
Welcome to the PDF Slides. It is recommended to view the Video of this presentation in the 
GDC Vault OR download the original Powerpoint presentation from the 
http://www.guerrilla-games.com website in order to get the full experience including 
videos and animations. 

All of the spoken content is in the slide notes. Bullet points indicate a button press for 
animations.
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Hello, I’m Andrew Schneider, a Principal VFX Artist at Guerrilla, a Playstation Studio.  I work 
with the Decima Engine and develop the volumetric cloud systems used in the Horizon 
Franchise games.  Before this I worked for Blue Sky Animation studios on movies like Ice 
Age and Rio developing the volumetrics pipeline from simulation to rendering for things 
like VFX and…. yes..  Clouds. I started at Guerrilla in 2013.
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In 2017, we developed a cloud system for Horizon: Zero Dawn, an open world RPG 
featuring a red haired, bow wielding heroine named Aloy in a Future earth where dinosaur 
sized robots roam the landscape. The Nubis Cloud system featured real time volumetric 
clouds that evolved and supported a day-night cycle. We detailed this work twice at 
SIGGRAPH, Eurographics and in a chapter of GPU Pro 7. Since the 2015 SIGGRAPH course 
several Triple A studios and game development companies have developed similar systems 
for use in their games or products. For Zero Dawn, the Nubis system was designed to 
support a stable world. 
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For the sequel, Horizon Forbidden west, the world is anything but stable as it begins to 
disintegrate around Aloy. Ripples of instability generated from the malfunctioning climate 
control systems begin to overlap and converge into swirling vortices of destructive energy. 
This energy discharges in the form of red lightning. 
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For the next hour, I will describe how we engineered this 
effect by expanding the Nubis cloud system to create The 
Realtime Volumetric Superstorms of Horizon Forbidden 
West. By the end of this talk, you should have an example of 
how systems similar to Nubis could be expanded to support 
localized storms. In order to explain how we expanded our 
cloud system, we should first take a look at how the Nubis
cloud system was originally designed for Horizon Zero Dawn 
to render skies full of clouds in real-time. Early on in 
development, I was inspired by the work of Luke Howard. 
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Luke Howard, 1802 

Cumulus

Stratus

Cirrus

In an 1802 lecture called “On the modifications of clouds, he classified clouds by 
their altitude, basic physical characteristics and the conditions that gave rise to their 
development using latin nouns and adjectives. 

• Here are some Renderings that Howard made to illustrate his points.

Howard dubbed the 
• stacked round clouds Cumulus, which means a heap or pile in Latin. 
• The Long flat clouds became Stratus, which means layer or sheet in latin.  
• The wispy stretched clouds that exist high in the atmosphere became Cirrus, 

which means hair or fibre in latin. 
You might recognize some of these names and that’s because Howard was the 
person who came up with the first classification system that stuck. Howard 
understood that the amount of vapor, temperature changes over altitude, wind and 
turbulence all play a role in modeling clouds. Vapor rises and enters cold air, which 
causes it to condense on dust particles rendering it visible to us. He called this 
process Nubification, a term which never really caught on but we decided to honor 
by naming our cloud system after it.
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• Low emission of vapor into cool air produces the bandy stratus clouds that flow 
over the landscape  and are generally more wispy. 

• High emission corresponds to round billowing cumulus clouds that grow higher 
and higher until they flatten out on another layer of colder air. 

We see this type of behavior play out in multiple layers of the atmosphere because 
there are multiple layers of air with differing characteristics that vapor can travel 
through.
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Cirrus Cloud Layer

Tropospheric Cloud Layer

Ground

The original Nubis cloud system rendered clouds in two of these layers. The 
tropopsheric low altitude clouds and the high altitude cirrus clouds.  Let’s take a 
look at how we modeled clouds in these layers. And lets do it in terms of finding the 
density of cloud material for a given point in the sky.  
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Cloud Coverage Cloud Type

In the 2015 Advances in Real-time Rendering SIGGRAPH Course we defined two 
probabilities that tell us what type and how much of a cloud to draw at a given 
point. Cloud Coverage describes the presence of clouds. Cloud type describes the 
height of the cloud and whether it is billowy or wispy. 
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Type

0 1

CumulusStratocumulusStratusHeight

If we were to describe the probability of change in density over height 
• for a cloud we might envision a gradient like this.
• Since we know that cloud type is determined by rate of emission and temperature, and 

that each cloud type has a different height range
• we can order a set of these gradients according to cloud type in order to represent the 

height probabilities for each type of cloud. Type, can then serve as the value which 
blends between these three height functions.
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Height

Type

The Vertical Profile Gradient

When we combine these into one lookup, we accelerate and decelerate some of 
the transitions between types and add some areas with varied intensity to create a 
bit more variety.

We call this lookup the “Vertical profile Gradient”
Lets look at this in practice.
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StratusStratocumulusCumulus

Here are some clouds that use the cumulus vertical profile gradient.
• And  Stratocumulus
• And now stratus. 

Now let’s look at how we define the details that you see in this image.
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The detailed shapes on clouds can be classified into two categories: billows and wisps.  
• Billows form when density increases in a given area and pushes water vapor outward 

and upward
• Wisps form when density decreases and vapor dissipates or curls around the wake 

created by turbulence forces. 

13



‘Perlin-Worley’1-WorleyPerlin

If we were to describe the curling and roiling shapes over 3 dimensional space, we 
might use 3d textures like 
• Perlin noise, 
• inverted Worley noise or, as we proposed in the 2015 SIGGRAPH Advances in 

Real-time Rendering Course, 
• a combination of both depending on cloud type or height. 
Our approach to creating perlin-worley noise was to subtract the web like shapes of 
Worley noise from the high density regions of perlin noise in order to introduce 
round shapes there. This way we get the best of both worlds while only having to 
take one sample of a 3d texture, something that is very expensive. 
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base_cloud_density = remap(lf_noise, 1.0 - hf_noise, 1.0, 0.0, 1.0)

HF Noise [ 323 ]

LF Noise [ 1283 ]

As detailed in in the 2015 course, we define a base cloud density as
• low frequency Perlin Worley and Worley noise an then
• erode that shape using high frequency Worley noises to add detail. Using two noise 

samples allows us to only do the high frequency noise operations where needed, thus 
improving performance. 

