BUNGIE

VIRTUALSYNC

TERABYTES ON DEMAND

BUNGIE

Overview

Why we decided to develop VirtualSync
Results we see today

How it works

Challenges

BUNGIE

Destiny 2

Destiny 2 is an action MMO

Highly detailed, realistic art style

New expansions add content every few months
Source content stretching back more than a decade

This all adds up to a massive amount of source content

¢

BUNGIE

Content Files at Bungie

Perforce
Source content

Source code

Network Storage

Binary build artifacts

Tool and game exes, etc

8.6m files, ~8.06 TB per branch
56k files, ~1.3 GB per branch

11k files, ~9 GB

BUNGIE

Multiple Large Branches

Perforce branches used to separate work by release date
. Destiny Season 17, Season 18, the next expansion, etc

18+ branches with active development currently

Often users require more than one branch locally
. Content Creator: Primary dev branch + previous dev branch
. Engineer / Support: Primary dev branch + many branches for support

BUNGIE

Multiple Large Branches: Implications

Users required massive HDD(S)

. Slower spinners, no SSD/NVMe data drives

Shared Tiger Remove Branch Files

Tool to shrink Perforce enlistment

. Exclude depot paths, file extensions

. Shrinks source content 8TB => ~2-4TB
. User-facing complexity, error prone

. Generates ~640 mapping lines per branch

BUNGIE

Multiple Large Branches: Syncing in 2019

User’s required branch set changes as releases ship

. First branch sync takes many hours

. Often must de-enlist and delete old branch before enlisting new
Incremental sync can still take an hour or more

. Most syncs scheduled overnight

. Mid-day syncs sometimes required to get critical fixes

Users spot-sync files/directories to #head as workaround

BUNGIE

Work From Home

Slower and less reliable networks

Laptops with massive, slow USB HDDs
Incremental syncs take many hours or many days
First syncs could take an entire weekend or longer

BUNGIE

Birth of VirtualSync

Experimented before pandemic to solve in-office issues

Skeptical of performance for remote users
Tool hitching and delays

Investigated Windows mini-filter file system driver
Stumbled across Windows Projected File System (ProjFS)

Implements the mini-filter file system driver for you

Handles most common mixed local + virtual file system behavior for you
C# API available

Used in ‘VFS for Git’

BUNGIE

VirtualSync: Usage Today

816 machines with 2,499 content branches enlisted

Median branch enlistment size: 7.09TB

Median local HDD size: 1.74 GB (Max: 648 GB)!
Only 10 branches have more than 7% of their enlistment locally

Savings across all machines: 16.03 PB

Median new branch sync: 0:03:39.4

Median incremental sync: 0:03:19.3

BUNGIE

VirtualSync: Usage Today

Source Content

Only 1.74 GB out of ~7 TB local?

Primary reasons files are read

List assets for selection

List Edit

Edit an asset

Local content building

Build

BUNGIE

VirtualSync: Usage Today

Source Content

BUNGIE

VirtualSync: Benefits

Syncing is FAST
...even when remotel!

...even new branch syncs!

Drastically reduced HDD storage needs
We are switching to using SSD/NVMe data drives

Simplified Perforce client
No more user-facing complex branch enlistment options

~640 -> ~10 mapping lines per branch

. Most Perforce interactions/queries significantly faster

Shared

Shared

Source Code

+ All Source Code

PEs

+ Tools Source Code

Services Teams

Online Source Code

1
Remove Branch Files

Tiger

Source Content

v+ Content

BUNGIE

VirtualSync: Benefits

Stronger guarantees that local state matches Perforce
. Several ways local state can end up out-of-sync with traditional Perforce sync

. Example:
User makes a file writable manually and modifies it
User or something else makes the file read-only

Perforce sync will only update that file if its revision change

Potentially enable running our tools in containers, possibly cloud

BUNGIE

ProjFS: Requirements

Requires Windows 10 v1809 or higher

Optional Windows component
Can be enabled via Windows Ul, PowerShell, etc

Relatively fast access to file metadata and data
No progress reporting, online vs offline user-visible state, etc
Cloud Files API for slower backing stores

File Explorer

BUNGIE

ProjFS: How it works

Backing Store

“““““““““““““““

Perforce

C

AV

Network Storage

D ProjFS VirtualSync

BUNGIE

ProjFS: How it works

Provider is a Windows application

Provider asks ProjFS to initialize its virtual file system, specifying...
. Local directory to act as virtual file system root
. Object implementing callbacks

Start/Get/End directory enumeration: return metadata for directory children

GetFileDataCallback: return file bytes

Your virtual branch is up and running!

