L LULEE L B

"BUILDING NIGHT CITY:
THE TECHNOLOGY OF

CYBERPUNK 2077

GDC bt g Charles Tremblay | Engineering Director

BRIEF HISTORY OF RED ENGINE g !

REDengine 2 REDengine 3

SEIEET. Console Support Open World Support LALLLEL
DG D D)

T EHer

O}

¥

The Witcher 2: The Witcher 2: The Witcher 3: Cyberpunk 2077
Assassins of Kings Assassins of Kings Wild Hunt
Enhanced Edition

| Looo 92uxv- s62veze [

March 30-24. 2023
GOC === -

CYBERPUNK REQUIREMENTS

March 30-24. 3023
San Francisce. CA

e Night City — Living metropolis in a dystopian future
o 16x16km world and vertical
o High density
o No loading screen
e Vehicles
o 140km/hr
e Scalability

o Various platform support
o From Xbox One to High-End PC

ﬁb PROJEKT RED’

O}

®

.
=

| tooo 92uxv- Be2vEZE [

RED ENGINE PILLARS

e Engine / Gameplay agnostic of Editor/Tools code
o RPCbackend < Editor
e Systems Scalability
© Maximize platform hardware utilization
© Adapt according to game state or current quest

e Questis King

March 30-24. 3023
San Francisce. CA

IS

ﬁb PROJEKT RED’

O}

®

| tooo 92uxv- Be2vEZE [

RED ENGINE RULES

@ No code can actively wait for anything

0 Code should assume it never runs in isolation

(% . o

"ﬂ Runtime memory allocation limited to <= 512 bytes

No STL containers, Exception, RTTI

GDC by

ﬁb PROJEKT RED'

s

O
0]

W

‘1000 924XV~ 662vE28 [

ENGINE— DIAGRAM

GDC by

i
P

GAME

World || Streaming ” ECS ”

Al

Rendering || Recources ” Physics ||

Audio

Animation “ Job System “ Reflection “ Container

Filesystem “ Memory ” Threads “

Math

|
|
|
|
I

)

=

1
Sem

=

&D PROJEKT RED’

=

| Looo 9auxv- s62veze G

AGENDA

@ Memory
% Job Systems
88 Resources & 10

% Graphics

-

- World & Streaming

~.

ECS
Systems
A Frame & Performance

> conclusion

r : @ PROTOCOL 6520-A44 s
S0y oAy RIEANETEDE

ﬁb PROJEKT RED'

O
0]

W

‘1000 924XV~ 662vE28 [

St

MEMORY

MANAGEMENT

MEMORY — REQUIREMENTS .

e Allocators for specific needs

e Default allocator is lockless while minimizing fragmentation
e Easyto useand understand

e Easytoextend

e Budgets are easy to define

e Every allocator needs to be under the proper budgets

e Reliable

st
+
]
-
]
®
O
4

L)
0.0
L J
e
e
wAC
on

March 30-24. 3023
San Francisco. CA| CD PROJEKT RED'

O
0]

W

‘1000 924XV~ 662vE28 [

MEMORY — ALLOCATOR FOR SPECIFIC NEEDS

e Slab
e TLSF

e Fixed Size

e Linear
e Buddy
e Stack

e Job & Frame Allocator

e Andmore...!

x os =
G n . L E L] <=

GDC S T——ck

ﬁp PROJEKT RED

s

=

|tooo 92uxv- se2veze M@

MEMORY — DEFAULT ALLOCATOR g " 4

e Custom Slab allocator with explicit thread registration for <= 512b allocations

o

O

From Witcher 3 experiences: 75% + of all allocations are less than 512b
Even distribution across our job/task threads

Good locality

10ns on PS4

Average waste of 6% per thread

e TLSF allocator for allocations between 512b a 512kb

e “BigSize" allocator for allocations > 512kb

March 30-24. 3023
San Francisco. CA| CD PROJEKT RED’

=

W

\IOOO 924XV~ 662vE28 [

MEMORY — EASY TO EXTEND

e Allocator code does not have to reside in memory project
e Clear and minimal static interface to fulfill
e All utilities provided by memory system are available

SimpleAl locatorMetrics{}

SimpleAllocator

SimpleAllocator, SimpleAllocatorMetrics

red: :memory: :Blo uint3zZ_t

red: :memory::B e 3 size, uint

red: :memory: :Blo e(red: :men Block& t k 2
red: :memor 1:] Blo ateA memory: :Block& t i 12 uint3
ee(red: :memory: :Block
uintéd_t Ge e(uinté4_t t
? red: :memory: :Serializer

March 30-24. 3023
San Francisce. CA

&D PROJEKT RED’

O}

¥

v
=

IIDOO 9J¥XV- B62VE28 [X

MEMORY — EASY TO USE & UNDERSTAND

Fully documented
Code consistency
Easy to read!

r

[

March 30-24. 3023
San Francisce. CA

64

red: PoolDefault

ocatorParameter

o

&D PROJEKT RED’

O}

¥

v
=

IIDOO 9J¥XV- B62VE28 [X

MEMORY — POOLS :

e All allocations needs to be associated to a Pool
e Pools define budgets
e Pools can be parented

r 1

PoolAl_Behaviour, red::memory::Defaul tAllocator

red: :memory: : A eDef a A a
PoolAI_Behaviour, Al::PoolAl, a

_t, PoolAlI_Behaviour)(12
Pool Al_Behaviour

fer & A PoolAl_Behaviour
Pool AI_Behaviour r

red: :DynArray< int32_t > ay{ PoolAl_Behaviour

March 30-24. 2023
GOC === -

o

e
=
@
X

IIDOO 9J¥XV- B62VE28 [X

MEMORY — METRICS & TRACKING

e Allmemory allocations can be tracked
e Report can be use for automated tools

March 30-24. 3023
San Francisce. CA

-

SRR RN RNRRRARNARNRARNNNY

4

&D PROJEKT RED’

