
Efficient Software Occlusion Culling

on Mobile Platform in 'Life After'

Wenhui Tao
Engine Programmer

Agenda

● Motivation

● Lightweight Software Occlusion Culling Algorithm

● Optimized Culling Pipeline

● High-quality Occlusion Mesh Generator

● Conclusion

Part 1: Motivation

Background
● Life After

Background
● Life After

● Occlusion Culling

● Occluder

● Occludee

● Culling Rate:
● Culled Occludees’ Count / Total Occludees’ Count

● False Occlusion
● A visible occludee be incorrectly culled

Occlusion Culling

● Important for performance
● 60+% objects can be culled

● Requirements
● High culling rate

● NO false occlusion

● Supporting dynamic objects

● Small package size

● Fast

Related Work

PVS

Hardware

Occlusion

Query

SOC -

Good Occlusion

Meshes

SOC -

Bad Occlusion

Meshes

No False Occlusion O X O X

Dynamic Objects X O O O

Culling Rate High Very High High Low

Efficiency Fast Slow Slow Extremely Slow

Package Size Big 0 Small Small

Target

● Do SOC as fast as possible

● Optimize the algorithm for the mobile platform

● Use good occlusion meshes

Our Solution

● A complete solution consisting of 3 parts:
● Light-weight SOC Algorithm

● Optimized Culling Pipeline

● Offline High-quality Occlusion Mesh Generator

Part 2: Light-weight Software Occlusion

Culling Algorithm

Software Occlusion Culling Algorithm

● Depth test on CPU
● Generate Depth-Buffer

● Use Depth-Buffer to identify visibility

Original Scene Occluders Depth Buffer

Traditional Masked Software Occlusion Culling

● SIMD: optimized for AVX

● Hierarchical depth buffer

● Edge Fill Rasterization

● Heuristic Discard

Lightweight Software Occlusion Culling

● SIMD: optimized for Neon

● Hierarchical depth buffer

● Preparation Phase optimized

● Edge Fill Rasterization

● Heuristic Discard → Sorting

● Add ‘Early Out’ step

Depth Buffer Structure
● Low Resolution: 256x160 Pixels

● Hierarchical Structure
● Bin – Tile – SubTile - Pixel

● For each SubTile:
● 8x4 pixels
● 1 depth value

● For each Tile:
● 128 pixels → m128i mask
● 4 depth value → m128

Depth Value

● Relatively correct depth value
● Reverse-Z → Precision

● Far plane project to 0 → Convenient to memset

● Simplified projection matrix

𝑀𝑝𝑟𝑜𝑗 =

𝑎 0 0 0
0 𝑏 0 0
0 0 0 1
0 0 𝑐 > 0 0

Wedge Collection Phase

● Project triangle to clip space
● Record the most conservative depth

● Sort triangles
● Sort by depth

● Front-to-back order

Sorting vs. Heuristic Discard

● Ensure the depth buffer is updated correctly

● Contrast
● Accuracy

● Speed

Sorting vs. Heuristic Discard

● Accuracy:
● Sorting is better

Original Scene

Sorting vs. Heuristic Discard

● Speed:
● Depend on the occluders’ triangles count

Preparation Phase

● Prepare data for ‘Edge Fill Rasterization’

● Triangles are treat as double-sided
● No backface culling need

● Data is calculated in batches by SIMD

Vertex Sorting

● Motivation: find information of a

specified edge from packed data

● Rotate triangle into specified

patterns
● Counter-clockwise

● V0 has the smallest y

● Identity the middle vertex in y

Specified Patterns

Vertex Sorting

● More is less!
● Extra task: Sort into counter-clockwise

● No need to preserve the original vertex order

● Accomplish in 22 SIMD Instructions

Vertex Sorting

1. Find 𝑉0 By Comparison

2. Cross product to judge ∠𝑉0

3. Arrange 𝑉1 and 𝑉2 in
counter-clockwise

Rasterization Phase
● Coverage detection: Edge Fill Rasterization, same as MSOC

● Depth updating: greatly simplified
● Record current depth when a sub-tile is fully covered

1. Find the leftmost and
Rightmost pixel each row

2. Fill all the
pixels between

Occludee Visibility Query

● Project occludee’s AABB to screen space

● Early Out: Fast Pass & Fast Fail

● Depth test

Early Out

● Too small after projection → invisible

● Close to camera → visible

● 50% occludees can be skipped

Performance of Algorithm
● Rasterization: 0.40us per triangle

● Query Time: 0.56us per occludee

● Early-out Rate: 49.3%

Occludee

Count

Pass ‘Early

Out’ Count

Query

Time (us)