BUNGIE

ProjFS: How it works

Callbacks are called in response to application actions
« Callbacks given requesting application process name + id

ProjFS caches metadata and file contents as reparse points
. After first access/read, data has local file performance
. Non-volatile

. Protected against most user interactions while Provider is offline

Placeholder

Hydrated

Placeholder

Tombstone

BUNGIE

ProjFS: File States

e \virtualRoot\File.txt is in our Backing Store
* No local state

* Notepad open dialog enumerates \virtualRoot\
* Notepad reads File.txt
e Notepad writes File.txt with changes

e File Explorer deletes File.txt

BUNGIE

ProjFS: Directory States

e Exists in Backing Store
e No local state

Virtual

Full e Locally created
e Does not show Virtual items

P|aCEhO|der e Shows Virtual items

e Exists in Backing Store

Tombstone e Locally deleted

BUNGIE

ProjFS: Interesting Cases

Renaming or moving Placeholder files

\virtualRoot\before.txt Hydrated C:\full_after.txt
\virtualRoot\before.txt No Change \virtualRoot\x\after.txt
\virtualRoot\before.txt No Change \virtualRoot\x\after.txt

Renaming Placeholder directories not supported

Can copy + delete to work around

BUNGIE

VirtualSync: Sync Process

What happens when the Backing Store changes?

Update virtual Perforce files
P4 sync —k ...

Only updates client’s #have state, no local file system interactions

Network Storage files

Provide a new binary build artifact manifest to VirtualSync to host virtually

BUNGIE

VirtualSync: Post-Sync Process

Users may have Placeholders/Tombstones that are now stale!

Clear VirtualSync in-memory caches that may now be stale
Clear ProjFS’s Negative Path Cache

Find and fix stale local file system state
A few options for how to go about finding stale state

We enumerate and reconcile all local file system state...

BUNGIE

VirtualSync: Post-Sync Process

How to enumerate local file system state without triggering ProjFS?
New FindFirstFileEx() flag: FIND_FIRST EX_ON_DISK_ENTRIES_ONLY

Returns enough to classify file/directory state

‘Not found’ can mean Virtual or ‘does not exist’
Will enumerate Tombstones
Can still trigger callbacks in certain situations, but avoidable

BUNGIE

VirtualSync: Post-Sync Process

Update Hydrated Placeholders, only if they are stale

Metadata from callbacks (cached by ProjFS) include versioning info

Providerld : byte[128]
P4=1
Binary Artifact = 4
Directory =3
Contentld : byte[128]
P4 = #have revision
Binary Artifact = md5 hash from manifest

Directory =3

ProjFS UpdateFilelfNeeded()

BUNGIE

VirtualSync: Post-Sync Process

Convert Full directories to Placeholders

Clean up unnecessary local state
. Convert Placeholders to Virtual
. Convert read-only Full files in Backing Store to Virtual

. Remove Tombstones if no longer in Backing Store

BUNGIE

Challenges: Filesystem Notifications

- Many of our tools watch for file system notifications
* ProjFS state changes produce new/additional notifications

I > Placeholder

Not enough information to filter

Triggers minimal tool work, not a big deal for us

BUNGIE

Challenges: Filesystem Notifications

Placeholder JIESE

Size Changed

Can trigger disruptive or destructive tool actions (reload/refresh)

Can safely filter with minimal effort:
Separate filesystem watchers to isolate Size notifications

When notified, check file state — if Hydrated Placeholder then ignore

BUNGIE

Challenges: Frequent Enumeration

ProjFS does not cache list of enumeration results, so calls frequently
Prohibitively expensive to query perforce/file share each callback

Started with queries + an LRU cache of results
Updated Binary Build to produce artifact manifest with metadata

Perforce: Asynchronously build metadata cache for all files
~0.5 — 3 minutes to build
While building, we fall back to query + cache
After post-processing, ~300MB for metadata + checksums for 8 million file
After cache built, only talk to Perforce to fetch file data

¢

BUNGIE

Challenges: Perforce Text-Typed Files

Windows clients CR LF

Linux P4 server LF (Unix line endings)

Perforce reports file size and checksum based on server version
Must supply correct file size with directory enumeration callback