O}

¥

v
=

IIDOO 9J¥XV- B62VE28 [X

MEMORY — BUDGETS

GDC by

CPU -1.5gb

Rendering — 300mb
Animation — 200mb
Audio — 200mb
Streaming — 160mb
Gameplay — 160mb
Al —140mb
Resources — 100mb
Physics — 100mb
Archives — 64mb
Ul — 55mb

GPU - 3gb

Texture Generic — 700mb
Texture Multilayer — 350mb
Render Targets — 640mb
Mesh — 700mb
Gl — 300mb

O
0]

W

ﬁp PROJEKT RED'

‘1000 924XV~ 662vE28 [

March 30-24. 3023
San Francisce. CA

ﬁn PROJEKT RED"

0]

®

| 1000 92uxv- ss2veze [

Each content teams was able to monitor their budget
It was up to content team to balance things out
Various heat map were generated also to assist finding hotspot

CONTENT BUDGET

GDC by

ﬁl’ PROJEKT RED

=

9

‘1000 924XV~ 662vE28 [

JOB SYSTEM

There was a good question that | feel | failed to explain correctly.

How Jobs are better than custom thread.

| can answer this with a real example.

On Witcher3, the render thread will issue the culling work to be done on another
thread. In meantime, render thread will continue to do its work but at one point it will
need to wait for the result of the culling. With some luck it's finished, and result is
available. However, very often it is not, causing the render thread to completely stop
until result is finally available. In some case this cause up to 5ms completely wasted
on render thread.

Now with proper job chain, this problem never occur. See Graphics part about render
graph ©

JOB SYSTEM— REQUIREMENTS

e Unshackle Main & Render thread

e Everything should be a job
No more custom threads

e Easyto build a job chain
e Easy to write continuation jobs

e Easytouse

GDC by

Job Chain

s .

ﬁb PROJEKT RED'

s

O
0]

W

‘IOOO 924XV~ 662vE28 [

JOBBUILDER

e Main utility to dispatch and manage jobs chain
e Allows to create complex job chain

e Used by every single system

Heavyob ject

eA et(red::UniquePtr< HeavyoObject

job: :Builder t fer job: :Priority

obj->

obj.Rese

March 30-24. 3023
San Francisce. CA

job

RunContext

én PROJEKT RED"

O}

¥

v
=

IIDOO 9J¥XV- B62VE28 [X

JOBBUILDER— SIMPLE JOB CHAIN :

First Job | Semnd_ﬂj— Third_Job
DispatchJob creates dependant job by default

o)

r 1
object

red: :SharedPtr< Object

Priority
* fot job: :RunContext

job: :RunContext

job: :RunContext

L o4

March 30-24. 2023
GOC === -

O}

¥

v
=

IIDOO 9J¥XV- B62VE28 [X

JOBBUILDER— PARALLEL JOB CHAIN

e Dispatchdob can create jobs to be run in parallel

e DispatchParallelForJob can also be used
r -

First_Job

ot 01 job chan

Second_Job

e—

Third_Job

March 30-24. 3023
San Francisce. CA

Epilogue

=

én PROJEKT RED"

O}

¥

v
=

IIDOO 9J¥XV- B62VE28 [X

JOBBUILDER—HOWTO LINK JOB CHAIN

e Job Builder can be linked to existing job chain

e Subsequent job dispatches follow regular rules

sharedPtr< Object

job: : Counter

b ilder fir

job: :Priority

L

March 30-24. 3023
San Francisce. CA

RunContext

job: :RunContext

RunContext

First_Chain

ot 02 18 o

Second_Chain

e—0

Third Chain |

]

&D PROJEKT RED’

O}

¥

v
=

IIDOO 9J¥XV- B62VE28 [X

JOBBUILDER—HOWTO DO A CONTINUATION JOB »

Job can be dispatched as a continuation of the current job
r o |
red: :SharedPtr< Object t

job: :Bui lder job: :Priority
} jer a "First_Job", [t t] job: :RunContext

job: :Bui lder
E job: :RunCo

job: :Run

L o

March 30-24. 2023
GOC === Caroo

O}

®

v
=

|IDOO 9J¥XV- B62VE28 [X

JOBSYSTEM— i
CANCELLING JOBS?

It is not possible to safely cancel a
complete job chain

e Howeverit can be done on the user side

0]

®

ﬁb PROJEKT RED"

| 1000 92uxv- ss2veze [

<R

10 & RESOURGE

MANAGEMENT

10 & RESOURCE MANAGEMENT — REQUIREMENTS

e Locklessresource loading request

e Nol0if resource is already loaded

e Fully compatible with job system

e Dependant resources can be merged up and duplicated

e Only one instance of any resource can be alive at any time
e No sync operation is allowed

e |0 request dependency should be known up front

GDC by

ﬁo PROJEKT RED'

s

O
0]

W

‘IOOO 924XV~ 662vE28 [

RESOURCE LOADER ~

® Resource loading request can be made virtually anywhere
e You cannot actively wait for completion

e With great power comes great responsibility

res::ResourceLoaders

sjeLoadingRequestParameter pars

(5 B

March 30-24. 2023
GOC === -

O}

¥

v
=

IIDOO 9J¥XV- B62VE28 [X

CONTINUATION JOB WHEN RESOURCE LOADED

e Itis possible to link job to a resource-loading job chain

e Butit'simportant to validate result of request!
r

Resourceloaders r
IssuelLoadingRequestParameter par
path

ResourceTokenHandle tok

Bui lder er jo

March 30-24. 3023
San Francisce. CA

30

RunContext

&D PROJEKT RED’