199 169 158

341 352 283

522 421 358

639 632 461

821 476 439

1203 695 567

1420 850 688

1814 977 958

2184 933 841

2500 1021 1148

Part 3: Optimized Culling Pipeline

Typical Culling Pipeline

● Sample Code:

1. Organize Occluders & Occludees

2. Arrange Culling Modules

3. Report Result

Problems in Typical Culling Pipeline

● Performance Issue: 1.5ms for 5000 occludees

● TODO List
 Reduce cache miss rate in:
 Data traversal
 Function call
 Visibility filter

 Don’t rasterize triangles with low occlusion power
 Use multi-threading

Data Organization

● Normal Array
● Data structure: [A, B, C, D, E]

● Process: 2 Cache Fetches, 5 Queries
Action Data

Cache Fetch A, B, C

Visibility Query A

Visibility Query B

Visibility Query C

Cache Fetch D, E

Visibility Query D

Visibility Query E

Data Organization

● Spatial Acceleration Structures
● Data structure: [V1, V2, A, B, C, D, E]

● Process: 3 Cache Fetches, 4 Queries
Action Data

Cache Fetch V1, V2, A

Visibility Query V1

Visibility Query A

Cache Fetch B, C, D

Visibility Query B

Cache Fetch V1, V2, A

Visibility Query V2

Data Organization - Conclusion

● Using arrays is better here
● Visibility queries are very cheap
● Count of occludees is not large. (about 5k~10k)
● Almost no cost to maintain the structure

● Use compact data structure
● Relevant data only
● Lowest possible precision
● Use Bit-Field

TODO List

 Reduce cache miss rate in:
✓ Data traversal: 0.3ms saved

 Function call

Visibility filter

 Don’t rasterize triangles with low occlusion power

 Use multi-threading

Virtual Function Call
● 0.5ms wasted on Virtual Function Call

● More Cache Misses

● Inefficient L1i-Cache Prefetching
● The instruction depends on the dynamic type
● Hard to hide the cache miss costs

Normal Function Virtual Function

Load Function Instruction Load Vtable

Load *(vtable+offset)

Load Function Instruction

Virtual Function Call

● Eliminate all virtual functions in the culling pipeline!

● Modification suggestions:
● Separate data from its operations

● Use different arrays to store different types of occludees

● Call their specified notification functions

TODO List

 Reduce cache miss rate in:
✓ Data traversal: 0.3ms saved

✓ Function call: 0.5ms saved

Visibility filter

 Don’t rasterize triangles with low occlusion power

 Use multi-threading

Cascade of Multiple Visibility Filter

● Occludee need to pass multiple check
● Logic Setting
● Frustum Culling
● Software Occlusion Culling

● Implementation choices:
● Use a flag to mark visible occludees
● Use a special array to carry filtered visible occludees

Cascade of Multiple Visibility Filter

● All objects with visible flag: low cache utilization

● Filtered visible objects: data copy overhead

● Conclusion:
● In ‘Life After’, 80% objects are filtered out

● ‘Filtered visible objects’ is 0.05ms faster

TODO List

✓ Reduce cache miss rate in:
✓ Data traversal: 0.3ms saved

✓ Function call: 0.5ms saved

✓ Visibility filter: 0.05ms saved

 Don’t rasterize triangles with low occlusion power

 Use multi-threading

Visible Section

● Motivation
● Self-Occlusion

● Triangles parallel to view have little occlusion power

Self Occlusion

Little Occlusion Power

Equal

Visible Section

● Bake visible section info
● Split the mesh into sections
● For each section

● Calculate visible size at different viewing angles
● Get ‘Visible Cone’

Visible Section

● Runtime identification
● Check the view angle if it’s in the visible cone

● Only the visible sections are rasterized

Inside the Cone: VisibleOutside the Cone: Invisible

Visible section

● Triangles to rasterize: 1539 → 874

● Draw Call: 290 → 292

TODO List

✓ Reduce cache miss rate in:
✓ Data Traversal: 0.3ms saved

✓ Function Call: 0.5ms saved

✓ Visibility Filter: 0.05ms saved

✓ Don’t rasterize triangles with low occlusion power:

rasterization task halved

 Use multi-threading

Multi Threading

● ‘big.LITTLE architecture’ on mobile platform
● Big Cores: Powerful, but power-hungry
● Little Cores: Bettery-saving, but much slower
● Overhead of scheduling