We ‘p4 print’ file bytes without client newline conversion to match
Thankfully, few text-typed files and no tool issues with Unix LF

BUNGIE

Challenges: HDD Footprint Creep

Post-sync process only removes changed Hydrated Placeholders
The set of hydrated files users need changes over time
This results in HDD usage growing over time

VirtualSync now tracks Hydrated Placeholder access via ProjFS
notification

Post-sync reconcile removes Hydrated Placeholders not accessed
In X days (user configurable)

BUNGIE

Challenges: ContentWatcher

Existing tool that tracks content file metadata

Read-only vs writable, checksum, file-to-file references
Queried extensively by other tools
First run in a new branch requires a full enumeration to set up state
Filesystem notifications and NTFS journal used after that
File-to-file references are shared, keyed by file checksum

BUNGIE

Challenges: ContentWatcher Problem #1

First run processing would create Hydrated Placeholders
File data only to compute checksums and file-to-file references

File-to-file references should already be in shared db

VirtualSync exposes interface for tools to request file checksums
Virtual / Placeholder -> In memory metadata cache (from p4 or binary artifacts)
Tombstone -> Doesn'’t exist
Full -> computed

First run processing now takes ~30 minutes, down from 3+ hours!

BUNGIE

Challenges: ContentWatcher #2

First run still needs to enumerate all files, creating Placeholders

ContentWatcher now queries VirtualSync directly for file list
Properly mixes virtual and local-only state

Only used in this case

Other use cases should just query ContentWatcher for that information

BUNGIE

Challenges: ContentWatcher #3

Maintains state with NTFS journal and Filesystem notifications
ProjFS introduced several new edge cases and event patterns

Beyond ones discussed earlier, like
Removing Tombstone (during post-sync reconcile)

Could mean the file/directory is gone, or it could be back again ()

Renaming a Full file to the name of a Tombstone

Wrote a unit test system that mimics Filesystem notifications and
NTFS journal events for every case

Updated ContentWatcher to process these events correctly

¢

BUNGIE

Challenges: Remote Debugging

File queries over network shares return different results
File attributes are different
FILE_ATTRIBUTE_REPARSE_POINT and FILE_ATTRIBUTE_SPARSE are not returned
WIN32_FIND DATA.ReservedO (reparse tag type) is always 0
Can'’t fetch reparse point data

fsutil reparsepoint query \\remote__maching\placeholder.txt
DeviceloControl(FSCTL_GET_REPARSE_POINT)

Can’t classify the state of a file/directory remotely

ProjFS methods require the virtualization instance

VirtualSync service uses HttpListener to publish a website

BUNGIE

Challenges: Remote Debugging

Access with http://<machineName>/virtualSync/

Includes
Current detailed status / state
Recent API/throughput statistics
Recent errors/warning

This typically include next-step information and links to internal wiki articles

Last sync information
Many interactive diagnostic tools

BUNGIE

Challenges: Remote Debugging —Branch Status

VirtualSync Status - [c:\bungie\v610_cms\tiger (Up Refresh)

Name | c_bungie_v510_cms_tiger
Local Reot | c:\bungie'vE10_cms'tiger
Actual Root | c:\bungie\v&10_cms'tiger
Excluded Relative Paths | \build_reporis\...; .\cache\..; \ContentManifest\.. ; .\datamine\...; \packages\..; \temp\...; \fcachel..
Branch Start Time | 10/21/2021 1:02:50 PM
Branch State | Healthy
Sync Description | BuildSet: bsid00075147; game 98878.21.10.20.1800 (CL 5685226); content 98878.21.10.20.1800-0 {uber_bvt - CL 5685430); online 116003.21.10.20.1800 (CL &
Sync Occurred | 10/21/2021 12:25:47 PM
Perforce Server | NN
Perforce Client | NN
Perforce User |
Logs | \\ IS \virtualSync v610 cms_chungie\logs\20211021_130249 (Events Log, Perf Csv) [Force Log Flush]
Settings | Adjust Branch Settings
Diagnostic Tools | Diagnostic Tools

Branch Operations

R ing Operation | (None)

Running Operation Started
Last Operation | CleanLocalState(minimizedLocalDiskFootprint: False, stompPerforceWritableFilesToVirtualState: False, stompFileOverride\WritableFilesToVirtualState: False, |