• The erosion is done using a remapping function. What we call a remapping function is 
just something that takes a number in a given range and repositions it into a new range. 
This is the same thing as Maya’s SetRange and Houdini’s FitRange. We decided to use 
remapping functions when constructing our base cloud shape because of a really useful 
behavior: as opposed to multiplying the noises together, Remapping prevents a loss of 
too much density at the core of the base cloud shape. I’ll give an example…
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Here’s what our clouds look like WITHOUT using noise as a base probability for density. 
• Our Low frequency noises really form the foundation of our clouds, as you can see. 
• And the high frequency noises add detail without taking anything away at the center of 

the cloud. 

Its kind of like carving out a block of clay, except that all of the details are already stored in 
the clay and you are just revealing them as you carve. But in that analogy what dictates 
how deep to carve?
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Coverage

0 1

cloud_density = remap(base_cloud_density * vert_profile_gradient, 1.0 - cloud_coverage, 1.0, 0.0, 1.0) 

Large scale variations in emission of moisture are what create cloud formations.
• We can express this by defining a cloud by its coverage of the sky at a given point.
Also, because we are using our noise as a base probability for cloud density in a sample, 
• we can apply the coverage value as an erosion to the product of our height gradient and 

noise. This allows the cloud appear to expand or contract over a gradient of coverage 
values in space.

Here is an example.
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As the coverage value increases across the sky, the clouds in this image begin to inflate. 
This is useful when animating cloud coverage in transitions.
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Type

Cirrostratus Cirrocumulus

0 1

The solution for cirrus clouds was much simpler.  
• We compiled a texture containing 3 tiling cloudscapes That cover cloud types from the 

Whispy Cirrostratus to the Billowy Cirrocumulus
• And blended between each depending on the type of cloud being sampled. The inverse 

of coverage was used to erode the cirrus cloud sample density.
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Heres an example of Cirrostratus
• Something in between
• Cirrocumulus
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sample_pos += wind_direction * time_offset;

We can simulate the movement of clouds across their regions of type and coverage 
probability by 
• adding an offset in the wind direction which is incremented in time and subtracted from 

the sample position of our 3d noises.  Here is a sped up example. Notice that the 
general shapes do not change, but the details do. This is because while the noise in the 
density model is animated, the coverage and type probability fields are not. When we 
are constructing art-directed cloudscapes as opposed to a simulated sky, we only want 
them to appear to be changing without altering the larger structure of the cloudscape. 
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That’s how we determine the density of cloud material for a given point in space. But in 
order to fill a sky with clouds we needed another system to define a field of cloud coverage 
and type data over the xy domain of the world so that it can be sampled in the Nubis
renderer.

• That system is called the Nubis Data Field generator.  Using a set of noises, remap 
functions and composites, we can produce a variety of different cloudscapes. 
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NDF
NDF

• Here are a few examples of what we were able 
• to do for the first game, Horizon Zero Dawn. 
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Cirrus Cloud Layer

Tropospheric Cloud Layer

Now that we have covered modeling and authoring, we can take a look at how we actually 
start to construct renders using ray-marching. 
• Ray-marching is one Rendering technique that can be used whenever you need to 

construct an image that contains volumetric objects. The idea is to construct density and 
lighting samples at several points along the view vector and combine them in a way that 
produces Color and Opacity data for each pixel.

• This is done for every pixel to produce a full render.  To ray-march volumetrics like clouds 
efficiently you need a good idea of where to begin and end your march. 

• Since the atmosphere of the earth is a spherical shell, we can define our ray-march ray 
segment using the intersections on the inside and outside of this shell. For the Cirrus 
cloud layer we only needed one intersection as it is a 2-dimensional layer. 
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But before any of that, it’s a good idea to know where you don’t need to construct any 
samples at all so that you can skip ray-marching those pixels. 
• if objects like trees and mountains render front of the clouds, 
• we do not march from those pixels. 
• This reduces the total 
• amount of work that needs to be done. 
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For the pixels that do have visible sky in them, 
• we march over the view ray to gather the density and lighting data needed to construct 

color and opacity for the pixel. 
• We start with large steps and at each one we construct what we call a coarse sample. 

That is a sample built with only the cloud coverage and vertical profile gradient to keep 
the operation as cheap as possible. We construct and check these coarse samples until 

• we one of them returns a result which is nonzero. 
• Then we switch to taking smaller steps and constructing what we call Fine Samples 

which include the 3d noise texture samples needed to erode the base shape with cloud 
details. 

• We do this until the total density sampled along the view ray sums to full opacity. Then 
we stop the march. To calculate cloud color, we need light intensity information

• For every fine sample, we also march toward the light along the light ray, taking fine 
samples in order to gather the amount of density between the sample and the light 
source for use in light intensity calculations. 
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Light Energy = Direct Scattering + Ambient Scattering

Cloud lighting can be a complicated subject. There are a lot of things going on when a 
photon enters a cloud and it can all be very computationally expensive.  So, we decided to 
focus on the characteristics of cloud lighting that were most important to us and model less 
expensive approximation methods for them that we combine to describe the light energy 
of a sample.

