


About Me

Owlchemy Labs // Building Big Games on Little Headsets

• Ben Hopkins, 
Principal Graphics Engineer

• 7 years @ Owlchemy Labs

• Worked on all our VR titles

• Including all internal ports; PSVR, 
Quest

• 25 years in games & interactive 
coding

• First language: Z80 ASM

• Current languages: C#, HLSL
• C++, Java, Python (plugins, tooling, R&D)



Owlchemy Labs

Owlchemy Labs // Building Big Games on Little Headsets

• Founded 2010, 
VR focused since 2016

• Acquired by Google in 2017

• We make absurd & highly 
polished games!

• Our motto is “VR for everyone”

• Our games:
• Job Simulator

• Rick & Morty: Virtual Rick-ality

• Vacation Simulator

• Cosmonious High



About this Talk
• An overview of some of our custom optimization tooling and some bite size 

tricks we used when optimizing Cosmonious High for Quest

• A deeper look at one of the more costly systems in the game, SplatTech. And 
how we rewrote it for Quest

Owlchemy Labs // Building Big Games on Little Headsets



Owlchemy Labs // Building Big Games on Little Headsets

Optimization Tooling &
Bitesize Tricks!



A/B Test 
Framework

Owlchemy Labs // Building Big Games on Little Headsets



A/B Test Framework
• Wanted to get actual GPU timings for various features/optimizations

• Uses Meta’s metrics API to get per frame GPU time (AppT)

• Framework provides a fast way to setup deterministic tests
• Head tracking and FFR fully disabled
• Each test is easily duplicated, only altering the aspect we want timings for per test

• Test suite builds are fast and automated
• Each test runs sequentially for several seconds
• Per frame GPU time is recorded and averaged at test end
• Test results are written to a JSON file and saved to device
• Editor tooling automatically pulls results from device and presents as a filterable graph!

Owlchemy Labs // Building Big Games on Little Headsets



MSAA
Cost Visualization

Owlchemy Labs // Building Big Games on Little Headsets



MSAA Cost Visualization
• How MSAA works

• Can be thought of as optimized super sampling
• Each screen pixel is subdivided into sub pixels, 
• E.g. MSAA 4x = 4 sub pixels per pixel
• Depth test performed at this higher resolution 
• Pixel shader only called once per pixel per triangle 
• But since multiple triangles can have coverage within a pixel 

it is possible for many more pixel shader invocations along 
triangle edges

• Is most costly with highly dense meshes, especially as they 
move farther from the camera
• One of the less obvious benefits to LODs

Owlchemy Labs // Building Big Games on Little Headsets



MSAA Cost Visualization
• Wrote a tool to help teammates 

visualize/quantify this
• Black: 1 pixel shader invocation
• Gray: 2 pixel shader invocations
• Yellow: 3 pixel shader invocations
• Red: 4 pixel shader invocations

• Super useful for validating LODs and 
identifying hotspots

• Renders the scene view with a 
custom shader that records subpixel 
coverage via SV_Coverage

• Quantifies via a compute shader

Owlchemy Labs // Building Big Games on Little Headsets



Optimized 
Texture Atlasing

Owlchemy Labs // Building Big Games on Little Headsets



Optimized Texture Atlasing
• We have a lot of pickupable objects in Cosmonious High (and a backpack)

• Player can carry many objects from any scene in the game to any other scene in the game
• Potentially every object in the game could end up in a single scene

• In the past we’ve relied on manual texture atlas generation, trying to group 
objects based on likelihood of them being in a single scene, by hand

• The more objects we can fit in a single atlas, the less chance there is of 2 objects 
being in different atlases and unbatchable

Owlchemy Labs // Building Big Games on Little Headsets



Optimized Texture Atlasing
• Solution, custom atlas generation pipeline

• We select all prefabs we’d like in a single atlas

• Generate a single fbx containing all meshes of all prefabs 

• Import fbx into Blender where a custom python script processes all individual meshes, packing all UV islands of all meshes 
into a single UV set (UV Packmaster plugin is magic)

• These new UVs are assigned to the second channel of each mesh

• Export from Blender and reimport in Unity

• Run our bake tool which generates a single new texture using whatever we want from UV0 to UV1

• Can be as simple as baking texture or custom shading

• Update meshes in all prefabs to use final atlased meshes 

• Whole process is automated to a few button clicks and fully non destructive!