Last Operation Completed | 10/21/2021 1:54:56 PM taking 00:00:00.7912599

Last Operation ResultCode | [Details] Success

Current Status

Virtual FileShare Files | 10487
Comprehensive Metadata Cache | Enabled (consume memory to speed up queries and enumerations)
Comp ive M Cache Status | Actively In Use
Ci ive M Cache Details | Metadata cached for (636,256 p4 + 907 fs) directories; (3.262,810 p4 + 10,487 fs) files; total referenced file bytes: (6.94 TE p4 + 5.24 GB fs|
Directory Cache | 15/ 65536 (0.02%)
Service Lifetime Placeholders Created Count | 21
Service Lifetime Files Hydrated Count | 15
Service Lifetime File Bytes Hydrated | 19591 MB
Service Lifetime Errors | 0
Last Error | N/A
Working Set Size | 922.32 MB
Page File Size | 944.57 MB

P

Challenges: Remote Debugging — Branch Status

BUNGIE

Last Errors/Warnings and Major Events

10/21/2021 1:54:56 PM [Message [CleanLocalState completed successfully. |

Lifetime 0 Warning / 0 Error { 0 Critical Events

Branch Statistics (since 10/21/2021 1:42:50 PM, duration: 00:17:10.9741025)

Count Duration Details
Fetch File Data | 0 bytes | 00:00:00 0 fileis)
Directory E tion | 30 00:00:00.4006613 | cache hits: 26 misses: 4

Get Placeholder File Info | 25

00:00:00 cache hits: 25 misses: 0

Query FileName | 4

00:00:00.0000155 | cache hits: 1 misses: 3

Statistics for all 3 branch(es) hosted b

Checksum Statistics (since 10/21/2021 1:42:44 PM, 00:17:17.1527740)
same grouping (grouping key: | |

Count Duration

Details

In progress | [

(gueued and/or being computediretrisved)

C a

00:00:00.0033613

From Perforce

00:00:00.3638641

Avg Request Queue Time: 00:00:00.0443241; Batches: 4

From Local Disk(s)

00:00:00.0033613

Processed: 0 bytes

From FileShare(s)

00:00:00

Processed: 0 bytes

Aborted Requests

(requesting client disconnacted)

EIEIEIEI

WCEF Post Result Overhead

00:00:00.0005578

(high values here likely indicate blocking in requesting app's WCF callback that should be fixed)

Statistics for all 3 branch(es) hosted by same grouping (gr

Perforce Statistics (since 10/21/2021 1:42:44 PM, 00:17:17.1527740)

ouping key I

Count Duration

Details

Connection Threads | §

(Threads that have created Perforce wrappers)

Connections Attempted | 13

00:00:01.5776479

(Number of connections attempted + total time connecting)

Connections Succeeded | 13

Connections Disconnected | 5

Api Calls Attempted | 42

00:02:26.8513593

(Number of api calls attempted + total time waiting on the api)

Api Calls Succeeded |42

BUNGIE

Challenges: Remote Debugging — File Explorer

Show entry data source] .
Make All Virtual and Revive Tombstones | Make All Placeholders |ﬂydrate All Files (5.85 KB) ‘
Name * Size LastWriteTime State AttributeDescription Attributes | Reserved(CachedDataVersion

__(parent directory)

local_only_subdirectory Full Directory 00000010 | 00000000 MakePl|
virtual_subdirectory_w Virtual Directory, Virtual 00010010 | 00000000

virtual_subdirectory_x Placeholder Directory, ReparsePoint, RecallOnDataAccess 00400410 | 9000001C MakeVi
virtual_subdirectory_y Placeholder Directory, ReparsePoint, RecallOnDataAccess 00400410 | S000001C MakeVi
virtual_subdirectory_z Tombstone Directory, ReparsePoint, Hidden, System 00000416 | A0000022 Revive
local_only.txt 0 bytes | 10/21/2021 1:45:37 PM | Full Archive 00000020 | 00000000 Reques
pd_file_a.txt 64 bytes | 10/20/2021 3:58:43 PM | Virtual Virtual 00010000 | 00000000 |[PerforceRev] 1 MakePl
pd_file_b.txt 5.81 KB | 10/20/2021 3:59:07 PM | Placeholder ReparsePoint, ReadOnly, RecallOnDataAccess, Sparse, Archive | 00400621 | 9000001C | [PerforceRev] 1 Hydrate
p4_file_c txt 0 bytes | 10/21/2021 1:46:34 PM | Tombstone ReparsePoint, Hidden, System, Archive 00000426 | A0000022 Revive
p4_file_c_renamed.ixt |1.13 KB | 10/20/2021 3:59:53 PM | HydratedPlaceholder | ReparsePoint, ReadOnly, Sparse, Archive 00000621 | 9000001C | [PerforceRev] 1 (moved from contentipersonal'bmorolvirtual_sync_examplesipd_file_c.txt) | MakeVil
pd file d.txt 0 bytes | 10/21/2021 1:44:35 PM | Tombstone ReparsePoint, Hidden, Systam. Archive 00000426 | AD00D0022 Revive