We define light energy as the sum of two components.  
• Direct Scattering and Ambient Scattering. 
• Direct scattering is all of the light energy associated with the strongest light source, the 

Sun. 
• Ambient scattering is all of the light energy associated with contribution from other 

bright sources like the sky and neighboring clouds.  Lets look at Direct scattering first.  
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Direct Scattering = Transmittance * Scattering Phase * In-Scatter Probability 

We define Direct scattering at a given sample point in a cloud as a function of three 
probability functions:
• Transmittance, phase, in-scattering probability. Let’s break these down starting with 

transmittance
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Back in 1852, a chemist and mathematician named Agustus Beer (great name) wanted to 
find a quick way to measure how much light was being absorbed by opaque molecules in a 
solution. 
• In conjunction with work by Johann Heinrich Lambert from nearly a century earlier, He 

came up with a way to express the reduction in light transmittance 
• as a function of optical depth in a given medium. In other words if you are a photon the 

deeper you are in a translucent object, the lower the probability that you will escape 
and reach someone’s eyes in a behavior known as In-Scattering. Since clouds are a 
translucent medium with absorptive properties, beer’s law is a reasonable 
approximation. You simply sum up density samples along the light ray and plug it into 
the equation as the optical depth.
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Here are some examples. On the left are some clouds with the beer-lambert function being 
used as the attenuation component. The right shows the same cloudscape without the 
attenuation component.
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float HenyeyGreenstein(float inCosAngle, float inG)
{

float num = 1.0 – inG * inG;
float denom = 1.0 + inG * inG - 2.0 * inG * inCosAngle;
float rsqrt_denom = rsqrt(denom);
return num * rsqrt_denom * rsqrt_denom * rsqrt_denom * (1.0 / (4.0 * M_PI));

}

The second component deals with light scattering directionality. 
• In clouds, light scatters in a forward direction, meaning that there is a higher probability 

that you will see scattered light when you look toward the sun, through a cloud. In 1941, 
Henyey and Greenstein developed a way to solve light directionality problems at galactic 
scales. Well, what works for astronomy also works for participating media at earth 
scales. 

• Depending on the material transmitting light and the angle between the viewer and the 
sun, this function can approximate the intensity of scattered light that the viewer sees. 
Since clouds are slightly forward scattering we supply an eccentricity of .2
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We actually combined several of these functions with varying 
• eccentricities in order to get a more art directed silver lining effect that we could control 

at sunset.
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The third component is a function developed by us to model an oft-forgotten lighting effect 
in clouds. Those dark-edges as that you see when you look at clouds with the sun behind 
you. Well, recall that photons enter the cloud and then scatter in many directions when 
they hit clumps of water molecules and some of these photons escape to your eye in a 
behavior known as in-scattering. Instead of seeing a white cloud with dark edges, first, 
imagine it as a black cloud with no light scattering happening on the edges, but deeper in 
the cloud, in-scattering is occurring more frequently, which shines through like a flashlight 
in a cotton sheet. When you look at this effect geometrically as the result of in-scattering 
potential it is much easier to model.

33



Sample Point A (2)

Sample Point B (5)

Cloud ‘Surface’

T * 1 – e -d

T  = e -d

Take two points at the same depth in the cloud. One is behind a convex surface and the 
other is behind a concave surface. The one behind the concave surface will have more in-
scattering contributors between it and the sun. How many more? Its better to ask what’s 
the probability of in-scattering occurring in these points? 
• It can be described as the inverse of the beer-lambert-law. We call this component the 

In-Scattering Probability Function. 
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This is what a cloudscape looks like with only the Absorption and Phase components. 
• And this is what it looks like when we apply our in-scattering probability function. Once 

you see this effect and understand it, it is quite hard to unsee it in nature. 

35



Those are light effects that deal with light from the sun. 
• But the sky and indeed neighboring clouds contribute to cloud lighting.  We call this 

Ambient Scattering. 
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Ambient Scattering = pow(1.0 – coarse_density, 0.5)

To approximate the effect of light entering the cloud from all around without ray marching 
to many light sources, we model this geometrically as a probability field. The majority of 
light coming from above and around and penetrating just the surface of the cloud. 
• The coarse density sample already provides a kind of gradient from the outside of the 

cloud to the inside.  
• We use the inverse of the coarse density sample to create a gradient representing the 

probability that light will reach a given point inside the cloud.  
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Here is what the ambient component looks like on its own.
• Here is the direct scattering component.  
• And here is the combination of the two. It adds quite a bit of dimensionality to the 

clouds.  
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// Accumulate energy and attenuate based on depth in the cloud along the view ray 
light_intensity += (light_energy * saturate(sampled_density) * (1.0 - saturate(light_absorption)));

// Accumulate light_absorption from sampled density
light_absorption += sampled_density * (1.0 - saturate(light_absorption)); 

// Accumulate energy and attenuate based on depth in the cloud along the view ray 
float3 color = float4(direct_intensity * sun_color + amb_intensity * amb_color);
float alpha = light_absorption;

Now that we know How our ray-march works and how to determine the density and light 
energy at a sample, We can put it all together to describe how we determine color and 
opacity for a pixel. The samples deeper into the cloud have less influence on the final color 
and opacity because they are occluded by cloud material. Think back to the beer-lambert 
transmittance function. Once you know your depth, you can use it to attenuate light.  
However in this case, we need to reduce the influence of samples along the view ray at 
each step.
• First we get the current amount of occlusion by density along the ray by calculating the 

product of the sampled density and the inverse of the current amount of occlusion by 
the preceding samples. 

• Next, we get the current amount of visible light energy by calculating the product of 
three things: the current light energy, the density of the sample and the inverse of the 
current amount of occlusion by the preceding samples. This reduces the intensity of the 
current sample according to how much material is in front of it. 