● Task size is critical!
● Big enough to offset scheduling overhead
● Much smaller than the task on big cores

● Our Choice
● ‘visible section picking’ + ‘wedge collecting stage’

TODO List

✓ Reduce cache miss rate in:
✓ Data traversal: 0.3ms saved

✓ Function call: 0.5ms saved

✓ Visibility filter: 0.05ms saved

✓ Don’t rasterize triangles with low occlusion power:

rasterization task halved

✓ Use multi-threading: 0.25ms saved

Performance of pipeline

Pipeline Cost Before (us) Pipeline Cost After (us)

OPPO R9s 2736.61 763.56

HUAWEI mate8 2985.1 741.82

iPhone 6s 1447.35 412.22

iPhone 7 Plus 799.05 179.04

Samsung S10 1169.75 300.59

iPhone XS 584.54 159.78

Part 4: High-quality Occlusion Mesh

Generator

Importance of Occlusion Meshes
● Budget: 4000 triangles for occluders in total

● Must be high quality
Medium Quality High Quality

Culling Rate 35% 65%

False Occlusion Occasional No

Original Occluder Medium Quality High Quality

Overview of Our Generator

Smooth a 3D Mesh

● Voxelize the mesh

● Fill the voxelized mesh as much as possible

Smooth a 3D Mesh
● The constraint when filling voxels: No False Occlusion

● Mathematical description for ‘No False Occlusion’:
● Visibility Function:

𝑉𝐹 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = ቊ
𝐹𝑎𝑙𝑠𝑒, 𝐴𝑡 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 𝑖𝑠 𝑖𝑛𝑣𝑖𝑠𝑖𝑏𝑙𝑒
𝑇𝑟𝑢𝑒, 𝐴𝑡 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 𝑖𝑠 𝑣𝑖𝑠𝑖𝑏𝑙𝑒

● No False Occlusion:

∀𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒, 𝑠𝑡𝑎𝑛𝑑 𝑎𝑡 ∀𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 ∀𝑣𝑖𝑒𝑤𝐷𝑖𝑟

𝑉𝐹𝑁𝑒𝑤 𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑀𝑒𝑠ℎ 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

⇒ 𝑉𝐹𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑂𝑐𝑐𝑙𝑢𝑑𝑒𝑟 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

Simplify the Constraint

⚫ 𝐹𝑜𝑟 ∀𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒, 𝑠𝑡𝑎𝑛𝑑 𝑎𝑡 ∀𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 ∀𝑣𝑖𝑒𝑤𝐷𝑖𝑟

𝑉𝐹𝑁𝑒𝑤 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒 ⇒ 𝑉𝐹𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

Simplify the Constraint

⚫ 𝐹𝑜𝑟 ∀𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒, 𝑠𝑡𝑎𝑛𝑑 𝑎𝑡 𝑵𝒆𝒂𝒓&𝑭𝒂𝒓, 𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 ∀𝑣𝑖𝑒𝑤𝐷𝑖𝑟

𝑉𝐹𝑁𝑒𝑤 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒 ⇒ 𝑉𝐹𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

● Near: Limited Range

● Far: Infinite faraway

Simplify the Constraint

⚫ 𝐹𝑜𝑟 ∀𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒, 𝑠𝑡𝑎𝑛𝑑 𝑎𝑡 𝑵𝒆𝒂𝒓&𝑭𝒂𝒓, 𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 ∀𝑣𝑖𝑒𝑤𝐷𝑖𝑟

𝑉𝐹𝑁𝑒𝑤 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒 ⇒ 𝑉𝐹𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

Simplify the Constraint

⚫ 𝐹𝑜𝑟 ∀𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒, 𝑠𝑡𝑎𝑛𝑑 𝑎𝑡 𝑁𝑒𝑎𝑟&𝐹𝑎𝑟, 𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒆𝒅 𝑫𝒊𝒓𝒔

𝑉𝐹𝑁𝑒𝑤 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒 ⇒ 𝑉𝐹𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

● Chosen viewing directions
● 3 axes

● Midline of any 2 axes

Simplify the Constraint

⚫ 𝐹𝑜𝑟 ∀𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒, 𝑠𝑡𝑎𝑛𝑑 𝑎𝑡 𝑁𝑒𝑎𝑟&𝐹𝑎𝑟, 𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒆𝒅 𝑫𝒊𝒓𝒔