6 files | 7.00 KB
Action Details
MakePlaceholder| Cache file metadata locally (Virtual -= Placeholder)
Hydrate | Cache file contents locally (Virtual/Placeholder -> HydratedPlaceholder)
MakeVirtual | Remove locally cached state (Placeholder/HydratedPlaceholder/Full -> Virtual)
Revive | Convert a locally deleted file back to virtual (Tombstene -> Virtual)
MakePlaceholderDirectory | 'Full' directories cannot have virtual items under them. Converting it to a placeholder enables it to contain virtual itams.
For more information about the various terms used here see VirtualSync Terminclogy,

BUNGIE

Challenges: Remote Debugging — Local State

Diagnostic tools - Local Data Statistics

WARMNING: EACH page refresh scans all local file system entries specified by the search parameters. This will tax the user's HDD and, to a lesser extent, CPUII

Relative Path |

Ignore Path(s) | build_reports:cache;{luntentl| (semi-colon delimited)

Search Option || AllDirectories v |

Calculate

(empty for root)

BUNGIE

Challenges: Remote Debugging — Local State

Status | Completed
Duration | 00:00:00.1138836

Full size of virtual branch under [root] if sync'd/fetched normally is approximately 6.55 TB (7,643,129,362 909 bytes) across 3,273 297 files.

Virtual Sync is currently saving your local HDD roughly 6.95 TB across 3,273,236 files (note: full files are considered not virtual for the purposes of this calculation)!

Virtual Paths Count | Virtual Paths Size | Branch Excluded Paths Count | Branch Excluded Paths Size | Total Count | Total Size
Directories | 3127 0 3127
Placeholder Count | 27 0 27
Hydrated Placeholders | 41 199.66 MB 0 0 bytes 4 199.66 MB
Full Files | 42 1898 KB 0 0 bytes 42 18.98 KB
Local File Totals | 110 199.68 MB 0 0 bytes 110 199.68 MB

Hydrated placeholders by extension (ordered by size)

Hydrated Extension | Count Size
zip| 1 177.35 MB
Ahed | 3 13.31 MB
il 1 4.27 MB
exe|d 3.73MB
Aft| 8 976.20 KB
xml| 7 2413 KB
cs |4 5.48 KB
.bat|5 5.11 KB
x| 7 4.58 KB
.config | 1 568 bytes
_signed | 0 0 bytes
watermark | 0 0 bytes

BUNGIE

Challenges: Remote Debugging — ‘Clean’

Diagnostic tools - Clean Branch

[Branch State | Healthy |

Branch Operations

Running Operation

(Mone)

Running Operation Started

Last Operation

CleanLocalState(minimizedLocalDiskFootprint: False, stompPerforce\WritableFilesToVirtualState: False, stompFileOverride\WritableFiles ToVirtualState: False, localDir

Last Operation Completed

10/21/2021 1:54:56 PM taking 00:00:00.7912599

Last Operation ResultCode

Details] Success

Minimize Local Disk Footprint | False v| Remaoves locally cached file contents to reduce local HDD usage. These fileg

Stomp FileOverride-backed (Binary Output) Writable Files To Virtual || False w Remaoves local writable files if they exist in fileQverrides (binary outputs), ma
State

Stomp Perforce-backed Writable Files To Virtual State | False v| WARNING: Removes local writable files if they exist in perforce, making then

Local State Removal Mode For Empty Or Virtual Directories | DoMeotRemove | WARNING: Not recommended while Rasputin is running! Removes unne

Clean

WARNING: Running this can take anywhers from ~10s to a couple minutes depending on the amount of local content and options.

BUNGIE

Challenges: Remote Debugging — ‘Clean’

(page will auto refresh in ~1 seconds to show progress)...