O}

¥

v
=

IIDOO 9J¥XV- B62VE28 [X

RESOURCE REQUEST :
UNDER HEAVY CONTENTION

e Multiple concurrent requests

e Resources could be requested
to be unloaded at the same time

o Avoid locks as much as possible

ﬁb PROJEKT RED’

0]

&

| 1000 92uxv- ss2veze [

RESOURCE REQUEST UNDER HEAVY CONTENTION

March 30-24. 3023
San Francisce. CA

0]

| to0o 92uxv- se2vEZE M ®

10 SCHEDULER .

e Fixed memory buffer for 10 and Decompression

© 64mb on console, 128mb on PC

o If no memory is available, 10 will be put on hold until it is available
e Resource dependencies are known and scheduled up front
e Async |0on all platform

e DirectStorage on XSX/XSS (and equivalent on PS5)

O
0]

W

st
+
]
-
]
®
7
4

L)
0.0
L J
e
e
wAC
on

March 30-24. 3023
San Francisco. CA| CD PROJEKT RED'

‘IOOO 924XV~ 662vE28 [

GRAPHICS

Very good presentation by Tim Green, SIGGRAPH 2021

GRAPHICS — FROM THE WITCHER 3 TO CYBERPUNK 2077

e DirectX 11 to DirectX 12
o “Emulation” layer was developed first
Brunt of the work was done on a branch for 6 months
e Breaking up the Monolithic Render Thread
Introducing Render Graphs

Fully parallelized, using job system

Multilayer texturing
Extensive material library
o Texture accessed through Bindless
o Reduce |0 pressure

e Control over memory

GDC bty

ﬁo PROJEKT RED'

s

O
0]

W

‘IOOO 924XV~ 662vE28 [

GRAPHICS — RENDER GRAPH s

e Complete Render Graph is declared in code
e Multiple graphs for different use cases
® Runs across threads at lower priority than game jobs
e Async Compute
o Limited to fork-join model

© SSAO0, Hi-Z generation, Acceleration Structure etc...

-
ST
+
-
|}
n
-
-
o
4
L)
0.0
L J
e
e
wAC
on

March 30-24. 3023
San Francisco. CA| CD PROJEKT RED'

O
0]

W

‘IOOO 924XV~ 662vE28 [

GRAPHICS — RENDER GRAPH

| 6_CULLING

TR S |

| HeZemmmoadedal

Particles0ffScreenSim,

| 6_RENDER ;
=|I GBuffervelocity | |

H)

: DoC 9
) sl o
StartRender HPmunrchlleclnrl——-_;

i | DoCullingCascades

;{ P H GBuffer) ;

4)

—{ EndRender

= RenderCoscodes] .

RenderLocalShadows) |

Uu

H | POStFX | Iulussmuurl '

&D PROJEKT RED"

s

=

®

| Looo 9auxv- s62vEZS [

See Samples section at the end. I've added full code example on how it looks like in

code

RAPHICS— GPU FRAME

1602 ms
Sobeit ReaderGraghC subei s Subeit_Nend |Sobe: RenderceaphCaners
sl = s
| | Chensernose
II rencersione |
n
Hn |
LI R A |
g &-.n Subgit RenderGri MAIE Tiubeit MenderGrapghCasers Sst it |
[Matt O Memory] Mt ¢ Asypcconsuteur MLt | Asyncssaduringal st onme 0
Lnensernos Chendertose Screensoaceneflection
m | Cxscutelndirect
Ll | (otspatcnep
Ome 1m s 3ms Sme 6ms 7 8ms] Wes 1es 2 13 m 4 m 1$me s Vs Wes Wes 0ms Mew 2w Vm
Om 2369 ms / 2369 ™ 2369 ms
Subeit RenderGra Subalt RenderGraph(amers ShadowiAng: Submit RenderGraphCaser Mait Swbait R Subsigsubait RenderGraphCasers
r¢1 o 1 Sy
| | Chendertiode_Acolytsei .| =
| I8 @ II-II=IIII s e
[E B! o | - o 1En
Hiwun I
wiwinn |
N
it i Sdbeit RenderGraphCamers ShadowsAndiighting Fictait_ReaderGraphCanera SS4 | @
[%a3t O Memory] Adynccomputeour: lerstio Acce 1ngal Wait On ¢ ~
CRenderhode Or awC oned Chendertiode CRenc CRandertode Screensoaceteflecti w
'DISHEENTIIN DINSRENIN | oo cooate [E | -
1 10 EDSSpwRen] i DISSORENT [oux vl B ©
Lo R L] ©
[N | L]
vl | »
L L -
£l
o
o
San Franciscs, CA CD PROJEKT RED' S
b, =]

WORLD & STREAMING

r

g

CYBERPUNK2077INNUMBERS - -

One world, 16x16 km

15 million + Objects / Nodes / Entities

30 million + Foliage instances

31-38 main quests, 80 side quests,

74 gig quests

100+ NCPD Scanner Hustles, hidden gems, mini
stories, & other small content pieces

2200+ Quest prefabs

ﬁo PROJEKT RED"

o]

| to0o 92uxv- se2vEZe M ®

HOW WERE PRECISION ISSUES RESOLVED ?