Owlchemy Labs // Building Big Games on Little Headsets



Optimized Texture Atlasing

Owlchemy Labs // Building Big Games on Little Headsets

1. Select desired prefabs (74 here) 2. Automatic FBX export 3. Blender script packs UV islands

4. Generate texture, meshes &
update all prefabs to use them

5. Success! 74 unique objects in a 
single atlas.



GPU Instancing
Multi Meshes

Owlchemy Labs // Building Big Games on Little Headsets



GPU Instancing Multi Meshes
• Pliks are 3D shape creatures that use our special 2D shader

• Several different meshes, potentially a lot of them in a frame

• Pack several meshes into a single mesh, via texture coords

• Interpolate between shapes in vertex shader, similar to blend shapes

• All pliks now render using a single GPU instanced drawcall per frame!

Owlchemy Labs // Building Big Games on Little Headsets



GPU Instancing Multi Meshes

Owlchemy Labs // Building Big Games on Little Headsets

Use Blender’s shrinkwrap modifier 
to morph circle topology to the 
triangle and square shapes.

This guarantees same vertex count 
and order across shape meshes.

Editor script packs positions and 
normals into circle mesh’s 
UV0/UV1/UV2 and exports to a new 
packed mesh asset.

Each instance can smoothly morph 
between the 3 shapes via a single 
shader property.

Eye shapes are also packed into 
RGB channels so only 1 texture read 
is required.



Lighting an
Asteroid Belt

Owlchemy Labs // Building Big Games on Little Headsets



Lighting an Asteroid Belt
• Large numbers of asteroids orbit planets in our skyboxes

• Don’t want to use mesh particles

• Would rather not pay for a normal map

• Generate spherical normals for billboards based on particle center!

Owlchemy Labs // Building Big Games on Little Headsets



Lighting an Asteroid Belt

Owlchemy Labs // Building Big Games on Little Headsets

For our asteroid field we use a 
regular particle system.

Asteroids are basic textured 
billboards rotating around a planet.

In the vertex shader we calculate 
the particle’s worldspace center.

In the fragment shader we calculate 
the vector from worldspace center 
to fragment position and normalize.

Using this calculated normal, we 
perform lighting as usual!



Vertex Shader
Based FFR

Owlchemy Labs // Building Big Games on Little Headsets



Vertex Shader Based FFR
• Our skybox shader produces semi procedural animated nebulas

• Looks awesome but required several texture reads and some math to calculate 
the underlying animated noise, per fragment

• Sky is highly visible from a lot of vantage points in almost all scenes

• New approach
• Instead of a sky sphere we generate a custom mesh projected to the far clip plane

• Mesh is tessellated in such a way that geometric density is highest in the center of view

• Animated noise calculations are moved to vertex shader

• Fragment shader uses vertex interpolated noise for shading

• Essentially a very specific form of FFR 

Owlchemy Labs // Building Big Games on Little Headsets



Vertex Shader Bassed FFR

Owlchemy Labs // Building Big Games on Little Headsets

FFR tessellated plane hand 
authored in Blender.

Positions are already in clip space so 
we can return them unaltered.

Animated noise is calculated per 
vertex, shading per fragment.

Nebulas maintain their smooth 
shapes and motion around the focal 
point.

Nebula quality decreases towards 
the periphery.

This is unnoticeable in the HMD!



Owlchemy Labs // Building Big Games on Little Headsets

SplatTech
Quest Rewrite



SplatTech
Features

Owlchemy Labs // Building Big Games on Little Headsets



SplatTech Features
• Almost every surface in the game splatable

• Multiple substances

• Substances can be removed over time/via player input

• Splats are persistent between scenes

Owlchemy Labs // Building Big Games on Little Headsets



Initial
Implementation

Owlchemy Labs // Building Big Games on Little Headsets



Initial Implementation
• All splatable meshes require a unique UV set e.g. lightmap UVs

• Enables read/write to mesh’s SplatMap

• Splats are added via physics system sphere collisions

• New splats are queued per frame
• Worldspace position, radius
• Substance properties; color, wetness etc.

• SplatMap textures are updated per frame using a MRT shader
• New splat data is passed to shader as float4 arrays
• SDF is updated via simple sphere distance check to fragment worldspace position
• Substance properties are interpolated/attenuated 
• Subtracted SDF used to remove/evaporate certain substance

• In-game shaders read SplatMap textures and shade splats inline
• SDF is eroded with noise for high frequency edge detail
• Color/substance data displaced with noise to hide low resolution
• Fake lighting calculated based on substance data

Owlchemy Labs // Building Big Games on Little Headsets



Initial Issues

Owlchemy Labs // Building Big Games on Little Headsets



Initial Issues
• Separate SplatMaps for every mesh (including instances)

• Memory/texture update nightmare

• Completely breaks batching

• Textures per SplatMap; at start of dev this was 3, managed to reduce to 2
• This is still 2 textures that need to be updated for every SplatMap and read in every shader that includes Splat shading

• Shading cost added to all splatable surfaces, which is most of them, even if the 
surface currently has no splats

• Worth noting; this was the implementation we used up to the last 6 months of 
development!

