
Bots at Work: Lessons on Deploying ML 
Bots in Your Game

Ricardo Sisnett, Lead Engineer @ modl.ai



Have you ever been here?



Have you ever been here?



Have you ever been here?



Have you ever been here?



Only to realize…



Only to realize…



Only to realize…



Why Are We All Here Today?
‣ Every major breakthrough in game technology has 

required a shift in how we architect games and 
game engines, adopting modern Machine 
Learning will not be the exception.  

‣ We have a lot of space to grow, but multiple 
improvements can get us significant value with 
relatively low investment. However, those 
investments need to happen early in the 
development process.



Why Are You Listening to Me?

This is me!



Why Are You Listening to Me?

This is where I was born!



Why Are You Listening to Me?

I have loved games since they looked like 
this!



Why Are You Listening to Me?

Built Enterprise Software



Why Are You Listening to Me?

Got to work on a cool game or 2



Why Are You Listening to Me?
Now I want to redefine how we make them!



Agenda
‣ Prologue - Definitions 

๏ High-Level overview of a few terms.  

‣ Act 1 - Data
๏ Why is data important and why do bots love it?  

‣ Act 2 - Sensing & Acting
๏ What do bots need to be able to exist in your 

world?  

‣ Epilogue - A Bright Future



Prologue

Definitions



Machine Learning in a Nutshell
‣ Games can be summarized as:

 
F(Game State, Action) -> (New Game State, Reward)

‣ ML Systems for games:
๏ Given an observed game state, pick 

an action so that the reward is 
maximized.



Sense <> Think <> Act Loop



Sense <> Think <> Act Loop
Sensors: Provide the 
agent with information 
about the world.



Sense <> Think <> Act Loop
Think: The agent 
processes sensed 
information and 
provides an action 
or a set of actions. 

Sensors: Provide the 
agent with information 
about the world.



Sense <> Think <> Act Loop
Think: The agent 
processes sensed 
information and 
provides an action 
or a set of actions. 

Sensors: Provide the 
agent with information 
about the world.

Actuators: Provide the 
agent with ways of 
changing the world.



Sense <> Think <> Act Loop
Think: The agent 
processes sensed 
information and 
provides an action 
or a set of actions. 

Sensors: Provide the 
agent with information 
about the world.

Actuators: Provide the 
agent with ways of 
changing the world.

The Challenge:
These windows aren’t 
well defined in modern 
games or game engines.  
 
When do we sense? 
What data is available?  
 
When or how do we act?



Sense <> Think <> Act Loop
Think: The agent 
processes sensed 
information and 
provides an action 
or a set of actions. 

Sensors: Provide the 
agent with information 
about the world.

Actuators: Provide the 
agent with ways of 
changing the world.

The Challenge:
These windows aren’t 
well defined in modern 
games or game engines.  
 
When do we sense? 
What data is available?  
 
When or how do we act?

The Other Challenge: 
Data is usually the 
defining factor of what 
your agent's brain can 
do.



What a Bot Wants… What a Bot Needs…
‣ Data:

๏ Clean
๏ Versioned
๏ Easy to Experiment on  

‣ Clear Interfaces:
๏ To Manipulate your game
๏ To Observe your game
๏ Deterministically

“Christina AguilerAI”



Act 1

Data



What’s Up With Data?

‣ ML systems are only as good as the data 
they have available.  

๏ Clean
• What is the quality of your data 

captures?  

๏ Accessible
• Is your data easy to access for people 

that want to experiment?  

๏ Consistent



Clean Data
‣ If you had access to the data you need how long would the script be to get that data ready 

for something like Tensorflow?
๏ Detecting and Removing Outliers
๏ Normalization of Values
๏ Separation of concerns in Database Schemas - NoSQL? No Problem!



Accesible Data
‣ If you had someone come with a perfect model for your problem, how long would it take to 

give them access to experimental data to test said model?
๏ Is your data accessible for your team?
๏ Do you know the extent of the privacy concerns of the data you’re experimenting with?
๏ Is your Personal Identifiable Information (PII) separated from your experimental data?



Keeping Your PII in Place

Leaks PII when it isn’t needed Keeps data concerns separated. 
Requires a Session’s Table



Consistent Data
‣ Is Player A doing something with Item X the same as Player B doing something with Item 

X 6 months later?
๏ If not - Can you tell the difference?  

‣ Add the patch version of your game in the data - PLEASE!  

‣ Centralize your schemas through Protobuf or Flatbuffers can help.



Establishing a Data Collection Practice
‣ Bring in your data scientist as early as possible

๏ Or consult with someone in a different studio

๏ Or the community

๏ Or contract one for a small period



Summary of Act 1
‣ Data will make or break your Machine Learning efforts and systems.

