
VIRTUALSYNC
TERABYTES ON DEMAND

Overview

• Why we decided to develop VirtualSync

• Results we see today

• How it works

• Challenges

Destiny 2

Destiny 2

• Destiny 2 is an action MMO

• Highly detailed, realistic art style

• New expansions add content every few months

• Source content stretching back more than a decade

• This all adds up to a massive amount of source content

Content Files at Bungie

• Perforce

• Source content 8.6m files, ~8.06 TB per branch

• Source code 56k files, ~1.3 GB per branch

• Network Storage

• Binary build artifacts 11k files, ~9 GB

• Tool and game exes, etc

Multiple Large Branches

• Perforce branches used to separate work by release date

• Destiny Season 17, Season 18, the next expansion, etc

• 18+ branches with active development currently

• Often users require more than one branch locally

• Content Creator: Primary dev branch + previous dev branch

• Engineer / Support: Primary dev branch + many branches for support

Multiple Large Branches: Implications

• Users required massive HDD(s)

• Slower spinners, no SSD/NVMe data drives

• Tool to shrink Perforce enlistment

• Exclude depot paths, file extensions

• Shrinks source content 8TB => ~2-4TB

• User-facing complexity, error prone

• Generates ~640 mapping lines per branch

Multiple Large Branches: Syncing in 2019

• User’s required branch set changes as releases ship

• First branch sync takes many hours

• Often must de-enlist and delete old branch before enlisting new

• Incremental sync can still take an hour or more

• Most syncs scheduled overnight

• Mid-day syncs sometimes required to get critical fixes

• Users spot-sync files/directories to #head as workaround

Work From Home

• Slower and less reliable networks

• Laptops with massive, slow USB HDDs

• Incremental syncs take many hours or many days

• First syncs could take an entire weekend or longer

Birth of VirtualSync

• Experimented before pandemic to solve in-office issues

• Skeptical of performance for remote users

• Tool hitching and delays

• Investigated Windows mini-filter file system driver

• Stumbled across Windows Projected File System (ProjFS)

• Implements the mini-filter file system driver for you

• Handles most common mixed local + virtual file system behavior for you

• C# API available

• Used in ‘VFS for Git’

The Results

VirtualSync: Usage Today

• 816 machines with 2,499 content branches enlisted

• Median branch enlistment size: 7.09 TB

• Median local HDD size: 1.74 GB (Max: 648 GB)!

• Only 10 branches have more than 7% of their enlistment locally

• Savings across all machines: 16.03 PB

• Median new branch sync: 0:03:39.4

• Median incremental sync: 0:03:19.3

VirtualSync: Usage Today

• Only 1.74 GB out of ~7 TB local?

• Primary reasons files are read

• List assets for selection

• Edit an asset

• Local content building

EditEditList

Source Content

Build

VirtualSync: Usage Today

Edit

Source Content

VirtualSync: Benefits

• Syncing is FAST

• …even when remote!

• …even new branch syncs!

• Drastically reduced HDD storage needs

• We are switching to using SSD/NVMe data drives

• Simplified Perforce client

• No more user-facing complex branch enlistment options

• ~640 -> ~10 mapping lines per branch

• Most Perforce interactions/queries significantly faster

VirtualSync: Benefits

• Stronger guarantees that local state matches Perforce

• Several ways local state can end up out-of-sync with traditional Perforce sync

• Example:

• User makes a file writable manually and modifies it

• User or something else makes the file read-only

• Perforce sync will only update that file if its revision change

• Potentially enable running our tools in containers, possibly cloud

The Tech

ProjFS: Requirements

• Requires Windows 10 v1809 or higher

• Optional Windows component

• Can be enabled via Windows UI, PowerShell, etc

• Relatively fast access to file metadata and data

• No progress reporting, online vs offline user-visible state, etc

• Cloud Files API for slower backing stores

ProjFS: How it works

File Explorer

Maya

P4V

Notepad

File I/O ProjFS VirtualSync

Perforce

Network Storage

HDD

Backing Store

ProjFS: How it works

• Provider is a Windows application

• Provider asks ProjFS to initialize its virtual file system, specifying…

• Local directory to act as virtual file system root

• Object implementing callbacks

• Start/Get/End directory enumeration: return metadata for directory children

• GetFileDataCallback: return file bytes

• Your virtual branch is up and running!

