

● Each content teams was able to monitor their budget

● It was up to content team to balance things out

● Various heat map were generated also to assist finding hotspot

There was a good question that I feel I failed to explain correctly.

How Jobs are better than custom thread.

I can answer this with a real example.

On Witcher3, the render thread will issue the culling work to be done on another

thread. In meantime, render thread will continue to do its work but at one point it will

need to wait for the result of the culling. With some luck it’s finished, and result is

available. However, very often it is not, causing the render thread to completely stop

until result is finally available. In some case this cause up to 5ms completely wasted

on render thread.

Now with proper job chain, this problem never occur. See Graphics part about render

graph ☺

Very good presentation by Tim Green, SIGGRAPH 2021

See Samples section at the end. I’ve added full code example on how it looks like in

code

Orbis number

700us simple point contains in box

300us AOS

150us SOA

More or less 50us per job on PS4

PS4 capture, a bit less than 3ms, Lizzies bar 20 npc in view, 40npc in surrounding

You can change the img on the right

PS4, Witcher3 on top, Cyberpunk bottom one

More or less 12ms on CPU

Force 6 dispatcher,

i9 - 7980XE @2.6ghz

You can change the img on the right

Set up for render, and kick off culling

"Unique" nodes are for special points in the frame. Not too important in this example,

but used when merging

multiple graphs -- unique stay unique (all unique from all subgraphs are de-

duplicated), regular nodes are

copied over.

"Simple command list" just means it creates a command list that only runs a single

subnode.

"Add node" is for pure CPU work, no command list created.

Add CPU dependency, so PrepareCollector won't run until StartRender is finished.

Add nodes for doing different types of culling. Main scene (player camera), RT

(inflated frustum, and area around camera), Cascades,

and Local shadows (spot lights).

All culling needs to wait for PrepareCollector to finish.

In addition, LocalShadows needs to wait for main scene culling, in order to know what

lights are visible.

Initial setup is ready, so we start doing some rendering work.

Command lists are explicitly defined. All subnodes in a command list node with run

sequentially, although not

necessarily on the same thread. Subnodes are able to branch off into additional

parallel work if needed (but only

for CPU work, the command list is only accessible from a single thread at a time).

In this case, UpdateParticleRenderData needs the results of the particle sim, since it's

sending the final particle

data to the GPU.

GBuffer

Since we tend to have a lot of work to do in rendering the static meshes in the scene,

gbuffer is split across

multiple command lists.

First a CPU-only node to build and sort the list of objects to be drawn. This needs the

results of main scene culling,

as well as on-screen particles.

Then several command lists that each take a portion of the collected objects, drawing

them to the gbuffer. These all

depend on GBufferPrepare.

"BindGlobalConstants" / "UnbindGlobalConstants" are reused in many places, they

set up some global constant buffers,

resource bindings, etc.. Using subnodes allows that to be reused easily. Similar with

setting some common render

target setups.

Since we have a pretty hefty amount of work built up with the GBuffer, we might want

to submit it to the GPU already,

so that it can keep busy with that while we prepare more.

SYNC_SUBMIT will add a node that automatically has a dependency on any GPU-

related nodes before it, and will submit

all of them to the GPU. Here we don't need to do any additional synchronization on

the GPU, so we pass None for sync

type.

GBuffer + Velocity Buffer

Dynamic objects generate normal GBuffer outputs, plus they write motion vectors to a

velocity buffer.

As with GBuffer, we need to wait for scene culling and particles, but it can run on the

CPU in parallel with the

static GBuffer.

Async Compute work during shadowmap rendering

With the GBuffer finished, we can run some passes like a Hi-Z generation, SSAO, as

well as some independent

work. We run those things on async compute, while on the graphics queue we fill in

shadow maps.

Our async is limited to a fork-join model, where we branch off to run specific graphics

and compute work in

parallel, and then sync the queues at the end. So we need to submit everything we

have so far, and indicate

that we want to Fork.

If we're doing ray tracing, we can build acceleration structures. Static and dynamic

bottom levels have

different work involved, so we split them into separate command lists. In addition

those subnodes can branch

off into further parallel work to prepare the acceleration structures for building. After

the bottom levels

are built, we have an additional step to build the top level and shader table.

We also have another compute command lists for other compute workloads, there

aren't any CPU dependencies

so we don't need to link it to anything.

Shadowmaps

With the async compute work defined, we can do the shadowmap rendering.

There's a command list for each cascade, and for each local light we plan to update.

We need to wait for the appropriate culling to finish, as well as particle sim, in case

there were some

shadow-casting mesh particles.

And now with the compute and graphics work set up, we can submit that to the GPU,

indicating that we're doing

a Join sync.

Lighting, PostFX

After we have the shadowmaps and async compute joined, we can calculate our

lighting, post processes, etc.

If there are no CPU dependencies, we don't need to link anything and these

command lists can be built at any

time.

We might have some debug geometry to draw after everything else is done.

For this, we have a dependency on VisDebug from earlier, in case it needed to add

anything.

Main rendering is done, so we just have some assorted finalization.

We have a separate simulation pass for offscreen particles, to keep them updating

but at a throttled pace.

This is another unique node, which is only important for cases where we have

multiple renders in a frame (such as

when a mirror is up). We only want a single offscreen simulation, and it will wait for

culling from all subgraphs

so it knows what's actually offscreen everywhere.

There's a final command list with some last-minute book-keeping in it, then submit

everything to the GPU that

hasn't been submitted yet, and present to the screen. Everything at that point is

sequential on CPU, and needs

to wait for all the rendering work to complete.

First example, some sort of post process

This is using a temporary texture to hold some intermediate results.

