: Porosity

Let’s first summarize very quickly what we need for our terrain. The primary textures used include 
albedo, normal, smoothness and, the new texture added for wetness, porosity. 

These properties are stored in a virtual texture atlas that we use for the entire world. To see more 
about this system, you can refer to our past talk on our terrain system. 

Note that roads and terrain decals are all baked into the virtual texture atlas, so it truly is one 
complete system that we need to apply wetness to. 

55



Terrain: Wetness Transition

• ApplyWetness() again

• We wanted a better transition 
than just a linear fade

• Splatter transition is a height 
field simulation [Eggers10]

• Resulting animated mask is 
used as the wetness factor  

• Temporarily increase porosity 
for darker droplets

To make terrain wet, we actually use the same ApplyWetness function shown for our static objects.

The key difference for terrain is actually the transition from dry to wet. We didn’t want a linear fade, 
as we thought this was a bit too artificial for such a large surface area.
The new transition we created was our raindrop splatter effect; as shown in the video.

To do this, a height field simulation was done on the GPU, which took in some parameters such as 
drying and spreading speed for the splatters. 

The resulting animated mask was used as our custom wetness factor. 
We also chose to temporarily increase the terrain porosity to accentuate the effect with darker 
splatters. 

56



Terrain: Puddles

• Puddles are terrain decals that write porosity
• Alpha gradient is a pseudo SDF

• Decals are scattered in road and terrain recipes

• We use terrain porosity and the PuddleFactor  
to calculate puddle wetness

• Then we lerp to new gBuffer properties

Full Render

Porosity

Puddle Decal Alpha Gradient

Now that the terrain has it’s wetness applied, we must turn our attention to one of the largest visual 
features needed to present wetness: puddles. 

Puddles were also a heavily desired feature for art direction because they would provide reflections, 
which ultimately makes the environment and lighting more appealing. 

The setup for puddles was very simple. A puddle itself was a terrain decal, but all it contained was an 
alpha gradient and a checkbox to only write to terrain porosity. 
The gradient served as a pseudo signed distance field (SDF), allowing puddles to build up from the 
center.
We only had a few puddle decals, which were scattered by our existing terrain and road recipe 
systems, similar to how cracks and potholes would be scattered. 

We calculated the puddle wetness based on the terrain porosity and the PuddleFactor provided by the 
weather manager.

Once we had the puddle wetness, we once again altered the terrain’s gBuffer values accordingly.
We slightly blended the albedo to a muddy puddle color and blended the smoothness to 1.0. For the 
normals however, we initially used a flat normal, but that brings us to our next implementation…

57



Terrain: Puddle Effects

Two types of ripples

• Rain: circular ripples

• Wind: waves

• Adds realism and movement

• We generated a tiling 
animated texture that is used 
across all puddles 

… Puddle effects.

The two types of puddle effects comprised of:
- Rain impact ripples, which are the circular ripples that simulate rain hitting the water, and
- Wind ripples, which are the small waves that occur when a gust of wind pushes the puddle surface.

It would be acceptable to have flat undisturbed puddles, but we wanted to take it one step further, 
and tie in our weather elements.

To do this, we generated a tiling animated texture, updated every frame, to be used for all puddles. 

58



Terrain: Puddle Effects Texture

• Input texture has two tangent normal maps packed inside

• Output animated normal texture: RGBA8 256x256

Rain ripples: two layers of flipbook animation, faded in by RainEffectsFactor

Wind ripples: scrolling texture, faded in based on wind direction and intensity

Rain Ripples Wind Ripples
Final Ripple Texture

Our input data was a single texture with two normal maps packed inside, one for the rain ripples, and 
one for the wind ripples. 

The output was a single animated normal texture.

For the rain ripples, we sample the normal texture twice to have two overlapping layers of flipbook 
animations. These are faded in based on the weather manager’s RainEffectsFactor, which will ensure 
that these ripples only appear when it is actively raining.

For the wind ripples, we scroll the texture based on the current wind direction and intensity. As a 
result, this effect can be present whether it is raining or not, such as when puddles are still on the 
ground just after a storm. 

Finally, we blend these effects together to get the result that we use for our puddle normals. 

[Stop]

This concludes the collection of shader changes we needed to support material wetness. Now, Colin 
will take you through the technical features that allowed us to render the weather.

59



Speakers

Emily Zhou
- 4 years at Ubisoft Montreal
- Far Cry 5, Far Cry New Dawn, Far Cry 6
- Technical Artist on Montreal 3D team

Colin Weick
- 5 years at Ubisoft Toronto
- Far Cry 5, Far Cry 6
- 3D Programmer on Toronto 3D team

Hi, my name is Colin Weick

I am a 3D programmer at Ubisoft Toronto, where I've been for the past 5 years.

And I worked on Far Cry 5 and Far Cry 6.

60



- 4 -

RENDERING FEATURES

Now that Emily has shown us the intricacies of the weather manager and the implementation of 
wetness, let’s take a look at the rendering features we needed to realize dynamic weather.

61



Technical Implementation

• Far Cry 6 shipped on 9 platforms
• Xbox One, Xbox One X, Xbox Series S, Xbox Series X, 

PS4, PS5, PC, Stadia and Luna

• 60 FPS on Next Gen, 30 FPS on Last Gen

• 10km2 open-world area

• Full day night cycle

• Indoor and outdoor environments

• A new urban city

• Now with dynamic weather!

Image from Base PS4

But first let’s take a look at the technical constraints we had.

Our game shipped on 9 platforms, spanning multiple console generations as well as PC.

We were aiming for 4k 60fps on next gen and 30 fps on the previous gen.

This was also our largest open world for the IP to date.

As Emily mentioned, we have a full day night cycle and an open-world which features indoor and 
outdoor environments

And now we need to do all of this with *dynamic weather* .

[Next]

62



Preview: Atmospheric Scattering

Atmospheric Scattering

Let’s look at a sample scene to see how these rendering features come together to complete the 
depiction of our weather states.

First, we have the atmospheric scattering. 

[Next]

63



Preview: Clouds

Volumetric Clouds

Then we have the clouds on the horizon and overhead.

[Next]

64



Preview: Fog

Volumetric Fog

Then we have volumetric fog obscuring regions and producing light shafts escaping from clouds

[Next]

65



Preview: Reflections

Reflections and Cubemaps

Next we have cubemaps and reflections. Notice the power lines reflected on the road.