ProjFS: How it works

• Callbacks are called in response to application actions

• Callbacks given requesting application process name + id

• ProjFS caches metadata and file contents as reparse points

• After first access/read, data has local file performance

• Non-volatile

• Protected against most user interactions while Provider is offline

ProjFS: File States

Virtual

•\virtualRoot\File.txt is in our Backing Store

•No local state

Placeholder
•Notepad open dialog enumerates \virtualRoot\

Hydrated
Placeholder

•Notepad reads File.txt

Full
•Notepad writes File.txt with changes

Tombstone
•File Explorer deletes File.txt

ProjFS: Directory States

• Exists in Backing Store

• No local stateVirtual

• Locally created

• Does not show Virtual itemsFull

• Shows Virtual itemsPlaceholder

• Exists in Backing Store

• Locally deletedTombstone

ProjFS: Interesting Cases

• Renaming or moving Placeholder files

• Renaming Placeholder directories not supported

• Can copy + delete to work around

\virtualRoot\before.txt C:\full_after.txt

\virtualRoot\before.txt

Hydrated

No Change \virtualRoot\x\after.txt

\virtualRoot\before.txt No Change \virtualRoot\x\after.txt

VirtualSync: Sync Process

• What happens when the Backing Store changes?

• Update virtual Perforce files

• P4 sync –k …

• Only updates client’s #have state, no local file system interactions

• Network Storage files

• Provide a new binary build artifact manifest to VirtualSync to host virtually

VirtualSync: Post-Sync Process

• Users may have Placeholders/Tombstones that are now stale!

• Clear VirtualSync in-memory caches that may now be stale

• Clear ProjFS’s Negative Path Cache

• Find and fix stale local file system state

• A few options for how to go about finding stale state

• We enumerate and reconcile all local file system state…

VirtualSync: Post-Sync Process

• How to enumerate local file system state without triggering ProjFS?

• New FindFirstFileEx() flag: FIND_FIRST_EX_ON_DISK_ENTRIES_ONLY

• Returns enough to classify file/directory state

• ‘Not found’ can mean Virtual or ‘does not exist’

• Will enumerate Tombstones

• Can still trigger callbacks in certain situations, but avoidable

VirtualSync: Post-Sync Process

• Update Hydrated Placeholders, only if they are stale

• Metadata from callbacks (cached by ProjFS) include versioning info

• ProviderId : byte[128]

• P4 = 1

• Binary Artifact = 4

• Directory = 3

• ContentId : byte[128]

• P4 = #have revision

• Binary Artifact = md5 hash from manifest

• Directory = 3

• ProjFS UpdateFileIfNeeded()

VirtualSync: Post-Sync Process

• Convert Full directories to Placeholders

• Clean up unnecessary local state

• Convert Placeholders to Virtual

• Convert read-only Full files in Backing Store to Virtual

• Remove Tombstones if no longer in Backing Store

Challenges

Challenges: Filesystem Notifications

• Many of our tools watch for file system notifications

• ProjFS state changes produce new/additional notifications

• Not enough information to filter

• Triggers minimal tool work, not a big deal for us

Virtual Placeholder

Attributes
Changed

Challenges: Filesystem Notifications

• Can trigger disruptive or destructive tool actions (reload/refresh)

• Can safely filter with minimal effort:

• Separate filesystem watchers to isolate Size notifications

• When notified, check file state – if Hydrated Placeholder then ignore

Placeholder Hydrated Placeholder

Size Changed

Challenges: Frequent Enumeration

• ProjFS does not cache list of enumeration results, so calls frequently

• Prohibitively expensive to query perforce/file share each callback

• Started with queries + an LRU cache of results

• Updated Binary Build to produce artifact manifest with metadata

• Perforce: Asynchronously build metadata cache for all files

• ~0.5 – 3 minutes to build

• While building, we fall back to query + cache

• After post-processing, ~300MB for metadata + checksums for 8 million file

• After cache built, only talk to Perforce to fetch file data

Challenges: Perforce Text-Typed Files

• Windows clients CR LF

• Linux P4 server LF (Unix line endings)