• Finally, Light intensity is colored according to Ambient or Sun light sources and output to 
the color channel while the absorption becomes the alpha channel. This is done for 
every pixel in the image. In the cirrus layer, there is only one sample per pixel, since it is 
a 2-d layer. 
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To accelerate our renders, We 
• split our render up into blocks of 16 pixels that run in In serial and build an image out of 

these pieces. The blocks themselves run in parallel. This technique is known as Temporal 
upscaling. The working buffer resolution is 480x270 and we upscale to 1920x1080. In 
the case of the original Nubis renderer, this had the effect of turning a 16ms render into 
a 2ms one. 
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Base Parallelization March Optimizations Exclude Hidden Pixels

60+ms 22ms 3.34ms 1.2 – 2.0ms

Here’s the performance results or the original Nubis system. For this frame, The shader 
without parallelization or any optimizations costs more than 60 milliseconds. After we 
apply temporal upscaling it drops to 22ms. Still pretty far from ideal. After the ray march 
optimizations I just described involving coarse and fine samples, it drops to 3.34ms. And 
after we don’t bother rendering below the horizon or behind large objects, the time drops 
to between 1.2 to 2ms depending on cloud type and coverage. To us, this is a reasonable 
cost to pay for something that takes up half of the frame. Anyway, that was the original 
Nubis system. It did its job well, but after 5 years we can finally share some of the 
advancements we have made for Horizon Forbidden West. 
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The second iteration of Nubis
• includes many visual enhancements for authoring, modeling and lighting the existing 2 

cloud layers. We also engineered a new rendering approach for a mountain-intersecting 
cloud layer that the player can actually fly through. In the near future we will share how 
we made these advances, but the reason we are here today is to talk about 
Superstorms. Here are a few of them as they appear in the Forbidden West. 
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(Play Video)
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We defined 5 goals for the superstorms.
• Realistic – Often In videogames we have to make sacrifices in realism just to get the big 

effect we are developing to run on the hardware. Not for this. We would need to 
emulate the most important details, characteristics and behaviors of large scale storms, 
otherwise it would serve as a negative distraction in gameplay.

• Powerful – The idea was that the malfunctioning weather system created buildups of 
destructive energy which manifested these storms and discharged in the form of 
lightning until the storm dissipated. So, we would need to create lightning and internal 
glow effects to make it look as though the storm was a powerful and destructive source 
of energy.

• Ominous – Not only would the storm itself need to look threatening, but the 
environment around it would need to be affected.  Rain, Wind and Sound. 

• Dynamic – The storms should form anywhere.
• Performant – it all needed to work on ps5 AND ps4 hardware. With the exception of 

performance, Realism intersected with all of the other goals. 
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Obviously, the best way to convince the human eye that it is looking at something real is to 
supply it with something based on reality. It made sense to model a lot of the superstorm 
on a natural phenomenon that most people playing our game will have seen before  - at 
least on a tv screen.

• So, First I’m going to talk about Supercells.
• Then I will begin explaining our solution with the topic of modeling and animating 

density including our solution for fast movement with temporal rendering. 
• Next I will talk about modeling light, 
• and lightning effects. 
• Then I will explain how The storms affected the environment around the player
• After that I will explain how we built a system to control this chaotic weather effect.  
• Next I will explain how we made this effect scale between two generations of 

Playstation hardware. 
• And Finally I will close with a summary of what we covered here today. 

I contacted some Supercell experts to get permission to share some really awesome work 
that they did. First, lets look at a supercell in the wild.
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• This video was captured on Earth in a town called…. Earth…. In my home state of Texas. 
We’ve got some of the best names for cities. The photographer, Isaac Schlueshe, attends 
classes at the University of Wisconsin Madison and said that to make this video he took 
516 pictures over a 10 minute period. It’s honestly one of the best supercell timelapses 
that I found in my research, better than what we were using as reference. Supercells are 
a unique type of storm that can produce tornadoes and occur primarily in the spring and 
summer months in the central United States.  Supercells are a big source of destruction 
and also important to regulating the climate so University and Government researchers 
in the United States are actively contributing to our understanding. 
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• Raw atmospheric data gathered during the infamous supercell and tornado that struck 
El Reno Oklahoma in 2013 was used by Leigh Orf at the University of Wisconsin Madison 
to recreate the storm using a supercomputer. This ended up being extremely useful for 
modeling our superstorm because it lended us a view from multiple angles as well as a 
clear view of the underlying mechanics of a supercell. A few seconds ago I said that this 
particular storm was Infamous and that’s because a tornado generated by it killed 8 
people including the renowned storm chaser Tim Samaras. I highly recommend the 
Book, The Man Who Caught The Storm, by Brantley Hargrove if you want to learn more 
about the skill and dedication required to be able to study these storms up close as well 
as the history of storm chasing and the mechanics of supercells.  
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There are four key features of supercells that we wanted to use to make our superstorms 
realistic. 
• The most important is the swirling monolithic and cylindrical “foot” of the cloud called a 

mesocyclone. Here, air moves in a vortex about a column of low pressure, slow on the 
outside of the mesocyclone and fast on the inside.  Near the center is where tornadoes 
can form.

• Besides the mesocyclone there are the towering Anvil clouds that flatten at the top and 
spread into the upper cloud layers.

• There are also unique lighting effects, like internal lighting and ambient lighting sources. 
You just don’t see internal lighting in clouds like this unless it’s a massive cloud 
formation with abnormal shaping. This makes it a unique characteristic. Also, lightning 
and the lighting effects associated with it play a big part in making supercells unique. 
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•
•

Lets look at how we modeled density to create the mesocyclone and anvil.
• The mesocylone is a vertical cloud column that spreads out at the base. The underside 

is detailed with ragged wispy and billowy cloud shapes. There is also a distinctive vortex 
that manifests with slowly moving spiral tendrils near the outside and faster spinning, 
stretched out clouds near the center.  

• The Anvil cloud is positioned above the mesocyclone. This is where rising cloud material 
meets another cloud layer and punches through, spreading into the cirrus cloud layers.

Rather than model these features separate from the rest of the clouds in the sky, we 
decided to integrate them as a function of the cloud system itself, which reduced the 
unique code and instructions required – something good for performance and sanity! 
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We also wanted to localize the superstorms. So, The Nubis Data Field generator was 
expanded to support Superstorm stencils so that we could avoid affecting the entire cloud 
map. 

• Using a position, radius and coverage, stencils would only affect the region that they 
occupied. 