[Next]

66



Preview: Rain and Lightning

Rain and Lighting

And finally we have the rain and lightning which complete the scene of a intense thunderstorm.

67



Lighting

• Physically based, energy conserving 

• Multi-scattering diffuse and specular BRDFs
• BRDFs are stored in 3D texture lookup tables (LUTs)

• Area Lights with Linearly Transformed Cosine LUTs 

• Fallback on low-end to GGX specular and Lambertian 
diffuse BRDFs

• Translucency – vegetation, canopies, curtains 
• Wraps diffuse lighting for subsurface scattering

• Adds a second diffuse lobe 

• Reference: [McAuley19]

Surface Type Diffuse BRDF Specular BRDF

Skin Pre-Integrated Subsurface 
Scattering(Lambert)

GGX + Multiscattering Lobe

Hair Multiscattering Diffuse Modified Marschner + ???

Car Paint Multiscattering Diffuse Two GGX + Multiscattering 
Lobes(top and bottom layer)

Cloth Multiscattering Diffuse Ashikhmin Cloth

Translucent Two wrapped Lambert 
Lobes(front and back)

GGX + Multiscattering Lobe

Default Multiscattering Diffuse GGX + Multiscattering Lobe

Before we look at individual techniques, let’s start with a primer on our lighting model.

We use physically based formulas and aim to be energy conserving as a goal.

New for Far Cry 6, we have a higher quality multiscattering diffuse BRDF, a GGX specular BRDF with a 
multiscattering lobe, and support for area lights. 

The chart on the right shows how we handle specific materials, but one surface type of note was 
translucency, which is used for vegetation.

For translucency, we wrap diffuse lighting for subsurface scattering and added a second diffuse lobe to 
simulate light going through the surface. 

You can refer to Steve McAuley’s i3D talk from 2019 to learn more about these improvements.

[Next]

68



Global Illumination

• Global Illumination light probes
• Placed by artists

• Baked daily

• Urban environments tested the limits

• GI Data: 13 packed frames
• 11 time of day increments (sun and moon)

• 1 key frame for local lights (night)

• 1 key frame for sky occlusion

• Problem: doesn’t include clouds or 
weather

• Solution: when cloud coverage is high, 
fade out indirect lighting to simulate 
cloud shadows

World Size: 10km x 10km
160 x 160 sectors (64m x 64m each) 
Terrain Resolution 0.5m

For global illumination we use a light probe system where probes are placed by artists throughout the 
world and baked daily to incorporate changes in the world.

GI data is stored in voxels. We pack 13 frames of data, 11 of which are time of day increments to give 
coverage to the sky, sun and moon.

There is one keyframe for local lights, which is mostly used at night.

And one key frame for sky occlusion.

But there’s a problem, these GI probes don’t include clouds or any impact from the weather.

The solution we had was to fade out indirect lighting when cloud coverage is high.

This could create a problem if the local lights were in all the keyframes, but since they are isolated to 
one, we can avoid fading artificial lights during high cloud coverage.

Additionally, urban environments tested the limits of this system. We leaned into the sparse nature of 
the data and the variable probe size to increase precision near and within indoor environments.

[Next]

69



Sky Lighting - Atmospheric Scattering

• Rayleigh and Mie scattering via LUTs

• [Bruneton07] sky model and [Preetham99] 
sun model
• Generate lighting in 3rd order SH

• Stored in 3D LUT textures

• Turbidity and humidity driven by weather

• Artists create four skies
• Humidity 0 and 1, Turbidity 0 and 1

• Reference: [McAuley15]

Moon Inscatter LUT
RGBA16F 32x32x16

Sun Inscatter LUT
RGBA16F 32x32x16

Atmospheric Transmittance
RGBA16F 32x32x16

Optical Depth LUT
RGBA16F 256x64

Turbidity & Humidity Inscatter
R11G11B10F 32x32x16

We use Brune-ton sky model as well as the Pree-tham sun model, with improvements made such as 
added ozone

This setup involves LUTs calculated offline, previously this was generated at run-time and that was 
very slow

Artists create four skies: Humidity 0 and 1, Turbidity 0 and 1 and we blend between these at run-time 
to get variation

You can check out our GDC talk from 2015 about Lighting in Far Cry 4 to see an earlier implementation 
if these concepts

[Next]

70



Here we show the effect of the humidity and turbidity parameters on the optical depth LUT and the 
blended in-scattering LUT. We blend four pairs of data together to get our result.

The green arrow points to the blended result for each frame and the red arrow points to LUTs with the 
greatest weight for the frames humidity and turbidity parameters. 

[Next]

71



• This is what gave us our beautiful sunrises and sunsets

• Which we see beautifully on the edges of clouds
• Segway into clouds

Scattering

This is what gave us our stunning sunrises and sunsets, which we see casting beautifully on the edges 
of the clouds.

That leads us into our next subject, volumetric clouds

72



Volumetric clouds

• Why real-time volumetric clouds?
• A skybox is not sufficient

• Poor results in motion

• Difficult to blend weather states

• Not just backdrop, but grounded in the world

• Weather
• Cumulus coverage

• Cirrus coverage

• Horizon coverage

• Built upon prior work
• Data setup [Schneider2015]

• Ray marching [Schneider2015][Hillaire2016]

• Checkerboard render[Bauer2019]

So why do we want real-time volumetric clouds?

Simply put, a skybox is not sufficient. It has poor results in motion and is difficult to blend between 
different weather states. 

A skybox is also more of a backdrop, whereas we wanted something grounded that interacts with the 
world. 

Additionally, we needed our clouds to respond to weather with varying cloud coverage levels.

Our eventual solution was build upon prior work, as listed here. 

[Next]

73



Clouds: Lighting Model Recap

Extinction

T=e-optical thickness of participating medium

Graph of Extinction

The most important part of cloud lighting is extinction. As light travels through a volume, it loses 
energy due to the interaction with water particles that clouds are composed of.

This extinction is determined by the Beer-lambert law, which we will henceforth refer to as 
transmittance.

Extinction consists of both absorption, which is actually quite low for clouds, and scattering.

The light that eventually hits the eye after being scattering is measured in terms of radiance.

[Next]

74



Clouds: Lighting Model Recap

Single Scattering Multiscattering

Single-scattering refers to when light enters a cloud encounters one scattering event before traveling 
in the direction towards the observer.