• Perforce reports file size and checksum based on server version

• Must supply correct file size with directory enumeration callback

• We ‘p4 print’ file bytes without client newline conversion to match

• Thankfully, few text-typed files and no tool issues with Unix LF

Challenges: HDD Footprint Creep

• Post-sync process only removes changed Hydrated Placeholders

• The set of hydrated files users need changes over time

• This results in HDD usage growing over time

• VirtualSync now tracks Hydrated Placeholder access via ProjFS
notification

• Post-sync reconcile removes Hydrated Placeholders not accessed
in X days (user configurable)

Challenges: ContentWatcher

• Existing tool that tracks content file metadata

• Read-only vs writable, checksum, file-to-file references

• Queried extensively by other tools

• First run in a new branch requires a full enumeration to set up state

• Filesystem notifications and NTFS journal used after that

• File-to-file references are shared, keyed by file checksum

Challenges: ContentWatcher Problem #1

• First run processing would create Hydrated Placeholders

• File data only to compute checksums and file-to-file references

• File-to-file references should already be in shared db

• VirtualSync exposes interface for tools to request file checksums

• Virtual / Placeholder -> In memory metadata cache (from p4 or binary artifacts)

• Tombstone -> Doesn’t exist

• Full -> computed

• First run processing now takes ~30 minutes, down from 3+ hours!

Challenges: ContentWatcher #2

• First run still needs to enumerate all files, creating Placeholders

• ContentWatcher now queries VirtualSync directly for file list

• Properly mixes virtual and local-only state

• Only used in this case

• Other use cases should just query ContentWatcher for that information

Challenges: ContentWatcher #3

• Maintains state with NTFS journal and Filesystem notifications

• ProjFS introduced several new edge cases and event patterns

• Beyond ones discussed earlier, like

• Removing Tombstone (during post-sync reconcile)

• Could mean the file/directory is gone, or it could be back again (Virtual)

• Renaming a Full file to the name of a Tombstone

• Wrote a unit test system that mimics Filesystem notifications and
NTFS journal events for every case

• Updated ContentWatcher to process these events correctly

Challenges: Remote Debugging

• File queries over network shares return different results

• File attributes are different

• FILE_ATTRIBUTE_REPARSE_POINT and FILE_ATTRIBUTE_SPARSE are not returned

• WIN32_FIND_DATA.Reserved0 (reparse tag type) is always 0

• Can’t fetch reparse point data

• fsutil reparsepoint query \\remote_maching\placeholder.txt

• DeviceIoControl(FSCTL_GET_REPARSE_POINT)

• Can’t classify the state of a file/directory remotely

• ProjFS methods require the virtualization instance

Challenges: Remote Debugging

• VirtualSync service uses HttpListener to publish a website

• Access with http://<machineName>/virtualSync/

• Includes

• Current detailed status / state

• Recent API/throughput statistics

• Recent errors/warning

• This typically include next-step information and links to internal wiki articles

• Last sync information

• Many interactive diagnostic tools

Challenges: Remote Debugging –Branch Status

Challenges: Remote Debugging – Branch Status

Challenges: Remote Debugging – File Explorer

Challenges: Remote Debugging – Local State

Challenges: Remote Debugging – Local State

Challenges: Remote Debugging – ‘Clean’

Challenges: Remote Debugging – ‘Clean’

Challenges: Remote Debugging – ‘Clean’

Challenges: Remote Debugging –Task Manager

HttpListener for Inspection

• VirtualSync is our 2nd application to use HttpListener in this way

• Very powerful, easy to use

• Ability to send links to specific tools/pages very useful

• Support request emails have link to related VirtualSync branch page

• Ability to link to internal wiki for help documents

• Highly Recommended!

Development

Development

• Primary Development: Brandon Moro and Danny Frisbie

• Additional Support

• Core Systems and Workflow Team

• Bungie Perforce Admins

• Bungie IT

• Big thanks to all of our Alpha and Beta testers!