• The modeling data would be overridden for the tropospheric and cirrus layers to create 
the mesocyclone and anvil clouds.  First, lets look at how we modeled density with the 
stencil itself. 
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Tropospheric Data Field

With the Nubis Coverage-Type modeling approach, its quite easy to make a cloud 
mountain. You just need to increase cloud coverage and type radially toward a point. 
• So, Within the superstorm radius Several noises were composited and blended to their 

maximum values at the center to produce the characteristic cylindrical foot of the 
mesoscylone.  Though admittedly, without the anvil it looks kind of like a sombrero. 
Next, We add some detail underneath. 

51



In order to produce ragged details on the underside of the mesocyclone, 
• the original Coverage/Type cloud model was expanded to support an additional bottom 

cloud type that could change the Nosie shapes on the bottoms of clouds to something 
more ragged. 

• Also, in order to blend lighting and other modeling behaviors unique to the superstorms, 
we added superstorm coverage data to the model.
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The vertical profile gradient was split into bottom and top gradients so 
• that the bottom and top types could be applied independently.  The results of the two 

lookups were multiplied to produce the vertical profile gradient for a given sample. 
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Here it is in practice. 
• As bottom type increases, the bottom vertical profile curve relaxes and the noise types 

blend to wispier shapes.  This gives us that torn ragged look on the underside of the 
mesocyclone. Now to model those spiral shapes.

54



X

Y

Tropospheric Modeling Map

We 
• twisted these noises around the center of the mesocyclone to produce the characteristic 

vortex tendrils at the base of the mesocylone. Although the bottom of a mesocyclone 
flattens out, the underside is anything but flat. 
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The original nubis system was extended to allow for varying cloud heights.  
• Min and Max height were encoded to a new data field so that we could alter the 

superstorm heights as needed.  
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Tropospheric Height Map

We 
• used the Nubis Data Field Generator to create a set of distorted noises and radial 

gradients to use as signals for a height adjustment to give the underside more definition.  
Here is the result.
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So, by adding two new modeling data, Bottom Type and Superstorm Coverage, and by 
adding variable height to the cloud layer, we were able to produce a promising 
approximation of a mesocyclone. But this is only half of work.  We also need to make it 
move.  
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“MDR Vortex Field”
Sine/Cosine rotation concept by Matthew D. Roach
Fluid Simulations by Andrew Schneider (Houdini/Maya) 

I worked in feature animation before this job and had the opportunity to make several 
volumetric vorticies using fluid simulation. It seems to be an effect that I can’t escape 
Fluid simulations can produce realistic motion but they have a way of flowing out of control 
over time causing big changes in the overall shape if you aren’t careful.  
• For something like the underside of a mesocyclone the solution would be to advect an 

initial cloud pancake around in a vortex. Once you have a couple of seconds of 
convincing vortex motion, you just render it and use it in a shot.  Unfortunately, given 
that this was a continuous effect that had to start and stop over several minutes and 
that we not only needed to do this on the PS5 but also on the PS4, Fluid simulation was 
out of the picture. 

• The other option is to try to fake fluid vortex motion using rotations and some trickery 
as I did in some other vortex effects in the past at Blue Sky Studios. 
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SampleNoise( GetRotatedPosition( SamplePosition, SuperstormCenter, TimeOffset ) )

So First, we tried rotating the detail noise sample positions about the center of the 
mesocyclone over time. In this pseudocode example the third component to the rotation 
function is animation offset. This was promising but real vortices like those in a supercell 
mesocyclone spin faster at the center and slower at the edges. 
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SampleNoise(GetRotatedPosition( SamplePosition, SuperstormCenter, TimeOffset * RingRotationSpeed[n] ) )

0

1
2

3

4

5

At guerrilla we like to opt for solutions that give us the greatest artistic control. So rather 
then using a generalized technique like flow maps, we decided to explicitly 
• determine rotation speeds in a set of nested rings. 
• The mesocyclone detail noise rotation speeds would decrease incrementally over 

distance from the center. To prevent visible cuts where one ring ends and another 
begins, we overlap the rings, sample noise at both speeds, and then interpolate the 
results across the overlap. Note that this does mean that you sample noise twice in the 
overlap. I’ll explain how we avoided this extra work on Playstation 4 a bit later.
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SampleNoise(GetRotatedPosition( SamplePosition, SuperstormCenter, TimeOffset * RingRotationSpeed[n] + RingSkew[n] ) )

To get a little bit of the Fluid simulation look back, we added some distortion to the noise. 
• Noise sample positions for rings nested outside faster moving rings were twisted about 

the center of the mesocyclone in order to create the illusion of fluid boundary 
interactions.  
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So, all of this produces a convincing procedurally created and animated mesocyclone. 
However there is one caveat. What is depicted here is rendered without temporal 
upscaling. This is useful when showing how the vortex was created for a GDC talk, but not 
in gameplay where the costs for full resolution renders of clouds are prohibitive.  
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Recall that Nubis constructs a cloud render 
• over several frames to reduce the total render time required. This is reliable for slow-

moving volumetrics where you can take 16 frames to draw a full res image.  
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However, this can pose a problem when the cloud moves faster than the image can be 
constructed - as seen here. It produces a sort of pixel soup.  This is because there is not 
enough time to resolve a shape before that shape has moved somewhere else in frame.  
The only way to mitigate this is to tell the upscale shader where the shape will be in the 
next frame and order the renders accordingly.  
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Because we made the decision to divide the underside of the mesocyclone into 
• 6 rings with different rotation speeds, we could calculate these translation values, 

known across the industry as motion vectors, for each ring and use this to solve the 
serious temporal artifacts that would occur in the fast-moving vortex.
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// Get world space cloud position

float3 view_space_vec = CreateEyeRay(inViewportUV, inFovScale);

float cloud_distance = inCloudAttrWorkingBuffer.SampleLOD(inSampler, inUV, 0).r;

float3 cloud_world_space = mul(inInvViewMatrix, float4(view_space_vec * cloud_distance, 1.0)).xyz;