Fixed Point is your friend!
Int32,15 /17 for our World Position
Physics scene origin needs to be updated
Every 1024m from last origin update
Every physics proxy needs to be updated

Camera translation as an origin for rendered objects

GDC by

ﬁo PROJEKT RED'

s

O
0]

W

‘IOOO 924XV~ 662vE28 [

WORLD NODE & NODEINSTANCE

Nodelnstances are the units that are streamed in
Nodelnstances are NOT updated directly
Node is the payload provided to an instance when streaming in

Node can be shared to multiple node instances
r

SimpleMeshNode Instance NodelInstance

SimpeMeshNode Instance
alize Context
RuntimeScene

Runt imeScene
RenderProxyPtr ende
MeshResourceHand]e
ResourceTokenHandle

Simp | eMeshNode Node

p | eMeshNode
assTypes

)l eMeshNode Instance

TResAsyncRef< Mesh

March 30-24. 3023
San Francisce. CA

én PROJEKT RED"

O}

¥

v
=

IIDOO 9J¥XV- B62VE28 [X

WORLD NODE & NODEINSTANCE

RenderProxyes

|5
GO ==

o

CD PROJEKT RED’

o
KE

|IOUO 9J¥XV- B62VEZE

PREFABS EDITOR

March 30-24. 3023
San Francisce. CA

&D PROJEKT RED’

O}

¥

v
=

IIDOO 9J¥XV- B62VE28 [X

STREAMING GRID— DEVELOPMENT

GOC ===

45

World is split into sector of a 266m cube
o Multiple sectors can have the same position
] Exteriors, interiors. guests
L] Streaming ronge

Runtime cost of node payload on non-optimized grid
was around 200-250mb

ﬁb PROJEKT RED"

o]

| to0o 92uxv- se2vEZe M ®

STREAMING GRID— OPTIMIZED s

GO

Sector dimensions are much smaller
© 64m cube for exteriors
o 32m cube for interiors
Sectors are rebalanced to eliminate “almost empty” sectors
o Nodes will always “move up” to higher level sector
Quest sectors are now merged into a single sector per quest
Resources are now embedded in sectors
o Minimap
o Simplified far distance mesh (we called them proxy)
o Foliage
Instancing nodes are generated replacing Mesh nodes using same mesh

Runtime cost of node payload on optimized grid was around 60-80mb

March 30-24. 3023
San Francisco. CA| CD PROJEKY RED"

=

®

[IOOO 9J¥XV- B662vEZE [

RUNTIME STREAMING PROCESS -

1. Compute which sector needs to be loaded / unloaded
a. Request Async Load on sector in range
b. Remove sector from grid that needs to be unloaded
€. Add loaded sector to grid
2. Compute which nodes that need to be streamed-in / streamed-out
a. Request each node in range to start streaming
b. Cancel streaming for nodes that aren't in range anymore
€. Accumulate nodes that are ready to be attached / detached
3. Attach / detach nodes

March 30-24. 3023
San Francisco. CA| CD PROJEKT RED’

=

W

\IOOO 924XV~ 662vE28 [

COMPUTE SECTORS IN RANGE

r

March 30-24. 3023
San Francisce. CA

»

o4

ﬁb PROJEKT RED’

O}

®

| tooo 92uxv- Be2vEZE [

Orbis number

700us simple point contains in box
300us AOS

150us SOA

COMPUTE NODES IN RANGE

r

March 30-24. 3023
San Francisce. CA

B

o

ﬁb PROJEKT RED’

0]

&

| tooo 92uxv- Be2vEZE [

More or less 50us per job on PS4

ECS — RULES :

e Reserved for more complex composition

e Can be spawned at runtime

e Spawn cannot be sync

e Cannot actively wait on spawn completion

e Visuals should be decoupled from logic if possible

e Entity / component update logic should be managed by proper systems

e Entity / component cannot communicate directly to other instance

March 30-24. 3023
San Francisco. CA| CD PROJEKT RED'

O
0]

W

‘IOOO 924XV~ 662vE28 [

ECS — COMMUNICATION

e Eventsare the main communication method

e Eventsare safe to use at any point of the frame

e Eventsare broadcast only during specific frame times
e They can be sent to/from code or script

e Rely heavily on reflection

GDC by

ﬁp PROJEKT RED'

O
0]

W

‘1000 924XV~ 662vE28 [

ECS—EVENT g -

r 1

Physical ImpulseEvent red: :Event

Physical Impul seEvent
uint3 body ie
Yector3
Yector

uint3z hapelnde

physics: :ProxylD

MeatBag
game: :Object

o

L
March 30-24. 3023
GOC === -

0]

| tooo 92uxv- se2vEZE MO

54

ECS—EVENT g " !

Physical Impul seEvent

0]

&

v
=

March 30-24. 2023
GOC === Caroo

|IOUO 9J¥XV- B62VE28 [X

ECS —ASYNC SPAWNING

e Thereis no sync spawn request
e However it does not need to be attached to world

e Scheduling to attach to world is guaranteed to be done before next frame start

GDC by

ﬁp PROJEKT RED'

s

O
0]

W

‘1000 924XV~ 662vE28 [

r -1

RuntimeScenex

RuntimeSystemEntitys er J t L > ¥ RuntimeSystemEntity
ent::EntitySpawnServices sy S t -A eSpa P s

ent: :EntityLoDInitialSetup

ent: :EntitySpawnTokenHandle

O}

®

o
=

L ol

March 30-24. 3023
GDC San Francisca. CA CD PROJEKT RED’

|IDOO 9J¥XV- B662VEZE

ECS — APPEARANCE .

e Entity can have visuals decoupled from
entity logic

e Appearance can be specified when
scheduling spawning

e Over 8000+ different appearances for
NPCs and vehicles

o]

ﬁo PROJEKT RED"

| 1000 92uxv- se2veze M ®

ECS— APPEARANCE EDITOR

GOC ===

|

ﬁo PROJEKT RED"