Multi-scattering refers to when light encounters a near limitless number of scattering events within 
the cloud before traveling in the direction towards the observer.

[Next]

75



Single Scattering

Here we show the effects of the single scattering on the clouds

76



Multiscattering

Next we isolate the effects of multiscattering on the clouds. 

77



Combined

And finally we have the effect of both. Notice the greater sense of depth in the clouds.

78



Clouds: Lighting Model Recap

Phase function

All of these scattering events can be modeled by a phase function which projects how much light and 
in what direction it will travel after it is scattered.

In this diagram we have the oval shape representing the phase function approximation of light 
scattering after the scattering event at the blue dot.

[Next]

79



Clouds: Phase Function

Phase Function Equations:

𝑓 𝑔, 𝜃 =
1

4π
ȉ

1 − 𝑔ଶ

|1 + 𝑔ଶ − 2𝑔𝑐𝑜𝑠𝜃|
ଷ
ଶ 

𝑑 𝑔, 𝜃 = |1 + 𝑔ଶ − 2𝑔𝑐𝑜𝑠𝜃|
𝑏 𝑥, 𝑦, 𝛼 = 𝑥 1 − 𝛼 + 𝑦𝛼

𝑟 = 𝑏 𝑓(𝑔0, 𝜃 , 𝑑 𝑔1, 𝜃 , 𝛼)
Constants:

𝑔0 = 0.65
𝑔1 = −0.30
𝛼 = 0.45

Double Lobed Henyey-Greenstein Phase Function 

On the right is a plot of the Double-lobed Henyey-Greenstein Phase Function we used in our 
implementation.

The real phase function for clouds would be much more complex and far too expensive to calculate in 
real-time.

You can also reference this and other lighting code in the bonus slides.

[Next]

Graph of Fog Phase Function https://www.desmos.com/calculator/dcgvobzm4n

80



Base
128x128x32

Clouds: Generated Noise Data

Detail
32x32x32

Weather Map
512x512

Curl
128x128

Base and Detail Noise
• Baked with an offline tool

• A mix of noise types and frequencies, combined to single-channel 
R8 textures

• Sampled and blended together based on cloud type (erosion)

Weather Map
• Generated in Substance Designer

• Tiled and scrolled

• Creates XY cloud shapes and formations

• Enables smooth interpolation between cloud coverage levels [0-1]

• 0.0: Clear Sky, 0.3: Broken Clouds, 0.8: Storm

Curl Noise
• 3D vector data to offset lookup of base and detail noise

• Infuses wispy details

Let’s talk about how we authored cloud data, which represents the density of particles in the clouds to 
be used for our scattering techniques. 

We created base and detail textures, containing mixes of noise types and frequencies, which were 
collapsed into a single channel.

These textures are then volumetrically sampled and blended together to create clouds shapes.

Next we generated a weather map to be tiled in the world and scrolled in the wind direction from our 
weather manager.

This builds our XY cloud formations and enables us to smoothly interpolate between levels of clouds 
coverage.

We also have a curl noise, which contains 3d vector data which we use as an origin-offset when 
shooting rays into the base and detail noise.

[Next]

81



Clouds: Cirrus Cloud Data

• Cirrus Hemisphere Texture
• Tileable

• Curved planar mapping via raycasting

• Cirrus Horizon Texture
• Tileable
• Cylindrical mapping

Cirrus Map
512x512

Cirrus Horizon
2048x128

Finally we have the cirrus cloud texture which we map hemispherically to the sky and cirrus horizon 
texture which we map in a cylinder around the camera.

[Next]

82



Let’s put these all together. Here we start with a clear sky and just our atmospheric scattering.

83



Then we add the cirrus hemisphere and horizon clouds.

84



Then we add the weather map and you start to see the xy shape of the cloud formations

85



Then we combine in the gradient texture to define the shape of the cloud. This cumulus gradient 
ended up being the only gradient we needed to ship, although we did experiment with others.

86



Then we use the base detail noise volume texture to get the distinctive cumulus cloud shapes.

87



Then we use the detail noise volume texture to erode more detail.

88



Then we add in the curl noise texture to get wispy details.

[Next]

89



Clouds: Raymarching

• Raymarching
• Shooting a ray and evaluating at specified steps

• Steps can be fixed, exponentially increasing or 
adaptive

• We can do adaptive based on cloud density, in 
view direction

• And store the transmittance in a history texture 
so we know better in subsequent frames

• Problem areas
• Horizon – lots of overlapping clouds

• Empty view directions

Raymarching is the process we used to draw clouds efficiently, it involves shooting a ray from the 
observer and evaluating at specified steps. 

At each step we integrate the density from that point back to the sun(or moon).

We then convert the optical depth that is returned to transmittance which can then be used to 
approximate single and multiscattering.

We then integrate this transmittance along the segment and accumulate the single and 
multiscattering for the ray-march total.

We also apply the extinction to the transmittance so that affects later ray steps.

[Next]

90



Clouds: Implementation

The general process for each pixel is therefore as follows:

Calculate the origin from the pixel and ray-march the density, transmittance, optical depth and 
scattering(single and multiscattering)

Calculate the cirrus clouds if there is a non-zero transmittance

Use the single and multiscattering values to calculate the radiance with the phase function

And then calculate atmospheric scattering and blend the clouds in front using inverse transmittance as 
a mask.

[Next]

91



Clouds: Runtime Textures

• Screen space textures for current frame
• Half resolution, 1920x1080 → 960x540
• Radiance texture 
• Transmittance texture

• Red channel: transmittance

• Green channel: sun scattering used for lightning

• History Textures
• Radiance & Transmittance
• Temporally reprojected

• Camera delta

Radiance Textures
960x540 R11G11B10F

Transmittance Textures
960x540 R8G8

It would be far too expensive to ray march at the full screen resolution so we do so at half of the 
screen resolution.

We have a radiance and a transmittance texture, as well as history radiance and transmittance 
textures, which we temporally reproject from the last frame.