Result
Duration | 00:00:06.0415543

Parameters

Delete Unchanged Metadata-only Placeholders | True

Delete Unchanged Hydrated Placeholders | Falze

Stomp Perforce Writable Files to Virtual State | False

Stomp FileOverride Writable Files to Virtual State | False
Local State Removal Mode for Empty or Virtual Directories | DolNotRemove
Hydrated Placeholders Days After Last Access To Expire | 5
Has Backing Store Delta Info | Falz=

Statistics

Errors | 0
Directories | 4777 placeholder directories; 40 full directories converted to placeholder; 0 directory tombstones deleted; 0 locally empty directories deleted/made virtual
MetadataOnly Placeholders | 0 updated; 347 deleted
Hydrated Placeholders | 654 updated; 6 (2.31 MB) deleted (6 expired)

Tombstones | 0 file tombstones delstad; 0 files and 0 directories left alone due to pending delete actions

Full Files | 305 processed - 305 (4.91 GB) remain (0 removed due to being deleted in backing store)

ReadOnly Files | 0 (0 bytes) read-only files deleted
Writable Files | 0 (0 bytes) writable files deleted
Other Reparse Points | 0 ignored (0 corrupt placeholder repaired; 0 with invalid reparse tag removed)

BUNGIE

Challenges: Remote Debugging — ‘Clean’

Clean Branch is done!

Result | Success
Duration | 00:00:15 5324866

Parameters

Delete Unchanged Metadata-only Placeholders | True

Delete Unchanged Hydrated Placeholders | Falze

Stomp Perforce Writable Files to Virtual State | Falze

Stomp FileOverride Writable Files to Virtual State | Falze
Local State Removal Mode for Empty or Virtual Directories | DoMotRemove
Hydrated Placeholders Days After Last Access To Expire | 5
Has Backing Store Delta Info | Falze

Statistics

Errors | 0
Directories | 14336 placeholder directories; 52 full directories converted to placeholder; 0 directory tombstones deleted; 0 locally empty directories deleted/made virtual
MetadataOnly Placeholders | 0 updated; 1535 deleted
Hydrated Placeholders | 16597 updated; 13 (2.72 MB} delated {13 expired)

Tombstones | 0 file tombstones deleted; 0 files and 0 directories left alone due to pending delete actions

Full Files | 433 processed - 433 (4.94 GB) remain (0 removed dus to baing deleted in backing store)

ReadOnly Files | 0 (0 bytes) read-only files deleted
Writable Files | 0 {0 bytes) writable files deleted
Other Reparse Points | 0 ignored (0 corrupt placeholder repaired; 0 with invalid reparse tag removed)

BUNGIE

Challenges: Remote Debugging —Task Manager

Sampled at 10/21/2021 1:58:50 PM

System Boot Time (system-local) | 10/21/2021 1:02:20 PM (00:56:34 2626001 elapsed)
Last System Resume | (no resumes since service started 00:56:12 2145296 ago)

Available RAM (standby+free+zero) | 52.92 GB / 63.91 GB (82.80%)
In Use RAM | 11.00 GB / 63.91 GB (17.20%)
PageFile Commit| 14 68 GB / 67.91 GB (21.62%)
Cached (standby+system working set) | .64 GB
Kernel | 516.48 MB paged + 361.75 MB non-paged = 875 .24 MB

Drive Available Total |Avg Queue |Avg Read | Avg Write
IE: 623.31 GB (66.05%) (94372 GB | D 0 bytes 0 bytes
D: 539 TB (98.67%) 546 TB 0 0 bytes 0 bytes
E: 539 TB (98.67%) 546 TB 0 0 bytes 0 bytes

(note: "Avg CPU %' values computed as a delta between this and the previous sample (00:01:24 6963224 = 10/21/2021 1
Process Name = Page File |Average | Read IO | Write 10
Id Working Bytes Cpu Per Per
Sefr ** Second | Second
8460 Rasputin exe 6.30 GB 6.52 GB 0.0% 0 bytes |0 bytes | "C:\bungiew&1(
3820 VirtualSyncService exe 92211 MB [944 62 MB | 0.0% 30 bytes |(1.03 KB | C:\Bungie'Virtu
10760 | Bungielauncherexe 263.43 MB (296 37 MB | 0.0% 0 bytes |0 bytes | "C:\bungie' glo

BUNGIE

HttpListener for Inspection

VirtualSync is our 2" application to use HttpListener in this way
Very powerful, easy to use
Ability to send links to specific tools/pages very useful

Support request emails have link to related VirtualSync branch page

Ability to link to internal wiki for help documents

Highly Recommended!