0]

| tooo 92uxv- se2vEZE MO

SYSTEMS

SYSTEMS L

e World Systems — lifetime limited to world
o Also available for editor preview
e Game System — available during the whole game process
e Main method to register to frame update
e Systemscan communicate with each other

o Publicinterface thread safety needs to be considered

March 30-24. 3023
San Francisco. CA| CD PROJEKT RED'

O
0]

W

‘IOOO 924XV~ 662vE28 [

SYSTEMS — FRAME UPDATE & BUCKET GROUP

s
FrameBegin PreBucket PostBucket PlayerAim MappinsUpdate
EntityUpdateState ComeraUpdate PostPlayerAim PreRenderUpdate
FRAME
Entity PrePhysics Physics PostPhysics S Entity
Animation|
PreTick Tick FlushBufferedState SyncResults Andhontogate PostTick
Entity PrePhysics Physics PostPhysics PostPhysics Entity
PreServiceEvents UpdateTransform Exec Querie: Update Tick PostServiceEvents
BUCKET

én PROJEKT RED’

=

Xe

ilDOU 9J¥XV- B662VEZE

SYSTEMS — REGISTRATION

e Any system can register itself to any update group and bucket
e By default, systems will be constrained to group/bucket
o However it is possible to unshackle a system

UpdateBucketPhase

pdateCont

March 30-24. 3023
San Francisce. CA

&D PROJEKT RED’

O}

¥

v
=

IIDOO 9J¥XV- B62VE28 [X

PHYSICS :

e Physics systems are built on top of PhysX
e PhysX tasks were adapted to be compatible with our job system
e Simple “C style” public API
e Safe to read and write states
e State writes are buffered and applied to all modified proxies ot specific points in frame
e Concurrent writes could have been supported. However it wasn't needed
r |
F ProxylD Ob jectDesc
e ProxylID
Yector3 > ProxylD pr 11d, ActorIndex
Quaternion G ProxylD pr y1d torIndex
Transform 5 ProxylD pr y1d torIndex
vector3 5 ProxylD proxy ActorIndex
Yector3 > ProxylD i, ActorIndex
Float > ProxylD pr Actor Index
Yector3 5 A ProxylD pr ' or Index
Impul seData - ProxylD pr
Float 5 . ProxylD proxy
Float 5 ProxylD pr yId, ActorIndex
. o

March 30-24. 2023
GOC === Caroo

0]

&

o
=

|IOUO 9J¥XV- B62VE28 [X

ANIMATIONINANUTSHELL - -

e Parallel update of characters
o Assoon as character pose is calculated,
schedule skinning job and send result to
rendering
e Animation instancing for massive standing crowd
No update if occluded
o Exception if closer than 5m from player
e Sleep mode for doors & vehicles if no movement
Temporary allocation solved using scratchpad buffer
e Animation Streaming of 40mb budget
o 3k-4k animations in game

ﬁp PROJEKT RED'

W

‘IOOO 924XV~ 662vE28 [

March 30-24. 3023
San Francisco. CA| CD PROJEKT RED'

ANIMATION FRAME .

O
0]

W

‘1000 924XV~ 662vE28 [

PS4 capture, a bit less than 3ms, Lizzies bar 20 npc in view, 40npc in surrounding

66

Al—LIVING ON THE EDGE e i

e Low hanging fruit & optimization of algorithms used
e Reducing behavior trees update frequency

e Parallelizing processing

e Fixing cache misses

e LogicLOD

o]

ﬁo PROJEKT RED"

| to0o 92uxv- se2vEZe M ®

FRAME & PERFORMANCE

You can change the img on the right

PS4WITCHER 3 VS CYBERPUNK

v red Task Theead 1
| | red Task Thvead 1

red Task Thr

IR min

i e

405 - (33.358ma)
ed . [1 l¥ e red

red_ [N -
Ll L

1

e

red Task Thread 3 re
re

red Task Thread 4 re
I
I

=

@

X

BT B @

IR T e T z

g

4

e

o

GOC === €& :
San Francisca. CA CD PROJEKT RED" o
-, o

PS4, Witcher3 on top, Cyberpunk bottom one

PS4 FRAME SAMPLE

r - %00

PR T — F" mm Tie odl
L gailoean) o Ty Ty W Y —] -

l—rmy—*-n—!rm,_,, -

— T T T Y A T

GDC by

HW"

=

|tooo 92uxv- se2veze M@

PS4 MULTIPLE FRAME SAMPLE

[T TR SR ey
SO | bt L anl O i p ithons i, bl | Bl
o TTTRPOPTY 1Y WSTR[ET—— Sy |
. EEWETRTIT Y EgeweET | pE—pmm—ee| ETer ‘
. T RTYEIEOT VIR SFWTNERSRO e

=

|tooo 92uxv- se2veze M@

PS5 FRAME SAMPLE — 60HZ s

r Broas, m 1

Y) -

ek TR ”"—r-!--'w N
eI W T g
s Y T T — T] Y
O ——
TR T T =TT
, YT] [
, 17 VT ———]y

g ey

U T ol

wmpusan 'F T VT T T e AR B

AR e ko g b Aol i— i e o LI RN

IR s o e B R LTI A v
s V1T Ty - TR

. " l" T_TW A _‘1 i Lk | Al ol o B
L o4

March 30-24. 3023
San Francisco. CA| CD PROJEKT RED'

s

O
0]

W

‘IOOO 924XV~ 662vE28 [

More or less 12ms on CPU

PS5 MULTIPLE FRAME SAMPLE — 60HZ :

ol
|y T T ' e Ll I ey ™

YT yw mTer 4 n | T
T ' R | g
e ; A I shachl Sl
R —— - R—
SRR W
[a2 e

L ol

March 30-24. 3023
San Francisco. CA| CD PROJEKT RED'

O
0]

|tooo 92uxv- se2veze M@

PC FRAME SAMPLE— 6 DISPATCHERS

v wpmp—

GDC by

ke nun v mi— Ty -“W_W rT=

8 a1 B '“mmm—rqw'mmmn|
Ly il 'F"'—"'ﬂm_ T — T

--HF—WW—WWM-

Y TR T Se— 1 |

™ .F‘W 1
HT"'“—I’M—T"'—I E

(N 1!
- .