92



Clouds: Checkerboard Rendering and Encoding

• Single ray-march per pixel quad
• checkerboard offset + curl noise
• Result → single/multi-scattering and transmittance

• Reproject history, gather neighborhood and reject given:
• Camera motion, screen bounds
• Transmittance variance (smoothstep)
• Zero transmittance

• Bilinear interpolation to read neighbors & spread result 
w/history fade over time

• Stored radiance and transmittance:
• History next frame

• Problem: Noisy artifacts showing ray-march pattern

• Solution:  Encode stored radiance w/ blue noise
• 2x blur of blue noise will eliminate pattern
• Also do this blur when compositing clouds to scene

0 1

2 3

0 1

2 3

0 1

2 3

Frame 0 Frame 1Offset Order

Blue Noise Blue Noise Blurred

White Noise White Noise Blurred

We fill these runtime textures using a checkerboard rendering process.

We do a single ray-march for each pixel quad, using a checkboard offset combined with curl noise 
offset to get the ray origin.

The ray-march result is single scattering, multi-scattering and transmittance.

We reproject the history into the current frame, gather the neighborhood and reject based the 
heuristics listed.

We then use bilinear interpolation of the neighbors, and spread the result of the ray-march over this 
area, fading the history over time.

The result is stored as radiance and transmittance history that will be used for the next frame.

Particularly of note is the process we use to store the radiance. We encode this with blue noise to help 
mask the noisy artifacts inherent to raymarching at such a lower resolution.

Notice on the right, when we do a 2x blur of the blue noise it converges to grey, while the white noise 
does not.

[Next]

93



Problem

Missing shadows on the ground!

This looks pretty good, but there is a problem! We are missing shadows on the ground.

This makes it hard to determine where the clouds actually are. In reality they are right over the island.

[Next]

(note there are other bigger issues like a fully lit environment when the sky is overcast)

94



Clouds: Projected Cloud Shadows

• Tried: ray-marched shadows from gbuffer/depth

• Simple orthographic projection 

• Covers up to (configurable) 5,000m in front of the camera

• Used for volumetric fog to get light shafts from clouds

256x256 R8

We tried ray-marched shadows from the gbuffer but that was too costly.

The solution we landed upon was projected cloud shadows.

It was a simple orthographic projection – nothing fancy. 

The resulting shadow texture will be used later on for volumetric fog to get light shafts from clouds.

[Next]

95



Solution

And here we have the clouds on the ground and on the water.

96



Volumetric Fog

Next we have the volumetric fog which is used for environmental height fog as well as local fog from 
weather presets.

[Next]

97



Volumetric Fog

• Fog settings from weather presets

• Frustum Aligned Volume [Wronski14][Hillaire15]
• Resolution: 120x68x128
• R11G11B10F Irradiance volume
• R16F Attenuation volume

• Local and global fog based on weather
• Local fog for biome/region differences
• Light shafts are created by shadows evaluated 

within the cells
• Problems!

Our implementation uses a frustum aligned voxel grid presented in prior work

We have local and global fog based on weather, as well as local fog used for different biomes. 

With the volumetric fog, light shafts are created by shadows evaluated within the cells of the volume.

Herein lies some problems!

[Next]

98



Volumetric Fog

Downsample HTile Dilate Depth X Dilate Depth Y Fill Cells Sum Cells Blur Summed X Blur Summed Y

Here’s a brief overview of the volumetric fog process.

We prepare our scene depth information in the first 3 steps shown, and cull local fog volumes to 
screen tiles.

We will cover the remaining steps in the following slides.

[Next]

99



Volumetric Fog: Fill Cells

• Temporal filtering
• Temporal offset and fadeout

• Only on last gen & PC low-med

• Requires more memory for history 

• Fog particles

• Lighting
• Point and spotlights

• Phase Function: same as clouds
• https://www.desmos.com/calculator/dcgvobzm4n

We fill the cells with irradiance. We do this using the local and global densities of fog and fog particles 
as well as lighting from the sun, atmosphere, indirect lighting and point and spot lights.

Note that we use a temporal filtering on last gen instead of the upcoming bilateral blur.

For this we require a history buffer that is reprojected into the current frame and faded out over time.

This requires more memory and unfortunately has some ghosting artifacts, but it is a cheaper solution.

We used the same phase function as with the volumetric clouds.

[Next]

Graph of Fog Phase Function https://www.desmos.com/calculator/dcgvobzm4n

100



Volumetric Fog: Sum Cells

• Compute shader dispatch
• For each cell in XY – read from front to back

• Writing the moving sum along the way

• 1 thread per view direction column
• Not the most efficient. We’d like to fix this.

After we fill the cells with irradiance, we calculate a continuous sum towards the back of the volume

Now we can sample any voxel for full irradiance accumulation, from the eye to destination.

[Next]

101



Volumetric Fog: Blur Summed

• Bilateral Blur
• Gaussian filter

• Blur summed is a blur of the XY axis, no Z
• Blur X writes output transposed

• Blur Y reads in the X direction and writes 
transposed back to the original texture 
orientation
• Optimizes reads and writes

Blur Summed X Blur Summed Y

And finally, on next gen, we do a two stage process of a bilateral blur in the x and y axis.

Blurring in the X axis outputs a transposed result, and blurring in the Y axis transposes back to the 
original orientation. This optimizes the reads and writes of the textures.

[Next]

102



Exponential Blurred Shadows

Problem: artifacts in sampling!
• Stair-stepping in the shafts
• Bilateral blur helps but not completely

Solution: blur the shadow maps
• Bias shadow data based on intended range

• We only care about light shafts up close
• Use exponential data from near sun shadows

Benefit: can be used in multiple places 
• Deferred lighting
• Volumetric Fog
• Volumetric Underwater

• Saved 3+ ms here

But there’s a problem!

On the right you can see stair-stepping in the light shafts, which is an artifact of sampling!

We want this to be smooth. The bilateral filtering HELPS but doesn’t solve this completely.

The next approach we tried was to blur the actual shadow maps.

One benefit of this approach is that the result can be used in multiple places.

[Next]

103



Exponential Blurred Shadows

Convert + Downsample Blur Downsample

384x384x3 384x384x3

96x96x3

1536x1536x3

Here we see the process for exponential blurred shadows

First, we convert and downsample our three near shadow slices or cascades of our shadow map for 
the sun.

Then, we blur the slices and downsample again.

As you can see, the result is significantly smaller than the original which is more optimal for quality and 
performance when volumetrically sampling.

104



No Fog

Let’s look at a sample scene with no fog from our weather manager.

105



Fog

Here we see the fog on its own with less than ideal artifacting.

106



Fog Blurred

This is the result of blurring the irradiance volume in screen space. It’s better but there are still 
artifacts that suggest the shape of the voxels.