Y

De

velopment

—

BUNGIE

Development

Primary Development: Brandon Moro and Danny Frisbie
Additional Support

Core Systems and Workflow Team
Bungie Perforce Admins

Bungie IT

Big thanks to all of our Alpha and Beta testers!

BUNGIE

Development

7/15/2020 — Initial Prototyping and Development Begin
Building core VirtualSync service application
Updating branch enlistment, sync, content file monitoring tools
8/31/2020 — Alpha
Gathering and investigating usage data across core workflows
Bug fixes, optimizations, inspection improvements
10/15/2020 — Open Beta
More gathering and investigating usage data across all workflows
More Bug fixes, optimizations, inspection improvements

2/8/2021 — Live

Default method of enlisting a branch

¢

BUNGIE

Conclusion

ProjFS enabled us to quickly build and deploy our solution
VirtualSync

. Solved our major remote sync and branch enlistment issues

. Simplified branch enlistment and switching active dev branch sets

Secondary benefits
. Content file processing / monitoring / checksums faster in virtual branches
. Switching to SSD / NVMe data drives

¢

BUNGIE

Conclusion

People love it
Unsolicited user feedback

“VirtualSync is goddamn sorcery. Amazing feature.”
“I JUST USED IT AND IT WAS SO MAGICAL!!Y”

“This tech is hot! Thank you so much for everyone involved in making this
happen”

BUIil-alE

1S HIRING

L

GDCEVENT@BUNGIE.COM
#WEAREBUNGIE

[m] % [u]

[=]

SCAN TO
LEARN MORE

BUNGIE

Appendix: Cut Challenges

The following slides are some challenges that were cut from the
presentation for time.

BUNGIE

Challenges: Perforce Ditto Mapping

Ditto mapping: client can map a depot path to multiple client paths

. Each ditto mapped client file can be sync’'d to different revisions

/l[depot/v530/main/... //my_client/v530 main/...

/l[depot/audio/dev/wwise_events/... [/Imy_client/v530 main/audio/wwise_events/...

/l[depot/vV540/main/... //my_client/v540 main/...

&//depot/audio/dev/wwise_events/... [Imy_client/v540 main/audio/wwise_events/...

BUNGIE

Challenges: Perforce Ditto Mapping

P4 can return inconsistent results when querying by depot path for
ditto mapped paths

P4 fstat results can be missing fields or omit some mappings
P4 dirs results can omit some subdirectories

Queries return correct results 99% of the time

VirtualSync wants to use depot path queries for speed

VirtualSync currently uses client path queries to workaround this

BUNGIE

Challenges: Perforce Shell Extension

The Perforce shell extension adds right-click menu actions
Appears on Hydrated Placeholders, but not Placeholders
Microsoft does this to avoid unexpected hydration

Shell extension authors can use a flag to say they will behave
DFMR_OPTIN_HANDERS_ONLY

Perforce is tracking a job to investigate supporting this

BUNGIE

Challenges: Browser Tools

Various browser-style tools
Display information/thumbnail for assets of type X

Loads all related files, build metadata and cache to local files
Slow before VirtualSync

. Overnight pre-caching process

« Takes multiple nights to fully cache &=

Tons of one-time hydration

BUNGIE

Challenges: Browser Tools — Ul Art Example

Need to scan existing Ul icons/images frequently

Source Ul art stored as heavy, multi-layered .tifs
A 32x32 single icon may be stored in a 900 MB .tif!

One branch
Contains ~32,500 Ul .tifs totaling 537 GB
Flattened 256x256 thumbnails only 530 MB

BUNGIE

Challenges: Browser Tools - Solution

* New service to build and supply file/asset metadata

Content
Submitted Farm NAS _—

| —— —

- Metadata ready and available from the moment you sync a branch
No local hydration required

BUNGIE

Appendix: Post-Sync Update

The following slides give more detail about exactly the checks and
transformations we apply during our post-sync reconciliation process

BUNGIE

Appendix: Post-Sync Update - Directories

S Placeholder

Placeholder — m

BUNGIE

Appendix: Post-Sync Update - Files

BUNGIE

Appendix: Post-Sync Update - Files

Hydrated Placeholder

BUNGIE

Appendix: Post-Sync Update - Files

Placeholder
Nuke

BUNGIE

Appendix: Post-Sync Update - Files