𝑉𝐹𝑁𝑒𝑤 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒 ⇒ 𝑉𝐹𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

Simplify the Constraint

⚫ 𝐹𝑜𝑟 𝑰𝒎𝒑𝒐𝒓𝒕𝒂𝒏𝒕 𝑽𝒐𝒙𝒆𝒍𝒔, 𝑠𝑡𝑎𝑛𝑑 𝑎𝑡 𝑁𝑒𝑎𝑟&𝐹𝑎𝑟, 𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒆𝒅 𝑫𝒊𝒓𝒔

𝑉𝐹𝑁𝑒𝑤 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒 ⇒ 𝑉𝐹𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

● Important Voxels
● Static occludees already exist

● The central part of dynamic objects may appear

Simplify the Constraint

⚫ 𝐹𝑜𝑟 𝑰𝒎𝒑𝒐𝒓𝒕𝒂𝒏𝒕 𝑽𝒐𝒙𝒆𝒍𝒔, 𝑠𝑡𝑎𝑛𝑑 𝑎𝑡 𝑁𝑒𝑎𝑟&𝐹𝑎𝑟, 𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒆𝒅 𝑫𝒊𝒓𝒔

𝑉𝐹𝑁𝑒𝑤 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒 ⇒ 𝑉𝐹𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

Simplify the Constraint

⚫ 𝐹𝑜𝑟 𝑰𝒎𝒑𝒐𝒓𝒕𝒂𝒏𝒕 𝑽𝒐𝒙𝒆𝒍𝒔, 𝑠𝑡𝑎𝑛𝑑 𝑎𝑡 𝑁𝑒𝑎𝑟&𝐹𝑎𝑟, 𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒆𝒅 𝑫𝒊𝒓𝒔

𝑉𝐹𝑁𝑒𝑤 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒 ⇒ 𝑉𝐹𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

Simplify the Constraint

⚫ 𝐹𝑜𝑟 𝑰𝒎𝒑𝒐𝒓𝒕𝒂𝒏𝒕 𝑽𝒐𝒙𝒆𝒍𝒔, 𝑠𝑡𝑎𝑛𝑑 𝑎𝑡 𝑁𝑒𝑎𝑟&𝐹𝑎𝑟, 𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒆𝒅 𝑫𝒊𝒓𝒔

𝑉𝐹𝑁𝑒𝑤 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒 ⇒ 𝑉𝐹𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

Simplify the Constraint

⚫ 𝐹𝑜𝑟 𝑰𝒎𝒑𝒐𝒓𝒕𝒂𝒏𝒕 𝑽𝒐𝒙𝒆𝒍𝒔, 𝑠𝑡𝑎𝑛𝑑 𝑎𝑡 𝑁𝑒𝑎𝑟&𝐹𝑎𝑟, 𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒆𝒅 𝑫𝒊𝒓𝒔

𝑉𝐹𝑁𝑒𝑤 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒 ⇒ 𝑉𝐹𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

Simplify the Constraint

⚫ 𝐹𝑜𝑟 𝑰𝒎𝒑𝒐𝒓𝒕𝒂𝒏𝒕 𝑽𝒐𝒙𝒆𝒍𝒔, 𝑠𝑡𝑎𝑛𝑑 𝑎𝑡 𝑁𝑒𝑎𝑟&𝐹𝑎𝑟, 𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒆𝒅 𝑫𝒊𝒓𝒔

𝑉𝐹𝑁𝑒𝑤 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒 ⇒ 𝑉𝐹𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

Simplify the Constraint

⚫ 𝐹𝑜𝑟 𝑰𝒎𝒑𝒐𝒓𝒕𝒂𝒏𝒕 𝑽𝒐𝒙𝒆𝒍𝒔, 𝑠𝑡𝑎𝑛𝑑 𝑎𝑡 𝑁𝑒𝑎𝑟&𝐹𝑎𝑟, 𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒆𝒅 𝑫𝒊𝒓𝒔

𝑉𝐹𝑁𝑒𝑤 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒 ⇒ 𝑉𝐹𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

Simplify the Constraint

⚫ 𝐹𝑜𝑟 𝑰𝒎𝒑𝒐𝒓𝒕𝒂𝒏𝒕 𝑽𝒐𝒙𝒆𝒍𝒔, 𝑠𝑡𝑎𝑛𝑑 𝑎𝑡 𝑁𝑒𝑎𝑟&𝐹𝑎𝑟, 𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒆𝒅 𝑫𝒊𝒓𝒔