107



Exponential Blurred Shadows

And finally, we enable the exponential blurred shadows. 

108



Upsample and Apply Atmospherics

• Up-sample and apply fog and 
clouds simultaneously[Bauer19]

• Easy to add projected cloud 
shadows into the fog irradiance 
calculation
• Gives nice light shafts from clouds

• Composite with blue noise, at the 
final screen resolution
• Temporal AA eliminates artifacting

To this point we have not mentioned how we apply the clouds

We apply atmospherics, clouds and fog at the same time to save on bandwidth writing to areas of the 
screen where both are visible.

You can also see here that the clouds shadows give nice light shafts in the fog.

One final detail in our composite pass is that we apply the final value with more blue noise at the final 
screen resolution. 

This, when combined with the temporal AA post process, further eliminates raymarching artifacts 
visible in the clouds.

[Next]

109



Reflections

• Necessary to completing the 
visual concept of wetness

• WetnessFactor, PuddleFactor

• Does most of the work reflecting 
objects in the scene

• Provides the crucial reflections  
on water surfaces

• See our other GDC talk: 
“Performant Reflective Beauty -
Hybrid reflections in Far Cry 6”

Next lets talk about reflections. 

Reflections are crucial to completing the visual concept of wetness. 

As Emily mentioned before, we use values from the weather system to determine what surfaces are 
wet.

Then we perform a process where rays are path traced using gbuffer positions and normals to pixels in 
screen-space to be reflected.

This does most of the work in reflecting objects in the scene, such as the trees, sky, and clouds on the 
surface of the road as well as the mountains shown on the water surface.

For more information about our SSLR as well as our hybrid raytracing solution, see my colleagues 
Stephanie and Ihor’s talk: Performant Reflective Beauty.

[Next]

110



Cubemaps

• Needed fallback for when SSLR is not viable
• Raytracing not available on most platforms

• Needs to include time of day and now 
weather too

• Needs to be relit with atmospheric 
scattering, clouds and fog

But what happens when we don’t have data for screen space reflections, such as when we view water 
at the angle shown in the image on the right?

We need a fallback when there is no data to drive screen-space reflections.

Our fallback comes in the form of cubemaps, which need to show time of day changes, weather, and 
clouds, as shown by the sunset reflections on this car.

Our Cubemaps are generated at build time in positions determined by artists. They are then relit with 
our atmospheric scattering, clouds and fog.

[Next]

111



Cubemaps Relighting

• Cubemap stored data
• Albedo, normal/smoothness, depth

• Relight one face every frame

• Exception: cinematic camera cuts

• After relighting, apply filtering
• Rougher surfaces need blurry reflections

• Importance sample GGX for successive 
mip levels
• Key for performance

• Generate mips with box filter 
(downsample), then importance sample 
to convolve larger area for fewer taps

Albedo
BC1 – 128x128x6

Normal/Smooth
BC1 – 128x128x6

Depth
R16F – 64x64x6

Cubemap Baked Data

Sky Only
R11G11B10F - 64x64x6

Relit Scene
R11G11B10F - 128x128x6

Composite
R11G11B10F - 128x128x6

Runtime Relighting Cubemaps

Cubemap data is baked and stored as albedo, normal and smoothness, as well as a lower resolution 
depth.

To achieve acceptable performance, we relight just one face of the cubemap each frame, except in 
special cases such as cinematic camera cuts.

The process starts with generating a sky only cubemap containing only atmospheric scattering, clouds 
and fog. The sky-only cubemap used for fallback reflection on our ocean.

We then relight the scene face using the baked cubemap data. 

Finally, we composite the sky cubemap into the relit scene cubemap, giving the result shown bottom 
right.

We progressively update a single face each frame, attempting to process cubemaps when streaming in 
new areas.

After the relighting process, cubemaps need to be filtered for blurrier reflections on rougher surfaces.

[Next]

112



Overcast Lighting and Weather

Problem: Overcast Lighting and Weather

• Not dark enough

• Can appear flat

• Want contrast in clouds, blue sky breaking through

Reasons for this:

• Authored skies too turbid and grey 
• Blue comes from here, needs to be balanced

• Fog washing out the image
• Fade based on CumulusCoverage

• Sky lighting too bright
• Clouds never reach horizon, horizon present in cubemap

• Clouds are uniform thickness
• Limit CumulusCoverage to 0.8 during storm

• Atmospheric scattering has no shadowing

One large problem we had was overcast lighting and weather. 

Sometimes it just wasn’t dark enough. It could also appear flat.

We want the clouds to have contrast and sometimes have blue sky breaking through

There were several reasons why this was happening. One such example was our authored skies being 
too turbid and grey. If you want blue at all in your natural lighting, it comes from here. 

But be careful, otherwise atmospheric scattering on clouds too blue

We also had issues with the fog washing out the image. To fix this we fade fog based on cloud 
coverage.

We had Sky lighting that was too bright because clouds never reach horizon and the cubemap has a 
band of blue at the horizon that contributes to the brightness.

Clouds of uniform thickness could also wash out the image, which is why we limit CumulusCoverage to 
0.8 even during a storm.

And finally, our Atmospheric scattering has no shadowing which inherently causes problems as well.

[Next]

113



Rain (GPU Particles)

• Needed rain particles but CPU system 
was limited

• Created a GPU particle system for rain

• The system was generalized and 
leveraged for other GPU particle effects

• Weather FX:
• Rain streaks

• Rain splashes

• Lightning

Now let’s move our attention to rain.  Remember, the weather manager keeps track of a rain factor 
that we will use to drive our particle system.

It was very apparent early on that our existing CPU particle system would not be able to produce the 
number of particles we wanted for rain.

Therefore, we set out to create a GPU particle system to render rain effects, and in doing so ended up 
with a generalized system that supported many other particle effects as well.

[Next]

114



Particle System Update

GPU Particle System

Particle System 
Pre-Update

Displacement 
Render

Emit 
Deferred

Clean Dead 
Ribbons

Emit Reset Counters Simulate

Sort All
Forward Render 

Passes

Here’s a brief overview of our particle system you can refer to later.