// Rotate around superstorm center

float rotation_speed = GetSuperstormRotationSpeed(cloud_world_space.xy, superstorm_center, superstorm_radius, superstorm_blend_factor);

float2 rotating_motion_offset = GetRotatedPosition(cloud_world_space.xy, superstorm_center, rotation_speed * inDeltaTime);

float3 superstorm_rotated_world_space_position = float3(0.0, 0.0, cloud_world_space.z);

superstorm_rotated_world_space_position.xy = rotating_motion_offset;

// Get superstorm mask for blending – powered linear distance from radius to center of superstorm

float superstorm_mask = pow(saturate(1.0 - length(cloud_world_space.xy – superstorm_center) / superstorm_radius), 0.1);

// Blend vectors from normal to superstorm over superstorm mask.

cloud_world_space = lerp(cloud_world_space, superstorm_rotated_world_space_position, superstorm_mask);

view_space_vec = mul(inViewMatrix, float4(cloud_world_space, 1.0)).xyz;

// Construct previous sample position from new view space vector

float4 prev_sample_pos = mul(inReprojectionMatrix, float4(view_space_vec, 1.0));

prev_sample_pos /= prev_sample_pos.w;

prev_sample_pos.xy *= float2(0.5, -0.5) 

prev_sample_pos.xy += float2(0.5, 0.5);

Here is the actual code that we used to make these calculations.  
It’s a lot of text that you can review later when the slides are 
published but for now I will summarize the steps involved.  

• First, we generate a world space position for the point where the 
view ray from the given pixel intersects the cloud.

• Next, we rotate the position around the center of the superstorm 
using the same rotation transformations that would be used for 
the noise deformations at that position in space.  

• Then we blend between the normal sample position and the 
superstorm translated position using the linear distance from the 
radius to the center of the superstorm as the blend factor.

• Finally we construct a 2D UV offset for the previous position 
from the resulting 3d vector. 

This vector can then be used in the upscale shader to order the 
pixel updates..
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So that our pixel soup becomes… A more temporally stable vortex. We were able to 
increase the highest rotation speed to something realistic for the scale of the storm
while maintaining temporal stability. As it turns out, this motion vector solution was also 
applicable to a much broader use case…
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// Get world space cloud position

float3 view_space_vec = CreateEyeRay(inViewportUV, inFovScale);

float cloud_distance = inCloudAttrWorkingBuffer.SampleLOD(inSampler, inUV, 0).r;

float3 cloud_world_space = mul(inInvViewMatrix, float4(view_space_vec * cloud_distance, 1.0)).xyz;

// Rotate around superstorm center

float rotation_speed = GetSuperstormRotationSpeed(cloud_world_space.xy, superstorm_center, superstorm_radius, superstorm_blend_factor);

float2 rotating_motion_offset = GetRotatedPosition(cloud_world_space.xy, superstorm_center, rotation_speed * inDeltaTime);

float3 superstorm_rotated_world_space_position = float3(0.0, 0.0, cloud_world_space.z);

superstorm_rotated_world_space_position.xy = rotating_motion_offset;

// Get superstorm mask for blending – powered linear distance from radius to center of superstorm

float superstorm_mask = pow(saturate(1.0 - length(cloud_world_space.xy – superstorm_center) / superstorm_radius), 0.1);

// Blend vectors from normal to superstorm over superstorm mask.

cloud_world_space = lerp(cloud_world_space, superstorm_rotated_world_space_position, superstorm_mask);

cloud_world_space = lerp(cloud_world_space + scroll_direction_2D * inDeltaTime, superstorm_rotated_world_space_position, superstorm_mask);

view_space_vec = mul(inViewMatrix, float4(cloud_world_space, 1.0)).xyz;

// Construct previous sample position from new view space vector

float4 prev_sample_pos = mul(inReprojectionMatrix, float4(view_space_vec, 1.0));

prev_sample_pos /= prev_sample_pos.w;

prev_sample_pos.xy *= float2(0.5, -0.5) 

prev_sample_pos.xy += float2(0.5, 0.5);

Normal Clouds that scroll in one direction. Generating motion vectors for scrolling clouds is 
as simple as multiplying the scroll direction by a timestep. Instead of blending between 
static cloud motion vectors and superstorm motion vectors at this point, we just need to 
blend between scrolling vectors and superstorm vectors.  
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Here is the result. On the left we have scrolling clouds with no motion vectors for upscaling 
and on the right we use motion vectors.  There is an upward limit to scroll speed of course, 
but this is far faster movement than was possible before in our system.  
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New let’s look at how we modeled the anvil cloud.
Recall that the characteristic anvil forms as the billowing top of the mesocyclone rises into 
the upper cloud layers and flattens out and spreads in the wind direction. We modeled this 
in the tropospheric and cirrus cloud layers. 
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Vertical Profile Gradient

In the tropospheric layer, for the areas where superstorm coverage was nonzero, 
• we flipped the Vertical profile gradient and combined that lookup result with the normal 

vertical profile gradient  in order too produce the horizontal spreading at the top of the 
cloud layer. We also rotated and skewed the noises in this area to produce a more wind-
swept look.
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Cirrus Data Field

Superstorm Center

For the cirrus layer, we made some changes to the the Nubis Data Field generator
• We used the superstorm position, radius and wind vector 
• to create a cirrus cloud formation above the superstorm mesocyclone and offset in the 

wind direction. 
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So now, instead of a sombrero cloud, we have something that feels ominous and connected 
to the higher altitude cloud layers and that could be seen from great distances around the 
game world to remind the player that the weather system was still malfunctioning. 
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Since the superstorm used the same modeling data as the rest of the cloud system, 
• this transition from cloud to superstorm was seamless.