Owlchemy Labs // Building Big Games on Little Headsets



Quest 
Implementation

Owlchemy Labs // Building Big Games on Little Headsets



Quest Implementation
• SplatMeshVolume

• Generate a single mesh around the player

• 1 update per frame and 1 drawcall per update

• We control how far from the player we pay for splat 
shading

• Decouples splat shading, no more broken batching

• If we render this mesh last, we essentially get a 
depth pre-pass. No more splat shading cost from 
overdraw!

• We only need to update this mesh when a player 
teleports

Owlchemy Labs // Building Big Games on Little Headsets



Quest Implementation
• SplatMeshVolume

• Collect all splatable geometry

• Cull triangles outside of 10m radius

• Create single combined mesh

• Pack UV islands into single texture

• Remember we’re starting with many separate meshes, 
each individually unwrapped to the full UV space

• We’re culling at the triangle level so simple texture 
packing would result in a lot of wasted space

Owlchemy Labs // Building Big Games on Little Headsets



Quest Implementation
• Finding UV islands

• UV islands split geometry

• So an island is a sub group of interconnected triangles

• Mesh assets don’t contain adjacency info

• We have to calculate this ourselves using indices

• Geometry can be split for other reasons

• For optimal packing, we have to handle this case too

• Consider duplicate vertex attributes as equivalent to 
genuine shared vertices

Owlchemy Labs // Building Big Games on Little Headsets



Quest Implementation
• Offline processing for speed

• Custom mesh assets with indices broken up into 
UV islands

• Pre-transform positions to worldspace

• Calculate UV and worldspace bounds per island

• Sort vertex buffers by UV islands so we can fast copy 
whole islands that are completely within 10m radius

Owlchemy Labs // Building Big Games on Little Headsets



Quest Implementation
• Persisting splats with SplatCache

• We have lightmap UVs, let’s use them!

• Store scene’s splat data in large textures

• Before generating new splat mesh, write local splat 
data to cache

• After generating new splat mesh, read splat data 
from the cache

Owlchemy Labs // Building Big Games on Little Headsets



Quest Implementation
• Baking far-field splats

• 10m is pretty far from the player so resolution is less 
important

• Use SplatCache to also bake splat shading

• Shaders beyond 10m blend baked splats with a 
single texture read

• SplatMesh shader fades at 10m boundary

Owlchemy Labs // Building Big Games on Little Headsets



Quest Implementation
• Packing 2 textures into 1

• Use a single R32_Uint texture

• Bitwise ops are supported in GLES3 but in tests 
were slower than their arithmetic equivalents

• For sanity wrote a collection of macros for:

• Encoding/decoding

• Each parameter has a single #define BITCOUNT

• Bit packing means no HW filtering 

• Can use Texture2D:GatherRed() to perform manual 
filtering in the shader, but this was too slow for us

• We solved this another way…

Owlchemy Labs // Building Big Games on Little Headsets



Quest Implementation
• SplatMap update

• Update & dilation in a single compute shader!

• Including dynamic objects

• Use fast groupshared for dilation step

• Compute doesn’t have access to geometry

• Bake worldspace positions to ARGBFloat texture

• Pack geometry ID + dilation offsets into alpha

• Decouple update frequency to 30hz

• Unpack 32bit texture to two 16bit textures

• Gives us HW filtering and mipmaps!

Owlchemy Labs // Building Big Games on Little Headsets



On teleport:

Owlchemy Labs // Building Big Games on Little Headsets

Quest Implementation

• Write local splats to cache

• Bake local splat shading

• Generate new splat mesh

• Bake worldspace positions

• Read local splats from cache

Update:

• Frame 1: splat update
Dispatch compute shader to 
apply new splats, bit pack data 
and perform dilation

• Frame 2: resolve 
Unpack splat data, combine 
persistent and dynamic SDFs 
and output to 16bit MRTs

Rendering:

• Single splat shader

• Splat mesh HW blended at end 
of opaque drawcalls

• Depth test/write enabled

• In our very specific case clip() 

actually provided a performance 
boost

• Splats are antialiased using 
fwidth(sdf)



Owlchemy Labs // Building Big Games on Little Headsets

Key Takeaways



Key Takeaways
• No one size fits all solution to optimization

• Use all the tools at your disposal to find areas in your game that could be hiding 
pockets of potential performance. Get creative!

• Use methodical, deterministic testing to keep yourself honest. Prove your 
optimizations are actually making things faster

• If the tools you need don’t exist, write them!

Owlchemy Labs // Building Big Games on Little Headsets



Thank you!