The graph is run in two phases, Prepare and Consume. During Prepare phase,

resource lifetime events are recorded, so

that before running the Consume phase we can analyze total lifetime, resource sizes,

etc. and alias multiple resources

over the same chunks of GPU memory.

The lifetime events in Prepare and Consume must match exactly (same order, same

resource descs), so occur outside of

any checks for the current phase.

RTTempAlloc doesn't necessarily cause the resource to be allocated, it will be

available only after the first use

(in this case, marked by `rctx.RT<>`). We specify how the resource is intended to be

used (read or write), but this

metadata ended up not really being used.

The node declares that it requires a Command List, which allows it to issue GPU

commands during the Consume phase.

Next example is a CPU-only node. Because it declares that it won't use a Command

List, it would be invalid to try

to issue any GPU commands during its execution.

In this case, we also declare that we would like to use a `job::Builder`, which allows

for spawning additional

parallel work. Any dependencies on this node will need to wait until any additional

jobs are also finished.

Non-GPU node, which spawns additional jobs as part of the work.

Finally we have a GPU node, which also can spawn additional parallel work.

We only have a single Command List, so we need to be careful when accessing it so

multiple threads don't try to

access it. But there's no restriction on which thread it can be used.

A Command List must be bound to a thread, and can only be bound to a single thread

at a time. So in order to

access it from a separate job, we need to unbind it from the current thread first.

Copy of all states can be done on multiple threads

* In practice there was no concurrent writers. We just swap pointers on commit. But

other threads can safely read states at same time.

* This operation is single threaded. All writes to physics scene are not thread-safe.

	Slide 1: Building NIght City: The Technology of cyberpunk 2077
	Slide 2: Brief history of red engine
	Slide 3: Cyberpunk requirements
	Slide 4: Red engine pillars
	Slide 5: Red engine rules
	Slide 6: Engine — diagram
	Slide 7: Agenda
	Slide 8: Memory Management
	Slide 9: Memory — Requirements
	Slide 10: Memory — Allocator for specific needs
	Slide 11: Memory — default allocator
	Slide 12: Memory — Easy to extend
	Slide 13: Memory — Easy to use & understand
	Slide 14: Memory — pools
	Slide 15: Memory — metrics & tracking
	Slide 16: Memory — budgets
	Slide 17: Memory — Performance monitor
	Slide 18: Content budget
	Slide 19: Job system
	Slide 20: Job system — requirements
	Slide 21: Job builder
	Slide 22: Job builder — Simple job chain
	Slide 23: Job builder — Parallel job chain
	Slide 24: Job builder — how to link job chain
	Slide 25: Job builder — how to do A continuation job
	Slide 26: Job system — cancelling jobs?
	Slide 27: IO & resource management
	Slide 28: IO & Resource Management — requirements
	Slide 29: Resource loader
	Slide 30: Continuation job when resource loaded
	Slide 31: Resource request under heavy contention
	Slide 32: Resource request under heavy contention
	Slide 33: Io scheduler
	Slide 34: graphics
	Slide 35: Graphics — From The Witcher 3 to cyberpunk 2077
	Slide 36: Graphics — render graph
	Slide 37: Graphics — render graph
	Slide 38: Graphics — GPU frame
	Slide 39: World & Streaming
	Slide 40: Cyberpunk 2077 in numbers
	Slide 41: How were precision issues resolved ?
	Slide 42: World node & nodeinstance
	Slide 43: World node & nodeinstance
	Slide 44: Prefabs editor
	Slide 45: Streaming grid — Development
	Slide 46: Streaming grid — optimized
	Slide 47: Runtime Streaming process
	Slide 48: Compute sectors in range
	Slide 49: Compute nodes in range
	Slide 50: ECS
	Slide 51: Ecs — rules
	Slide 52: Ecs — communication
	Slide 53: Ecs — event
	Slide 54: Ecs — event
	Slide 55: Ecs — Async Spawning
	Slide 56: Ecs — Async Spawning
	Slide 57: Ecs — Appearance
	Slide 58: Ecs — Appearance Editor
	Slide 59: systems
	Slide 60: Systems
	Slide 61: Systems — Frame Update & bucket group
	Slide 62: Systems — Registration
	Slide 63: physics
	Slide 64: Animation in a nutshell
	Slide 65: Animation Frame
	Slide 66: AI — living on the edge
	Slide 67: Frame & performance
	Slide 68: Ps4 Witcher 3 vs Cyberpunk
	Slide 69: Ps4 frame sample
	Slide 70: Ps4 Multiple frame sample
	Slide 71: Ps5 frame sample — 60hz
	Slide 72: Ps5 multiple frame sample — 60hz
	Slide 73: PC Frame sample — 6 dispatchers
	Slide 74: What about the main thread?
	Slide 75: Conclusion
	Slide 76: What went wrong ?
	Slide 77: What went right ?
	Slide 78: Thank you
	Slide 79: Samples
	Slide 80: Graphics — render Graph — Setup & Culling
	Slide 81: Graphics — render Graph
	Slide 82: Graphics — render Graph — gbuffer
	Slide 83: Graphics — render Graph — gbuffer + Velocity buffer
	Slide 84: Graphics — render Graph — async compute
	Slide 85: Graphics — render Graph — shadowmaps
	Slide 86: Graphics — render Graph — lighting & postfx
	Slide 87: Graphics — render Graph — debug
	Slide 88: Graphics — render Graph — final
	Slide 89: Graphics — render node
	Slide 90: Graphics — render node
	Slide 91: Graphics — render node
	Slide 92: Graphics — render node
	Slide 93: Physics — State buffering
	Slide 94: physics — State block
	Slide 95: Physics — State allocator & flush