L]

ﬁo PROJEKT RED'

O
0]

W

‘IOOO 924XV~ 662vE28 [

Force 6 dispatcher,
i9 - 7980XE @2.6ghz

r Rlo]

WHAT ABOUTTHEMAINTHREAD? - -

e Wedid not manage to completely eliminate it

e It only schedules beginning of frame and waits for
completion

e Acts as aregular job worker while waiting

O}

¥

&D PROJEKT RED"

| tooo 92uxv- Be2vEZE [

CONCLUSION

You can change the img on the right

WHATWENT WRONG? -

e Some critical engine changes came in late
e Keeping scalability in mind is hard

e Developing multithreaded code is very hard
e Flexibility has a cost

e Some areas of the game were badly made

e Critical tools were remade

O}

¥

| Looo 92uxv- s62veze [

én PROJEKT RED"

77

WHATWENT RIGHT ?

e The technological leap from The Witcher 3 to
Cyberpunk was crazy

® PS5 & XSX/XSS port went smoothly

e No more main & render thread limitation

e Multithreaded gameplay & script

e Great scalability

ﬁb PROJEKT RED"

-
-

o]

| to0o 92uxv- se2vEZe M ®

SAMPLES

GRAPHICS — RENDER GRAPH— SETUP & CULLING :

March 30-24. 2023
GOC === Caroo

O}

®

| tooo 92uxv- Be2vEZE [

Set up for render, and kick off culling

"Unique" nodes are for special points in the frame. Not too important in this example,
but used when merging

multiple graphs -- unique stay unique (all unique from all subgraphs are de-
duplicated), regular nodes are

copied over.

"Simple command list" just means it creates a command list that only runs a single
subnode.
"Add node" is for pure CPU work, no command list created.

Add CPU dependency, so PrepareCollector won't run until StartRender is finished.

Add nodes for doing different types of culling. Main scene (player camera), RT
(inflated frustum, and area around camera), Cascades,
and Local shadows (spot lights).

All culling needs to wait for PrepareCollector to finish.
In addition, LocalShadows needs to wait for main scene culling, in order to know what
lights are visible.

GRAPHICS — RENDER GRAPH s

(: March 30-24. 3023
GD San Francisco. CA| én PROJEKT RED"

s

=

1®

| Looo 9auxv- s62vEZS [

Initial setup is ready, so we start doing some rendering work.

Command lists are explicitly defined. All subnodes in a command list node with run
sequentially, although not

necessarily on the same thread. Subnodes are able to branch off into additional
parallel work if needed (but only

for CPU work, the command list is only accessible from a single thread at a time).

In this case, UpdateParticleRenderData needs the results of the particle sim, since it's
sending the final particle
data to the GPU.

GRAPHICS — RENDER GRAPH— GBUFFER :

March 30-24. 2023
GOC === -

O}

¥

| Looo 92uxv- s62veze [

GBuffer

Since we tend to have a lot of work to do in rendering the static meshes in the scene,
gbuffer is split across
multiple command lists.

First a CPU-only node to build and sort the list of objects to be drawn. This needs the
results of main scene culling,
as well as on-screen particles.

Then several command lists that each take a portion of the collected objects, drawing
them to the gbuffer. These all
depend on GBufferPrepare.

"BindGlobalConstants" / "UnbindGlobalConstants" are reused in many places, they
set up some global constant buffers,

resource bindings, etc.. Using subnodes allows that to be reused easily. Similar with
setting some common render

target setups.

Since we have a pretty hefty amount of work built up with the GBuffer, we might want
to submit it to the GPU already,
so that it can keep busy with that while we prepare more.

SYNC_SUBMIT will add a node that automatically has a dependency on any GPU-
related nodes before it, and will submit

all of them to the GPU. Here we don't need to do any additional synchronization on
the GPU, so we pass None for sync

type.

&D PROJEKT RED"

s

O}

¥

| tooo 92uxv- Be2vEZE [

GBuffer + Velocity Buffer

Dynamic objects generate normal GBuffer outputs, plus they write motion vectors to a
velocity buffer.

As with GBuffer, we need to wait for scene culling and particles, but it can run on the
CPU in parallel with the

static GBuffer.

GRAPHICS — RENDER GRAPH— ASYNC COMPUTE »

r 1

CommandL i stSyncType

*, CRenderNode_AccelerationStructureUpdateStatic
", CRenderNode_AccelerationStructureUpdateDynamic

*, CRenderNode_AccelerationStructureUpdateEpilogue

AsyncDynamicTextures

L o

March 30-24. 2023
GOC === Caroo

O}

®

| tooo 92uxv- Be2vEZE [

Async Compute work during shadowmap rendering

With the GBuffer finished, we can run some passes like a Hi-Z generation, SSAQO, as
well as some independent

work. We run those things on async compute, while on the graphics queue we fill in
shadow maps.

Our async is limited to a fork-join model, where we branch off to run specific graphics
and compute work in

parallel, and then sync the queues at the end. So we need to submit everything we
have so far, and indicate

that we want to Fork.

If we're doing ray tracing, we can build acceleration structures. Static and dynamic
bottom levels have

different work involved, so we split them into separate command lists. In addition
those subnodes can branch

off into further parallel work to prepare the acceleration structures for building. After
the bottom levels

are built, we have an additional step to build the top level and shader table.