In summary, we use compute shaders to emit, simulate, sort and render all the particles all on the GPU 
with minimal interaction with the CPU.
[Next]

115



GPU Particle Sorting

Sorting
• Universal sorting with other GPU particles 

using Bitonic Sort
• A parallel algorithm with higher average-case cost, but 

lowest worst-case cost

• 37 dispatches for full data set, 65k part sort
• With less population, many dispatch 0 arguments

• Can use predicated rendering to eliminate this overhead

Filtering
• 6 different passes where particles render

• Before water, after water, displacement, distortion, small 
buffer (half and quarter res particles), opacity

• Prefix sum filtering
• Highly parallelized algorithm – perfect for GPU

• Useful for eliminating empty space and sum reduction

For any particle system you need the billboards or geometry rendered in the right order.

Our solution was to use a bitonic sort to order all the particles at once.

This algorithm is massively parallel, and while it has a higher average cost than something like a radix 
sort, it has one of the lowest worst case costs, which is important in game development to avoid frame 
time spikes.

Once we have a set of visible particles sorted and ready to render, we need to filter which particles 
need to be rendered in which pass.

We used the prefix sum algorithm to effectively eliminate empty space in the sorted list of visible 
particles after isolating for a given render pass. 

This is another highly parallelized algorithm, perfect for the GPU.

[Next]

116



Rain Particles

Streaks
• Experimented with refraction, blur and reflections

• Ultimately used transparent textures
• Closer to the look of rain photography

• Recycled particles in a cylinder around the player
• Wrapped vertically as well for aerial gameplay

• Used a 3D noise texture as turbulence
• Shared with

• Volumetric underwater distortion

• Volumetric fog particle distortion

• Rain direction is driven by weather system

• Wind direction and magnitude

Let’s go through some of our particle effects. The first particle effect we will look at is the rain streaks.

We experimented with refraction, blur and reflections, but we ultimately used transparent textures to 
achieve the look of rain in photography, which was our art direction.

We used two frames of variation and a normal texture to aid in the lighting.

We recycle the rain streaks in a cylinder around the player to ensure the number of rain particles 
remains consistent, regardless of how fast the camera moves.

To add continuous variation in the particles throughout their lifetimes, we used a 3D noise texture 
mapped to world space as turbulence.

And finally, the emission rate and direction of the rain is determined by rain and wind values provided 
by the weather manager.

[Next]

117



Rain Shadow Map

• Lots of indoor/outdoor environments

• We need to occlude rain wherever it 
was not plausible

• Rendered directional shadow with 
view direction of rain falling (driven by 
wind direction)

• We use this rain shadow map for 
streaks and also splashes

Distant Shadow Atlas

Rain Shadow 
Atlas Lookup

Since we had many indoor and outdoor environments, we needed to occlude rain where it was not 
plausible.

To do this, we created a rain shadow map that we can reference to determine if a rain streak or splash 
was occluded.

This was a directional shadow set up to cover the playable area near the camera, parallel to the rain 
direction

We then stored this in our regular sun shadow atlas, shown on the right. The colored image left of it is 
the look up table that is used to convert UV space into the atlas texture.

This rain shadow map only contains static scene elements and is updated a few sections each frame.

[Next]

118



Rain Particle Data

Splashes
• Driven by the event system

• Emit on collision with depth, terrain or water
• Ripple, same as [Grujic2018], but only on GPU

• Later spawned more particles around the 
camera to increase volume
• Snapped to the depth buffer

• Not systemic but faked well

The next particle effect we had was the splashes that appear when rain hits a surface.

Initially this was just driven by a GPU particle event system, which emits new particles when a parent 
particle hits a surface on the depth buffer, terrain or water.

This means we get splash particles on any surface which is opaque, including vehicles, characters and 
weapons. 

However, we didn’t necessarily want these splashes to be on the sides of buildings, so we incorporated 
a slope factor. 

Another problem was that we weren’t getting enough splashes because not every particle that we 
checked for collision would generate a splash.

So, we spawned more particles in a volume around the camera and snapped them to the depth buffer.

[Next]

119



Rain Particle Lighting

• Wanted pixel lighting for rain at night 
• Too expensive

• Used Spherical Harmonic probes
• Sun, point and spot lights

• Shadows

• Coefficients calculated per-vertex

• This gives us better than vertex lighting 
• With directionality

• Combined with normals we get more accurate 
specular highlights

Sphere Billboard Particle

For both the rain streaks and splashes we wanted pixel lighting, especially at night. However this was 
too expensive and vertex lighting wasn’t good enough.

What we did was create a system for generating spherical harmonic light probes for each vertex of the 
particle. Each of these probes calculates 3rd order SH coefficients and incorporates sun, point and spot 
lights.

This gives us better than vertex lighting but much cheaper than pixel lighting. In addition, we can 
sample the normal maps of particles for more directional lighting and better specular highlights.

Here we see an example of this with a particle billboard of a sphere on the right with only a diffuse and 
normal texture.

[Next]

120



Lightning

Lightning Particle 

• Tessellated Ribbon Emitter
• Linked emitters

• Emitted particles in a cylinder moving top 
to bottom

• Added turbulence to create variation 
between endpoints

We need more to make lightning realistic…

The next particle effect we needed was lightning bolts for our thunderstorms. 

For this effect we created a ribbon (or trail) system. We started by creating trails automatically left by 
individual particles, but then extended this by generating particles and tessellating the geometry 
between each particle. We called these linked emitters.

Using the linked system, we emitted particles in a cylinder moving from top to bottom, increasing the 
turbulence in the center of the volume and fading it out at each end.

But this alone was not very realistic – we needed to make the lightning affect the world around it.

[Next]

121



Lightning and Clouds

For better realism, lightning should 
light the scene and nearby clouds

• Spawn an omni light in scene

• Cylinder light in clouds

• Applied in up-sample pass to avoid 
temporal issues

• Use the sun scattering factor to give 
shape to the light

First, we generated an omni light and placed it in the scene so that the lightning would light the 
environment.

Then, we had to address the clouds around the lightning bolt. 

We applied the lightning to the clouds in the upsample pass so that the lightning doesn’t end up in the 
history buffer and cause ghosting. 

In order to determine where in the clouds to add light, we used the sun scattering factor that we 
saved in the green channel of the cloud raymarching pass.

Our implementation functions essentially like a column light.