๏ Think of it early, think of it often
๏ Good data, is only as good as your org’s ability to use it  

‣ Cleaning your data has multiple facets:
๏ Filtering, Removing Outliers and Normalizing Values
๏ Centralizing your Database schemas can help with PII and the chaos of NoSQL 

databases.
๏ Tackling these data architecture challenges becomes harder over time, bring someone 

early to the conversation.



Summary of Act 1
‣ Data will make or break your Machine Learning efforts and systems.

๏ Think of it early, think of it often
๏ Good data, is only as good as your org’s ability to use it  

‣ Cleaning your data has multiple facets:
๏ Filtering, Removing Outliers and Normalizing Values
๏ Centralizing your Database schemas can help with PII and the chaos of NoSQL 

databases.
๏ Tackling these data architecture challenges becomes harder over time, bring someone 

early to the conversation.
‣ GOOD NEWS!

๏ Your Business Analytics and Data teams will thank you for it



Act 2

Sensing & Acting



Sensing & Acting in Candy Land
‣ Test bed to experiment and understand 

integration

‣ Closest we can get to an actual game 
without having you sign a NDA

‣ While we’re gonna look at some of it 
through a critical light - We have nothing 
for respect for gamevanilla



How This Works

Integration

Integration



Integrating With Your Game
‣ The basics - Starting the game:

๏ How many external dependencies does your game have? (Game Data Server, Login, 
CDNs, …)  
 

‣ AI-Friendly Input Systems:
๏ How easy is it for an automated system to manipulate your game state in a similar fashion 

that a player would?  

‣ Observable States:
๏ How easy is it to serialize your game state into a new format? (Yaml, JSON, RSON)



When to Act and Observe?











…Actually do the 
move…



AI Friendly Input Systems



Observing the Environment

‣ The GameObject and the Update loop approach to Game Engines make knowing when 
the state is 'ready to be observed', relatively challenging.  

‣ Due to the need to make Engines more accessible or easier to iterate on, it is easy to blur 
concerns between game objects or their components - Which makes it hard to serialize or 
observe them.



Mixing Concerns - Basics
‣ Core Game shouldn’t depend on pre-Game State

๏ Mockable Login
๏ Mockable Inventory
๏ Dismissible Takeovers  

‣ Keeping these systems separated from your Core Game helps AI efforts
๏ And also QA efforts



Mixing Concerns



Mixing Concerns



Mixing Concerns



Mixing Concerns



Mixing Concerns - Some Solutions
‣ Subordinate your Animation to your Logic - Not the other way around.

๏ MVC can help here
๏ “Dumb” Presentation Layer - AI will not look at the UI  

‣ Data Driven Architecture is very AI friendly
๏ ECS can help here (like DOTS from Unity)



Lost in Translation...



Observable GameObjects



A Note About Observing Pixels
‣ While there have been successes, they wont solve every problem and are much more 

expensive to deploy.

‣ We will shift part of the issues to the Render Pipeline.
๏ Can you turn off some of the effects?
๏ Can you remove text or the entire HUD?



A Note on Determinism
‣ The Suggestion Issue in Candy Land

๏ Showcases what happens when multiple systems ‘compete’ for RNG  

‣ How do we fix it?
๏ “Scoped” Random Number Generators and Seeding
๏ Akin to Unreal’s RandomStreams



Summary of Act II
‣ Integration Challenges:

๏ Input & Output abstraction layer
๏ Serialization is a huge pain  

 

‣ Lessons from the field:
๏ QA Tooling Investment paid off
๏ Good vs Perfect



Epilogue - A Bright Future



Paradigm Shift



Let there be games…
We did everything together:



On the second generation…
We created a render loop



Then we had game engines
Things we repeat



Modern Multiplayer Game Architecture



What Would Make our Bean Happy?



What Would Make our Bean Happy?
Clear moments for 
state and actions to be 
captured



What Would Make our Bean Happy?

Servers that are 
mockable

Clear moments for 
state and actions to be 
captured



What Would Make our Bean Happy?

Servers that are 
mockable

Clear moments for 
state and actions to be 
captured

Flexible Rendering 
Pipeline for learning 
from Pixels



Recap
‣ Accessible, clean and well architected data is crucial to the success of your ML Systems.  

‣ AI Friendly Inputs and Observable Game Worlds require small, but deliberate, 
adjustments in how we design our code.  

‣ Pixels are an interesting avenue, but will come with their own set of challenges.  

‣ Most of the suggestions here can be applied incrementally, and even if you end up doing 
no Machine Learning they will still yield value in other places.



Questions? Comments? Curses?
Ricardo Sisnett 
sisnett@modl.ai

sysnet_ai

sysnet-ai