𝑉𝐹𝑁𝑒𝑤 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒 ⇒ 𝑉𝐹𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

Simplify the Constraint
● For ∀𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 ⊆ 𝑉𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 ,

𝑠𝑡𝑎𝑛𝑑 𝑎𝑡 ∀𝑣𝑖𝑒𝑤𝑃𝑜𝑠 ⊆ 𝑃𝑜𝑠𝑁𝑒𝑎𝑟 ∪ 𝑃𝑜𝑠𝐹𝑎𝑟 ,

𝑙𝑜𝑜𝑘 𝑎𝑙𝑜𝑛𝑔 ∀𝑣𝑖𝑒𝑤𝐷𝑖𝑟 ⊆ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠

Satisfy

𝑉𝐹𝑁𝑒𝑤 𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑀𝑒𝑠ℎ 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

⇒ 𝑉𝐹𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑂𝑐𝑐𝑙𝑢𝑑𝑒𝑟 𝑣𝑖𝑒𝑤𝑃𝑜𝑠, 𝑣𝑖𝑒𝑤𝐷𝑖𝑟, 𝑜𝑐𝑐𝑙𝑢𝑑𝑒𝑒 = 𝐹𝑎𝑙𝑠𝑒

Smooth Mesh with the Constraint

● Use VF(Visibility Function) for smoothing

Smooth Mesh with the Constraint

● Heuristic approach: Deduce safe voxels
● For a given direction

● 2 Important voxels are not visible to each other

● Voxels between are all safe voxels

Smooth Mesh with the Constraint

● Heuristic approach: Deduce safe voxels
● For a given direction

● 2 Important voxels are not visible to each other

● Voxels between are all safe voxels

● Use Heuristic approach for smoothing

Filter Clusters
● Slice along a given axis

● Cluster connected voxels

● Pick all clusters with high occlusion power

Voxels

Slices Clusters Picked Clusters

Filter Clusters

● Calculate Occlusion Power: Ground Truth
● Run the integration for every cluster

● D stands for “closest distance to the border of occlusion area ”

Filter Clusters

● Calculate Occlusion Power: Heuristic approach
● Find all important voxels that:

● 𝑉𝐹 = 𝐹𝑎𝑙𝑠𝑒, when using the original occluder

● 𝑉𝐹 = 𝑇𝑟𝑢𝑒, when using all picked clusters

● Mark clusters that can occlude these voxels
● Use the number of marks as relative occlusion power

● 10 times faster than the ground truth calculation

Triangulate

● Polygonization
● Edge Loop Extraction

● Edge Loop Simplification
● Ramer-Douglas-Peucker

Triangulate

● Polygonization
● Edge Loop Extraction

● Edge Loop Simplification
● Ramer-Douglas-Peucker

● Triangulation
● Ear Clipping

Handle Curved Surfaces

● Strip slopes and curved surfaces into sub-meshes

● Simplify all parts and combine the results

Original Mesh

Split Curved Surfaces into sub-meshes

Handle Curved Surfaces

● Strip slopes and curved surfaces into sub-meshes

● Simplify all parts and combine the results

Simplify each and combine the results

Handle Curved Surfaces

● Strip slopes and curved surfaces into sub-meshes

● Simplify all parts and combine the results

Demonstration of Our Generator

Original Occluder
75240 Triangles

Simplified Occlusion Mesh
896 Triangles

Demonstration of Our Generator

Original Occluder
10716 Triangles

Simplified Occlusion Mesh
916 Triangles

Demonstration of Our Generator

Original Occluder
30589 Triangles

Simplified Occlusion Mesh
688 Triangles

Part 5: Conclusion

Overall Performance

SOC Cost

(us)

Total Culling Cost

(us)

SOC Culling

Rate

Total Culling

Rate

OPPO R9s 1107.28 1547.52 65% 91%

HUAWEI mate8 1052.76 1716.09 65% 91%

iPhone 6s 1074.05 1486.27 65% 91%

iPhone 7 Plus 460.5 627.14 65% 91%

Samsung S10 535.11 929.46 64% 90%

iPhone XS 286.78 437.58 64% 90%

Conclusion
● To get an efficient software occlusion culling solution for
mobile platform, one should optimize every part of the
solution.