[Next]

122



Ocean

• Ocean mostly supports the tropical theme

• But ocean is affected by weather in two ways
• Beaufort level

• Wind direction

• Screen space tessellation was limited
• Issues with shoreline waves

• Poor tiling pattern in the distance

• We kept this for freshwater (rivers, lakes, streams)

• For more information see [Grujic18]

• New tessellation (SUBD)

The next rendering feature is the ocean. The improvements we made to the ocean rendering were 
mostly to support the tropical environment. 

However, the ocean still needed to be affected by weather in two ways, Beaufort level and wind 
direction. 

Our previous screen space tessellation had issues with shoreline waves whenever the ocean was 
parallel to the view direction.  It also lacked a lot of detail in the distance. 

For more information on our previous implementation see our previous GDC talk on water rendering.

So, we added a new type of tessellation to support sharp waves for the weather, improve the distance 
visual, and support shoreline waves.

[Next]

123



The tessellation we chose for our ocean was based on the iSubD tessellation scheme.

The basic algorithm subdivides the ocean mesh from a single two triangle quad down to the 
subdivided triangles you see near the camera.

It is a progressive refinement algorithm that will subdivide into smaller triangles each frame as they 
get closer to the camera and merge triangles into larger ones as they get further away.

124



Ocean: iSUBD Tessellation

• Subdivide a coarse mesh [Khoury 2018]

• Used keys to perform subdivision and 
merge operations

• Unsolved problem was how to handle all 
the key generation
• Used parallel prefix sum again

• New tessellation must be blended with 
screen space tessellation
• Use displacement for freshwater on ocean 

and fade at intersections

There is a performance limit on the number of operations that can be done every frame, so we filled a 
buffer with keys to perform these operations, but this led to a list with lots of empty space.

This was an area of the Subd algorithm that we found to be unsolved, and we were able to use the 
same prefix sum algorithm from the GPU particle filtering on a different type of data set.

In our world, we have freshwater that meets the ocean, and therefore we needed to blend the 
previous screen space tessellation with the subd tessellation.

To do this, we used the displacement and normals of the freshwater as an input at the intersections of 
these do tessellation types and blended in that range. We then used simple stencil testing to avoid 
redundant pixel shading of the water meshes.

[Next]

125



Ocean Beaufort Settings

Beaufort Level 0

The Beaufort scale is an empirical system that relates wind speed to its effect on bodies of water.

Here we will show how the Beaufort levels coming from the weather manager can impact the look of 
the water.

This is Beaufort level 0.

126



Beaufort Level 1

The Beaufort levels themselves are tuned with data such as wind speed, amplitude, scale and 
choppiness.

Here we have Beaufort level 1…

[Next]

127



Beaufort Level 2

These values are used to drive the wave simulations we will show later.

Here we have Beaufort level 2

128



Beaufort Level 3

The Beaufort levels also include settings for the shoreline waves, such as amplitude, frequency, speed, 
steepness and number of waves.

Here is Beaufort level 3

129



Beaufort Level 4

The Beaufort levels include settings for foam, which you can see accumulating alongside the increased 
wave size.

And this is Beaufort level 4. 

130



Ocean: Wave Simulations

World Space FBM (Fractional Brownian Motion)
• Screen space FBM couldn’t change amplitude

• Responds to Beaufort level

• Better detail up close as well as in the distance

FFT (Fast Fourier Transform)
• Responds to Beaufort level and wind

• White caps

• Our FFT simulation is animated, so we kept a 
channel as accumulation for whitecaps

• Used the FFT simulation as cascade

• The two layers are visually undetectable

• Used Perlin noise in the far distance to emulate 
planes of water affected by wind

FBM Displacement
512x512

FBM Normal
512x512

FFT Displacement
256x256

FFT Normal
256x256

Here we have the ocean wave buffers that we generate every frame in order to create motion in the 
waves.

These buffer can be mapped back and read on the CPU for physics calculations and ocean level, but we 
disabled this due to performance limits.

The world space fbm was created to get sharp waves up-close near the camera.

Using a world space buffer gave us the ability to generate a normal directly, instead of from screen 
space like we did previously. 

This gave us better details up close as well as in the distance with mip mapping.

Next, we used the FFT simulation for waves in the distance.

We adjusted our original implementation to respond to the Beaufort level and wind parameters.

We also added an accumulation channel to the texture to create persistent white caps on the waves.

To prevent tiling in the distance, we use the FFT buffer as a cascade at a different scale, as well as a 
Perlin noise wave texture.

[Next]

131



FFT

Here we see only the FFT buffer we started with. 

Notice the tiling in the distance.

132



FFT + Cascade

Then we have the FFT cascade eliminating some of the tiling.

133



FFT + Cascade + Perlin

And finally we have the scrolling Perlin noise based texture removing the rest of the tiling. This does a 
good job simulating the effect of wind on large patches of water in the distance. 

[Next]

134



Shoreline Wave

• Procedural - too many shores to hand-place particles or 
meshes

• Gerstner wave formula:

• Controlled with parameters:
• Amplitude, steepness, parallelity, speed, length, foam

• Generated signed distance field
• Shore direction and distance

• Added noise to disrupt parallelism 

• Supported 5 waves but only used 1

Related to the new ocean tech was the inclusion of shoreline waves, since we needed them for our 
tropical beaches. 

We had far too many shorelines to cover so we needed a procedural method, which led us to choose 
the Gerstner wave formula. 

In order to place and move these waves properly we needed to generate a signed distance field from 
the ocean to the shore to derive direction. 

We used parameters such as amplitude, speed, and foam to control the visuals.

We also added a noise parameter to the waves that helps break up the parallelism of the wave, 
otherwise we would have perfect circular waves approaching our islands.

Our system supported multiple waves, but we only used one in the final game.

[Next]

135



Tree Bending

• Improvements made to tree bending
• Wind noise amplitude

• Wind bending amplitude

• Settings are controlled by artists

• Bounding box enlargement was added

This feature remained limited because:
1. Bounding box enlargement degrades 

performance

2. Impostors can’t bend, transition needs 
to be plausible

The last rendering feature we’d like to talk about is tree bending, which works in conjunction with the 
wind direction and magnitude that comes from the weather manager.

We improved the tree bending settings by adding noise and bending amplitudes. Combined with the 
wind values, this gives us exaggerated movement in the trees that reflects our stormy weather 
conditions.

These settings are controlled by artists when setting up the trunk skeletons.

The movement could sometimes exceed the tree’s bounding box however, which was problematic 
because leaves could suddenly get culled and disappear. To fix this, we also included settings to 
enlarge the bounding box.