Now that we have covered the modeling of density as well as the animation of the density 
of the superstorm, we can taker a look at how we modeled light differently for the 
superstorm.
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The real-world phenomenon of supercells present several unique lighting features that we 
wanted to simulate. They are so dense that they can appear quite dark. The clouds are so 
low to the ground that they can pick up a lot of ambient light that bounces from the 
ground. In addition to the natural effects we would also need to model the sinister internal 
red glow. First let’s look at how we modeled direct scattering from the sun for the 
superstorm.
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Optical Thickness ( d )

Transmittance 
( T )

T = e -5d

T = e -10d

T = e -20d

Recall that we use the Beer-Lambert equation to approximate light attenuation in the 
direct scattering component of our lighting model. 
• By artificially increasing the optical thickness, we can make clouds appear darker and 

thicker. However, we only want to apply this effect for the superstorm. So, we need to 
model a probability field to dictate where this can happen. 
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radius

dist

density_scale = pow(min(1.0 – (dist / radius), 0.0) + 1.0, 0.5);

transmittance = exp( -1.0 * (summed_density));

d1

d2

d3

d4

d5

summed_density += d(n) * density_scale;

Here is an example of a cloud with a light ray march that samples density along the light 
ray. 
• Let’s focus on one of these samples. 
• we describe the probability of an increase in the density sample scale by its proximity to 

the superstorm center. 
• If our light sample falls within a given radius from the center of the superstorm, we can 

increase the density of the sample in the density sampler function itself. 
• We repeat this for each sample and sum them along the ray. 
• Then we use this altered density sum in the attenuation function. 
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Here is the result. You can see that as we increase the artificial attenuation scale, the cloud 
becomes darker and more menacing. It’s a simple and old trick, but it works when applied 
locally in this way.
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radius

dist1

amb_settings_blend = min(1.0 – (dist1 / radius), 0.0) * (dist2 / height);

ambient_scattering_settings = lerp(cloud_amb_settings, superstorm_amb_settings, amb_settings_blend);

height dist2

Next, lets look at ambient light effects. We wanted to be able to independently control the 
amount of ambient light contribution on the underside of the superstorm mesocyclone.  
• The solution was simple. We used a cylindrical probability field like the one used for 

attenuation but with a decrease in probability over height to blend between ambient 
scattering settings for the clouds and the superstorm .

80



And here is the result in-engine.  You can see that the interior gets an ambient boost while 
the exterior and by extension the rest of the clouds do not. 
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To create a constant sinister internal red glow to communicate that this is a destructive 
energy effect, we created Internal light source that avoids a second light-ray march…
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Normally, for any light source that is positioned inside a volumetric effect, 
• you need to do an expensive second light ray march for each sample taken. For those 

keeping track that would mean 3 Ray-marches.  For a large scale volumetric effect like 
clouds which can cover most of the screen, this is not an ideal approach even on the 
newer Playstation Hardware. Especially for games like Horizon that also have to render a 
lot of other content on the ground.
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Once again we looked at lighting as a geometric probability problem. 
• We modeled a volume of light that would approximate the light energy present at each 

sample taken around the light source in the primary ray-march. 
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sample pos

light pos
d1

radius

cloud bottom
d2

height

potential_energy = pow( 1.0 – (d1 / radius), 12.0);

pseudo_attenuation = (1.0 – saturate(fine_density * 5.0)); 

glow_energy = potential_energy

height_gradient = (d2 / height);

light_energy = direct_scattering + ambient_scattering + glow_energy; 

* height_gradient * pseudo_attenuation;

• First we define a spherical volume that represents the area where 
light from the internal glow could possibly be detected and we 

• define our potential energy as a function of a powered linear 
distance from the sample to the center of the light.

• We defined a height gradient representing the light attenuation 
along the ray from the sample to the light position. But density 
is not homogeneous in the space between the sample and the light 
source.  To fake the effect of heterogeneous density along the 
imaginary ray

• we define another component that represents the probability of 
light absorption due to local density variation using the fine 
density sample data. 

• To approximate the light energy present at the sample position, 
we multiply these three components together.

• Then this light intensity value was added to the result of the light energy function.
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The superstorm was supposed to be a source of destructive energy that discharged over 
time through red lighting. If you are going to take care to attempt a reality-based 
approximation of lightning for film or games then there is one book you need to know 
about. The title is easy to remember. 
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“Lightning”  by Martin A. Uman. Mr. Uman has been researching and publishing about 
lightning for decades. This book is from 1969. Sorry about my name being written on the 
cover, this is from an earlier time where people read physical books and you had to label 
what was yours in the office. What we took away from this book was information about 
lightning classifications, behaviors and timing.
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There were two forms of lighting that were relevant for the superstorm effect:
• intra-cloud lighting – bolts that happen inside of the cloud – all you see are internal 

flashes.  
• And Ground discharge lighting – the bolts that go from clouds to ground
• There are other forms of lighting like sprites which form on top of clouds and ball 

lighting. These are so rare and strange that they deserved a mention here in my opinion.  
But Intra-Cloud and Ground discharges were the most applicable for our purposes. 
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For the intra-cloud lighting effects, we used the same approach as the internal red glow, we 
just fed it a variable position for each flash and animated the intensity over the lifetime of 
the flash in patterns that matched those found in Martin Uman’s research material. 
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• The ground discharge effects were the combination of a particle bolt 
• and internal flash  
• and external flash. The external flash was a modification of the internal flash that added 

highlights to cloud features on the underside of the mesocyclone. 
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Intra-Cloud Intra-Cloud + Ground Discharge
Random
Delay

Repeat, build intensity

....