● Lightweight the SOC algorithm to make it suitable for mobile
platform

● Build a cache-friendly and multi-threading culling pipeline

● Create high-quality occlusion mesh generator based on visibility
function

Thank You!

● Mengyun Yi

● Kaiyuan Zhao

● Qianming Chen

● Wenxiang Tu

● Yili Chen

● Yingxie Gao

Q & A

	幻灯片 1: Efficient Software Occlusion Culling on Mobile Platform in 'Life After'
	幻灯片 2: Agenda
	幻灯片 3
	幻灯片 4: Background
	幻灯片 5: Background
	幻灯片 6: Occlusion Culling
	幻灯片 7: Related Work
	幻灯片 8: Target
	幻灯片 9: Our Solution
	幻灯片 10
	幻灯片 11: Software Occlusion Culling Algorithm
	幻灯片 12: Traditional Masked Software Occlusion Culling
	幻灯片 13: Lightweight Software Occlusion Culling
	幻灯片 14: Depth Buffer Structure
	幻灯片 15: Depth Value
	幻灯片 16: Wedge Collection Phase
	幻灯片 17: Sorting vs. Heuristic Discard
	幻灯片 18: Sorting vs. Heuristic Discard
	幻灯片 19: Sorting vs. Heuristic Discard
	幻灯片 20: Preparation Phase
	幻灯片 21: Vertex Sorting
	幻灯片 22: Vertex Sorting
	幻灯片 23: Vertex Sorting
	幻灯片 24: Rasterization Phase
	幻灯片 25: Occludee Visibility Query
	幻灯片 26: Early Out
	幻灯片 27: Performance of Algorithm
	幻灯片 28
	幻灯片 29: Typical Culling Pipeline
	幻灯片 30: Problems in Typical Culling Pipeline
	幻灯片 31: Data Organization
	幻灯片 32: Data Organization
	幻灯片 33: Data Organization - Conclusion
	幻灯片 34: TODO List
	幻灯片 35: Virtual Function Call
	幻灯片 36: Virtual Function Call
	幻灯片 37: TODO List
	幻灯片 38: Cascade of Multiple Visibility Filter
	幻灯片 39: Cascade of Multiple Visibility Filter
	幻灯片 40: TODO List
	幻灯片 41: Visible Section
	幻灯片 42: Visible Section
	幻灯片 43: Visible Section
	幻灯片 44: Visible section
	幻灯片 45: TODO List
	幻灯片 46: Multi Threading
	幻灯片 47: TODO List
	幻灯片 48: Performance of pipeline
	幻灯片 49
	幻灯片 50: Importance of Occlusion Meshes
	幻灯片 51: Overview of Our Generator
	幻灯片 52: Smooth a 3D Mesh
	幻灯片 53: Smooth a 3D Mesh
	幻灯片 54: Simplify the Constraint
	幻灯片 55: Simplify the Constraint
	幻灯片 56: Simplify the Constraint
	幻灯片 57: Simplify the Constraint
	幻灯片 58: Simplify the Constraint
	幻灯片 59: Simplify the Constraint
	幻灯片 60: Simplify the Constraint
	幻灯片 61: Simplify the Constraint
	幻灯片 62: Simplify the Constraint
	幻灯片 63: Simplify the Constraint
	幻灯片 64: Simplify the Constraint
	幻灯片 65: Simplify the Constraint
	幻灯片 66: Simplify the Constraint
	幻灯片 67: Simplify the Constraint
	幻灯片 68: Smooth Mesh with the Constraint
	幻灯片 69: Smooth Mesh with the Constraint
	幻灯片 70: Smooth Mesh with the Constraint
	幻灯片 71: Filter Clusters
	幻灯片 72: Filter Clusters
	幻灯片 73: Filter Clusters
	幻灯片 74: Triangulate
	幻灯片 75: Triangulate
	幻灯片 76: Handle Curved Surfaces
	幻灯片 77: Handle Curved Surfaces
	幻灯片 78: Handle Curved Surfaces
	幻灯片 79: Demonstration of Our Generator
	幻灯片 80: Demonstration of Our Generator
	幻灯片 81: Demonstration of Our Generator
	幻灯片 82
	幻灯片 83: Overall Performance
	幻灯片 84: Conclusion
	幻灯片 85: Thank You!
	幻灯片 86: Q & A
	幻灯片 87