We also have another compute command lists for other compute workloads, there
aren't any CPU dependencies

so we don't need to link it to anything.

GRAPHICS — RENDER GRAPH— SHADOWMAPS :

March 30-24. 2023
GOC === Caroo

O}

®

| tooo 92uxv- Be2vEZE [

Shadowmaps

With the async compute work defined, we can do the shadowmap rendering.
There's a command list for each cascade, and for each local light we plan to update.
We need to wait for the appropriate culling to finish, as well as particle sim, in case
there were some

shadow-casting mesh particles.

And now with the compute and graphics work set up, we can submit that to the GPU,
indicating that we're doing
a Join sync.

L o

March 30-24. 2023
GD San Francisca. CA ﬁb PROJEKT RED"

0]

&

| 1000 92uxv- ss2veze [

Lighting, PostFX

After we have the shadowmaps and async compute joined, we can calculate our
lighting, post processes, etc.

If there are no CPU dependencies, we don't need to link anything and these
command lists can be built at any

time.

GRAPHICS — RENDER GRAPH— DEBUG g !

CRenderNode_BindGlobal Constants
t CRenderNode_BindLightingGlobalConstants)

CRenderNode_App | yDebugPreview
CRenderNode_RenderDebugFragments, DebugFragments

sta CRenderNode_UnbindLightingGlobalConstants
", CRenderNode_UnbindGlobalConstants

O}

¥

March 30-24. 2023
GOC === -

| Looo 92uxv- s62veze [

We might have some debug geometry to draw after everything else is done.

For this, we have a dependency on VisDebug from earlier, in case it needed to add
anything.

GRAPHICS — RENDER GRAPH— FINAL :

March 30-24. 3023
GD San Francisca. CA &n PROJEKT RED"

g

O}

¥

| Looo 92uxv- s62veze [

Main rendering is done, so we just have some assorted finalization.

We have a separate simulation pass for offscreen particles, to keep them updating
but at a throttled pace.

This is another unique node, which is only important for cases where we have
multiple renders in a frame (such as

when a mirror is up). We only want a single offscreen simulation, and it will wait for
culling from all subgraphs

so it knows what's actually offscreen everywhere.

There's a final command list with some last-minute book-keeping in it, then submit
everything to the GPU that

hasn't been submitted yet, and present to the screen. Everything at that point is
sequential on CPU, and needs

to wait for all the rendering work to complete.

GRAPHICS — RENDER NODE s

e Render graph runs in two phases — prepare and consume
e Prepare phase records resource lifetime events
e The lifetime events in prepare / consume phases must match exactly
(same order, same resource descs, etc.)
e Node declares that it requires a Command List
o This allows to issue GPU commands on consume phase

e Job Builder can be safely used to execute parallel work, or continuation work

March 30-24. 3023
San Francisco. CA| CD PROJEKT RED

O
0]

W

‘IOOO 924XV~ 662vE28 [

o

GRAPHICS — RENDER NODE »

[N
March 30-24. 2023
GOC === Caroo

O}

®

| tooo 92uxv- Be2vEZE [

First example, some sort of post process
This is using a temporary texture to hold some intermediate results.

The graph is run in two phases, Prepare and Consume. During Prepare phase,
resource lifetime events are recorded, so

that before running the Consume phase we can analyze total lifetime, resource sizes,
etc. and alias multiple resources

over the same chunks of GPU memory.

The lifetime events in Prepare and Consume must match exactly (same order, same
resource descs), so occur outside of
any checks for the current phase.

RTTempAlloc doesn't necessarily cause the resource to be allocated, it will be
available only after the first use

(in this case, marked by ‘rctx.RT<>"). We specify how the resource is intended to be
used (read or write), but this

metadata ended up not really being used.

The node declares that it requires a Command List, which allows it to issue GPU
commands during the Consume phase.

GRAPHICS — RENDER NODE g !

RenderNode_DoCul ling RenderNodeBase

Re rNodeCommandL 1 stUsage Ge ma age e { return RenderNodeCommandlListUsage

RenderNodeImplContext& rct job: :Builders t

cul lingMode

Cul 1 ingMode

March 30-24. 2023
GOC === -

O}

¥

| Looo 92uxv- s62veze [

Next example is a CPU-only node. Because it declares that it won't use a Command
List, it would be invalid to try
to issue any GPU commands during its execution.

In this case, we also declare that we would like to use a “job::Builder’, which allows
for spawning additional

parallel work. Any dependencies on this node will need to wait until any additional
jobs are also finished.

Non-GPU node, which spawns additional jobs as part of the work.

GRAPHICS — RENDER NODE :

Render N AccelerationStructureUpdateEpilogue RenderNodeBase

ommandListUs - ma age - e { turn RenderNodeCommandL istUsage

RenderNode Imp 1 Context

L

March 30-24. 2023
GOC === Caroo

4

0]

&

| tooo 92uxv- Be2vEZE [

Finally we have a GPU node, which also can spawn additional parallel work.

We only have a single Command List, so we need to be careful when accessing it so
multiple threads don't try to
access it. But there's no restriction on which thread it can be used.

A Command List must be bound to a thread, and can only be bound to a single thread
at a time. So in order to
access it from a separate job, we need to unbind it from the current thread first.