Development

• 7/15/2020 – Initial Prototyping and Development Begin

• Building core VirtualSync service application

• Updating branch enlistment, sync, content file monitoring tools

• 8/31/2020 – Alpha

• Gathering and investigating usage data across core workflows

• Bug fixes, optimizations, inspection improvements

• 10/15/2020 – Open Beta

• More gathering and investigating usage data across all workflows

• More Bug fixes, optimizations, inspection improvements

• 2/8/2021 – Live

• Default method of enlisting a branch

Conclusion

• ProjFS enabled us to quickly build and deploy our solution

• VirtualSync

• Solved our major remote sync and branch enlistment issues

• Simplified branch enlistment and switching active dev branch sets

• Secondary benefits

• Content file processing / monitoring / checksums faster in virtual branches

• Switching to SSD / NVMe data drives

Conclusion

• People love it

• Unsolicited user feedback

• “VirtualSync is goddamn sorcery. Amazing feature.”

• “I JUST USED IT AND IT WAS SO MAGICAL!!!”

• “This tech is hot! Thank you so much for everyone involved in making this
happen”

Fin

Join us at Bungie!

Appendix: Cut Challenges

The following slides are some challenges that were cut from the
presentation for time.

Challenges: Perforce Ditto Mapping

• Ditto mapping: client can map a depot path to multiple client paths

• Each ditto mapped client file can be sync’d to different revisions

//depot/v530/main/... //my_client/v530_main/...

//depot/audio/dev/wwise_events/... //my_client/v530_main/audio/wwise_events/...

//depot/v540/main/... //my_client/v540_main/...

&//depot/audio/dev/wwise_events/... //my_client/v540_main/audio/wwise_events/...

Challenges: Perforce Ditto Mapping

• P4 can return inconsistent results when querying by depot path for
ditto mapped paths

• P4 fstat results can be missing fields or omit some mappings

• P4 dirs results can omit some subdirectories

• Queries return correct results 99% of the time

• VirtualSync wants to use depot path queries for speed

• VirtualSync currently uses client path queries to workaround this

Challenges: Perforce Shell Extension

• The Perforce shell extension adds right-click menu actions

• Appears on Hydrated Placeholders, but not Placeholders

• Microsoft does this to avoid unexpected hydration

• Shell extension authors can use a flag to say they will behave

• DFMR_OPTIN_HANDERS_ONLY

• Perforce is tracking a job to investigate supporting this

Challenges: Browser Tools

• Various browser-style tools

• Display information/thumbnail for assets of type X

• Loads all related files, build metadata and cache to local files

• Slow before VirtualSync

• Overnight pre-caching process

• Takes multiple nights to fully cache

• Tons of one-time hydration

Challenges: Browser Tools – UI Art Example

• Need to scan existing UI icons/images frequently

• Source UI art stored as heavy, multi-layered .tifs

• A 32x32 single icon may be stored in a 900 MB .tif!

• One branch

• Contains ~32,500 UI .tifs totaling 537 GB

• Flattened 256x256 thumbnails only 530 MB

Challenges: Browser Tools - Solution

• New service to build and supply file/asset metadata

• Metadata ready and available from the moment you sync a branch

• No local hydration required

Content
Submitted Farm NAS

Appendix: Post-Sync Update

The following slides give more detail about exactly the checks and
transformations we apply during our post-sync reconciliation process

Appendix: Post-Sync Update - Directories

Full Placeholder

Tombstone

Nuke

Placeholder Enqueue

Do NothingPending Delete

No Pending Delete

Appendix: Post-Sync Update - Files

Read Only

Full

Writable

Nuke

Do Nothing

WarnSync Changed

No Change

In Backing Store

Sync Deleted

Else Do Nothing

Nuke

Appendix: Post-Sync Update - Files

In Backing Store

Hydrated Placeholder

Not in Store

Do NothingRenamed

Not Renamed

Update

Nuke

Appendix: Post-Sync Update - Files

Placeholder

Do Nothing

Nuke

Renamed

Not Renamed

Appendix: Post-Sync Update - Files

Tombstone

Do Nothing

Nuke

Pending Delete

No Pending Delete