Ultimately, this feature was still rather limited because:

One - the bounding box enlargement affected performance, with more trees staying visible each 
frame.

and Two – Our distant tree impostors cannot bend, so the movement up-close still needs to allow for 
an acceptable transition. 

[Next]

136



- 5 -

CONCLUSION

To conclude, we would like to share some of our final thoughts from both the tech art and 
programming perspectives. 

137



Tech Art: Final Thoughts

Key Takeaways

• Limit the complexity

• Use real world references

• Reduce production dependencies

• Identify the biggest wins
• What ‘sells’ the weather?

• Puddles + reflections

• Rain + rain effects

• Bending trees vs. idle trees

Future Work

• Simplify the weather database settings

• Make a robust review process

• Make more use of animated wetness effects

• Create more dramatic weather presets

• Explore procedural weather patterns

For me, things that really drove our success were limiting complexity, studying references, reducing 
production dependencies wherever possible, and identifying the biggest wins so that we could focus 
on what ‘sells’ the weather the most.

For future work, we could simplify the database further, set up an easier way to debug and review 
weather without overrides confusing us, make more use of wetness effects, push our presets to be 
more extreme, and investigate procedural weather patterns as opposed to our hardcoded forecasts. 

138



Rendering: Final Thoughts

Future Work

• More clouds types

• Fog Improvements:

• Near clouds in fog volume

• Flying through clouds

• Quad swizzling for summation & tricubic filtering

• Emit particles from arbitrary mesh geometry

• Use SUBD on all water geometry 

• As well as Terrain, and use a single atlas structure for all

• Meshlets for better subdivision near camera

• Curling waves with 1D wave texture

• Shoreline waves that respond to wind direction and tide

Key Takeaways

• Lots of tech to create and maintain

• Lots of interlocking parts

• Each part needs to be polished 
separately, and together!

• Finalize these things early:

• Formats, data, processes
• You don’t want to be changing these

For rendering takeaways, as you saw there was a lot of tech to maintain.

There were many interlocking parts, which needed to be polished both separately and together.

And finalize these things early! That means your data formats, data and processes. You don’t want 
these changing too far into production.

For future work there are several things listed but I think the most interesting to me would be to use 
the same tessellation for both water and terrain and use the same atlas and virtual texturing.

139



Acknowledgments 
Our 3D teams worldwide for providing their expertise…

Toronto: 
• Stephanie Brenham
• Branislav Grujic
• Christian Drouin Plante
• Vlad Adamenko
• Yan Betrisey
• Alistair Braz
• Özgür Cerlet
• Ryan Samlalsingh
• Zhen Yu Mao
• Matthieu St-Pierre

Montreal:
• Jendrik Illner
• Stephen McAuley
• Robert Braby
• Louis De Carufel
• Cong Hao He
• Kara Hughes
• Jean-François Tremblay
• Francis Boivin
• Sébastien Leclerc
• Jean-Francois Marquis

• Jeremy Moore 
• Alexandre Ribard
• Aurora Huang
• Vicki Ferguson

Kyiv:
• Dmytro Rozovik
• Alisa Heletka
• Sergii Levchenko
• Oleksandr Malienovskyi
• Oleksandr Polishchuk

• Anton Remezenko
• Aleksei Shevchenko
• Mikhail Shostak
• Oleh Sopilniak
• Maksym Yakovenko

Shanghai:
• Luo Zhu Yun
• Yao Tian Cheng

Special mentions for making our features shine…

• Rowan Clark
• Luka Romel
• Greg Rassam
• Billy Matjiunis
• Denny Borges

• Marco Beauchemin
• Mathieu Vincent
• Cédric Day-Myer
• Gregory Piche
• Johnathan Reiter

• Weili Huang
• John Lee
• Adam Harvey
• Caroline Labelle
• Nikita Shilkin

And everyone on the project for creating Far Cry 6 with us, thank you!

• Garret Thomson
• Lindsay Farmer
• Karen Smith
• Tricia Penman
• Jarkko Lempiainen

We want to quickly thank the 3D teams who worked on this feature and everyone who helped us 
along the way. As you can see, it was a collective effort!

140



References
[Grujic2018] Water Rendering in Far Cry 5, Branislav Grujic & Cristian Cutocheras, GDC 2018

[Moore2018] Terrain Rendering in Far Cry 5, Jeremy Moore, GDC 2018

[Preetham1999] A Practical Analytic Model for Daylight, A. J. Preetham et. al., SIGGRAPH 1999

[Wronski14] Wronski, B., Volumetric Fog: Unified Compute Shader-based Solution to Atmospheric Scattering, SIGGRAPH 2014, 
Advances in Real-Time Rendering

[Hillaire15] Hillaire, S., Towards Unified and Physically-Based Volumetric Lighting in Frostbite, SIGGRAPH 2015, Advances in Real-Time 
Rendering

[Bruneton08] Bruneton, E., Neyret, F., Precomputed Atmospheric Scattering, Eurographics Symposium on Rendering 2008

[Schneider15] Schneider, A., The Real-time Volumetric Cloudscapes of Horizon: Zero Dawn, SIGGRAPH 2015, Advances in Real-Time 
Rendering

[Bauer19] Bauer, F., Creating the Atmospheric World of Red Dead Redemption 2: A Complete and Integrated Solution, SIGGRAPH 2019,
Advances in Real-Time Rendering

[McAuley19] McAuley, S., Advances in Rendering, Graphics Research and Video Game Production, i3D 2019, ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games

[Eggers10] Eggers, J. et. al., Drop Dynamics After Impact on a Solid Wall: Theory and Simulations, Physics of Fluids 22, 062101 (2010)

Here are the references for this talk…

…And with that, we will close out with a video of our final results.

141



Recap Video

This wonderful video was put together for us by Aalaap Majgavkar.

142



Thank you for joining us today!

Questions?

Contact us at:
colin.weick@ubisoft.com
emily.zhou@ubisoft.com

Thank you!

143



Bonus Slides – Code!

144



Clouds: Raymarching Pseudocode

This is what the raymarching looks like in pseudocode

145



Clouds: Lighting Code

When calculating the irradiance based on the single and multiscattering from the ray-marching

146



Clouds: Phase Function Code

And this is the optimized phase function we used in the previous lighting function.

We used this in the fog as well

147