PHYSICS— STATE BUFFERING .

e Predefined states:
o Position, Rotation, Linear Velocity, Angular Velocity... and more!
e State Block
o Allinformation to set a state in a proxy
© Up to4 states ina single block
o If more are needed, linked list of StateBlocks
e State Allocator
o Can allocate a block (max 64k)
o Can allocate data for states (preallocated 1mb)
o In both cases, a linear allocator flushed every frame
e StateFlush
o At given point(s) in frame, all valid and buffered states are applied to proxies

March 30-24. 3023
San Francisco. CA| CD PROJEKT RED’

=

W

\IOOO 924XV~ 662vE28 [

PHYSICS— STATE BLOCK

All write operations are wrapped in ProxyWriter interface

Takes ProxylD as argument

Allocates new block or get current one if already exists

If there is an existing block, create full copy of all states so far
Writes all needed states to block, or allocate new one if there's
no space

5. Commit states.If pointer from the beginning didn't change,
swap pointers. Otherwise go back to 3 *

pwn s

March 30-24. 3023
San Francisce. cA

StateBlock

ProxylD pr
uinti6_t

uintB_t a

4

&D PROJEKT RED"

O}

¥

| tooo 92uxv- Be2vEZE [

Copy of all states can be done on multiple threads

* |n practice there was no concurrent writers. We just swap pointers on commit. But

other threads can safely read states at same time.

PHYSICS— STATEALLOCATOR & FLUSH

e StateAllocator
© Acts like a single linear allocator. Allocated from fixed, preallocated memory area
o) All content is discarded after flush
e State Flush
© For each proxy, check if there is a StateBlock allocated. Should be marked as “headOfList"
o Traverse through all states and connected blocks and apply data to proxy*

eredp a StateAl locators stat

StateBlock=
Stat locks t

StateBlocks pr
proxy_interna
proxy_internal

ol

March 30-24. 2023
GOC === -

O}

¥

v
=

IIDOO 9J¥XV- B62VE28 [X

* This operation is single threaded. All writes to physics scene are not thread-safe.

	Slide 1: Building NIght City: The Technology of cyberpunk 2077
	Slide 2: Brief history of red engine
	Slide 3: Cyberpunk requirements
	Slide 4: Red engine pillars
	Slide 5: Red engine rules
	Slide 6: Engine — diagram
	Slide 7: Agenda
	Slide 8: Memory Management
	Slide 9: Memory — Requirements
	Slide 10: Memory — Allocator for specific needs
	Slide 11: Memory — default allocator
	Slide 12: Memory — Easy to extend
	Slide 13: Memory — Easy to use & understand
	Slide 14: Memory — pools
	Slide 15: Memory — metrics & tracking
	Slide 16: Memory — budgets
	Slide 17: Memory — Performance monitor
	Slide 18: Content budget
	Slide 19: Job system
	Slide 20: Job system — requirements
	Slide 21: Job builder
	Slide 22: Job builder — Simple job chain
	Slide 23: Job builder — Parallel job chain
	Slide 24: Job builder — how to link job chain
	Slide 25: Job builder — how to do A continuation job
	Slide 26: Job system — cancelling jobs?
	Slide 27: IO & resource management
	Slide 28: IO & Resource Management — requirements
	Slide 29: Resource loader
	Slide 30: Continuation job when resource loaded
	Slide 31: Resource request under heavy contention
	Slide 32: Resource request under heavy contention
	Slide 33: Io scheduler
	Slide 34: graphics
	Slide 35: Graphics — From The Witcher 3 to cyberpunk 2077
	Slide 36: Graphics — render graph
	Slide 37: Graphics — render graph
	Slide 38: Graphics — GPU frame
	Slide 39: World & Streaming
	Slide 40: Cyberpunk 2077 in numbers
	Slide 41: How were precision issues resolved ?
	Slide 42: World node & nodeinstance
	Slide 43: World node & nodeinstance
	Slide 44: Prefabs editor
	Slide 45: Streaming grid — Development
	Slide 46: Streaming grid — optimized
	Slide 47: Runtime Streaming process
	Slide 48: Compute sectors in range
	Slide 49: Compute nodes in range
	Slide 50: ECS
	Slide 51: Ecs — rules
	Slide 52: Ecs — communication
	Slide 53: Ecs — event
	Slide 54: Ecs — event
	Slide 55: Ecs — Async Spawning
	Slide 56: Ecs — Async Spawning
	Slide 57: Ecs — Appearance
	Slide 58: Ecs — Appearance Editor
	Slide 59: systems
	Slide 60: Systems
	Slide 61: Systems — Frame Update & bucket group
	Slide 62: Systems — Registration
	Slide 63: physics
	Slide 64: Animation in a nutshell
	Slide 65: Animation Frame
	Slide 66: AI — living on the edge
	Slide 67: Frame & performance
	Slide 68: Ps4 Witcher 3 vs Cyberpunk
	Slide 69: Ps4 frame sample
	Slide 70: Ps4 Multiple frame sample
	Slide 71: Ps5 frame sample — 60hz
	Slide 72: Ps5 multiple frame sample — 60hz
	Slide 73: PC Frame sample — 6 dispatchers
	Slide 74: What about the main thread?
	Slide 75: Conclusion
	Slide 76: What went wrong ?
	Slide 77: What went right ?
	Slide 78: Thank you
	Slide 79: Samples
	Slide 80: Graphics — render Graph — Setup & Culling
	Slide 81: Graphics — render Graph
	Slide 82: Graphics — render Graph — gbuffer
	Slide 83: Graphics — render Graph — gbuffer + Velocity buffer
	Slide 84: Graphics — render Graph — async compute
	Slide 85: Graphics — render Graph — shadowmaps
	Slide 86: Graphics — render Graph — lighting & postfx
	Slide 87: Graphics — render Graph — debug
	Slide 88: Graphics — render Graph — final
	Slide 89: Graphics — render node
	Slide 90: Graphics — render node
	Slide 91: Graphics — render node
	Slide 92: Graphics — render node
	Slide 93: Physics — State buffering
	Slide 94: physics — State block
	Slide 95: Physics — State allocator & flush