We used Decimas Effect Graph tools to control lighting effects and pass the required data 
to The Nubis Renderer, particle effects and sound effects. 
• First, the system would execute several intra-cloud effects while increasing the intensity 

of the flashes each time. 
• Then it would fire off 1 to 2 Ground discharge effects. There was one problem though. 
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Our SolutionNo Solution

Recall once again that we build cloud renders over 16 frames. The lighting flashes can 
sometimes occur over 4-8 frames, which means that the results would appear less intense 
and degraded by temporal artifacts.  
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Generate Position Trigger Flash Animation

Animated Flash 
Intensity

Flash 
Position

Generate Stable Mask Multiply Flash Intensity by Mask
Nubis

Renderer

Lightning
System

To solve this issue, Nathan, my co-partner in cloud related crimes against the GPU, 
suggested that we Generate a mask using position and radius data before each flash So this 
could be used to modulate the internal flash intensity over the duration of the animation.
• After the lighting system generates a flash position, 
• this is passed to the Nubis Renderer to generate the mask. 
• Then when the lightning system triggers the flash animation, 
• the animated intensity is passed to the 
• renderer where it is multiplied by the mask.
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Here is a view of the mask that gets generated for every flash. You can see that it builds to 
a full image in time for the flash and then dissolves before the next flash.
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And here is the final result. 
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I have talked a lot about the superstorm itself at this point. But in order for it to be a 
powerful, ominous and dynamic presence in the game, it should dramatically change the 
environment around it, exposing the player to a darkened world with high howling winds 
and dust, snow or rain. 
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The superstorm quite literally casts a large shadow on the world which helps to integrate it 
into the landscape and make the environment generally more spooky underneath. 
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For Desert environments, The superstorms would produce dust storms or high wind, so the 
ambience effects were adjusted to produce low visibility and warm colors.  Dust particle 
effects as well as heavy haze.
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For Snowy environments, Heavy haze and snow particle effects to go with windspeed 
increases.  
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For Green environments with moderate temperatures, rain and heavy wind effects along 
with heavy haze. 
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Ok, at last we come to the most ironic part of this talk. Recall that the out-of-control 
weather system was causing these storms.
This is where I explain that in order for us to direct where and when this would happen, we 
developed a weather control system to simulate an out of control weather control system. 
Earlier I mentioned that we modified the Nubis data field generator to include superstorm 
stencils that could replace clouds with a superstorm in any given location on the map. I also 
just talked about how we altered the weather differently according to where the supercell 
formed.  Well, we also needed to make these things happen randomly in different parts of 
the world throughout gameplay and smoothly transition from no superstorm to superstorm 
and back again. 
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• Like the lightning system, we relied on Decima’s Effect Graph workflow to control when 
and where superstorms would occur as well as transitions between states.  

• We defined a local weather event by Position, Radius and blend factor, which were 
animated over time to produce a gradual transition.  These variables were what 
informed the Nubis Data Field Generator and Nubis Renderer about how to model and 
light the superstorms and it informed the lightning system about where to place the 
lightning effects.  
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There are 
• 5 different locations in the world where the superstorm can randomly form and override 

the local climate. Each has their own settings so that the appropriate weather and 
ambience effects occur there.  
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Every few minutes the system picks a location, like vegas here, and begins to load a 
superstorm there over a period of 2 minutes.  
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The Storm persists for a few minutes, discharging its energy. And then…
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…it dissipates over 2 minutes and the cycle repeats itself. That is until the player completes 
the quest that repairs the weather control system. 
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By now I’m sure you are asking How much did all of this cost?!? This is a question that we 
asked ourselves multiple times of day for the past few years. We were faced with a unique 
challenge for HFW. We wanted to make a game that could push even the newest ps5 
hardware to the limits, while still providing an experience on PS4 that surpassed the 
original quality of Horizon Zero Dawn. Before I get into the differences between the 
superstorms on PS5 and PS4, lets look at how we scaled Nubis in general between both 
platforms. 
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PlayStation 4 PlayStation 5

Max Resolution 960 x 540 1920 x 1080

Light Ray Samples 6 10

View Ray Samples 60 – 90 96 – 180

Blur Scale (Pixels) 2x 1x

Noise Texture MIP Level 1 0

On Playstation 5 the maximum resolution was Full HD, while on Playstation 4 it was quarter 
res 960 x 540
We took 10 light ray samples on Playstation 5 and 6 on Playstation 4 
View ray samples were also reduced for Playstation 4, but we mitigated artifacts with a 
stronger blur filter on that platform.
Additionally, the 3d Noise textures were samples at a higher MIP level for PS4 to reduce 
access times.  

This allowed us to meet our 2ms budget on both platforms.
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PlayStation 4PlayStation 5

In the case of the superstorm, we made some adjustments as well. The blended double 
samples in the transition zones between rotating rings of Noise were replaced with a 
jittered boundary to avoid sampling noise twice in these areas. Here is the PS5 Version.
• And here is the PS4 version With all of the standard PS4 differences and the jittered 

transition between rings. (Toggle back and forth)
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PlayStation 4PlayStation 5

The top of the superstorm anvil was also simplified to a non-distorted billowing cloud 
shape. Here is the PS5 version. 
• And the Ps4 Version. (Toggle back and forth)
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<= 4 milliseconds <= 2-3 milliseconds

We decided on two primary test cases for performance. 
• Full frame coverage, such as when you look up at the superstorm from underneath, 
• and half frame coverage such as when the superstorm only covered half of the frame.  

Because this was an effect, and an important one, we allowed our budget to grow 
beyond 2ms in these conditions. 

• Max Cost Full Frame = 4ms – keep in mind that when  you are looking up at the 
superstorm, that’s the vast majority of what’s being rendered.  

• Max Cost Half Frame = 2-3ms

So it wasn’t the cheapest thing to do on PS4, but because of where it sits into the camera 
window, it managed to fit and it saved us from a serious downgrade for PS4, something 
that is not fair to the players. 
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The Real-time Volumetric Superstorms of Horizon Forbidden West served to dramatically 
reinforce the idea that the world was falling apart around the player. I mentioned several 
goals about realism, dynamism and impact earlier, but there was one that I left out. We 
wanted to do this to prove that volumetric clouds could do more and should do more that 
just make pretty skies in games – that they could be effects themselves. For Horizon 
Forbidden West we also defined another new role for clouds in games.
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As Environments. We will get back to the community soon about how we redesigned Nubis
as a whole and extended it in another direction to allow the player to fly through clouds.  
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I want to thank my colleagues at Guerrilla who helped make this work possible. Specifically 
Nathan Vos and Jan-Bart van Beek. Also a few other people including my wife and three 
kids who were with me the whole way. 
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