
Hitting the Right Notes: Tying
Gameplay to Music in Soundfall
Nick Cooper
Game Director

My Background

● Started getting into game dev during high school

● Worked in AAA most of my career

● Went indie, co-founded Drastic Games, and began working on
Soundfall in 2016

Soundfall

● Rhythmic Top-Down Looter-Shooter
○ Entire world moves in-time with the music
○ Players are rewarded for acting on-beat
○ Levels, Encounters, Enemies, and Loot are

procedurally generated based on music
○ Supports player-imported tracks on PC

● Released May 11, 2022
○ Steam, Switch, PS5, PS4, Xbox Series X|S,

Xbox One
○ Developed in Unreal Engine 4

http://www.youtube.com/watch?v=-e33bCNuUF8

Everything is Tied to the Music

● Everything moves to the beat

● Player actions are tied to the
beat

● The experience of the level
feels connected to the song

Overview

● Tying Gameplay To Music Outside of Traditional Rhythm Games

● Syncing Everything to the Beat

● Additional Challenges

● Using Music to Influence Procedural Generation

● Beyond Soundfall

Tying Gameplay To Music outside of
Traditional Rhythm Games

Tying Gameplay to Music

Super Mario Bros. 3 New Super Mario Bros. U

Tying Gameplay to Music

www.youtube.com/@Jalopes

Sounds in Super Mario
Odyssey Harmonize with the

Background Music

http://www.youtube.com/watch?v=U5-YDxH6It8&t=130

Tying Gameplay to Music

The Legend of Zelda: Ocarina of Time

Tying Gameplay to Music

Fortnite

Fortnite Marshmello Concert

Syncing to the Beat

Beat Detection

● Initial beat detection is
algorithmic

○ Essentia open source library:
https://essentia.upf.edu/

● Manual fixups as necessary

Audacity

Organizing Beat Info

● Global singleton GameDirector
○ Handles audio analysis
○ Beat and frequency distribution data
○ Handles checking if an input was on-beat
○ OnMetronomeBeat event

● Helper functions
○ BeatsToSeconds()
○ SecondsToBeats()
○ TimeSinceLastBeat()
○ TimeBetweenBeats()
○ NormalizedTimeBetweenBeats()

On-Beat Input

● Beat input success window
○ Measured in Beats Time

Beat

Time

Beat

Success!

Failure!

● Beat input failure disables success
on nearby upcoming beat

● Window is very generous - 28%
before and after the beat!

Converting from Beats to Seconds
● Direct BPM conversion?

● Better - Upcoming BPM!

● Problem: We saw beat input could
be quite early or late

● Round to start-on-beat

● Round to end on-beat

Animation

Static Mesh Bouncing

● Simpler environmental assets were
not rigged, just used StaticMeshes

● StaticMeshComponents scaled via a
curve in Tick()

● GetNormalizedTimeSinceLastBeat()
○ Returns a value 0.0 to 1.0

Creating Animations

● Authored assuming 120 Beats Per
Minute

● 1 Beat -> 0.5 seconds

● All impactful moments of
animations need to occur at a
multiple of 0.5 seconds

Playing Looping Animations

● Play Rate
○ UpcomingBPS = Beats per second over the

upcoming 4 beats
○ Since the anim is authored at 120 BPM, 1

beat == 0.5 seconds
○ PlayRate = UpcomingBPS * 0.5

● Starting Position
○ Get time since the last beat
○ Multiply by the play rate we calculated
○ StartPos = TimeSinceLastBeat * PlayRate

● Feed these values into our anim
sequence

Playing Animations from Abilities

AnimMontages

● Can adjust play rate in the same way, using upcoming beats-per-second
● In this case though, always want to start at the beginning of the anim

Playing Animations from Abilities

When jumping between sections, we
need to recalculate PlayRate

UI Animations

● Also authored assuming 120 BPM,
with impactful moments
occurring at multiples of 0.5
seconds

● Triggered as one-shots on
metronome beat

● Or looping with StartAtTime using
NormalizedTimeSinceLastBeat()

VFX and Materials

On-beat VFX & material parameters were either tied to animations and abilities
which we’ve already synced, or triggered using OnMetronomeBeat() events

Sound Effects

● Looping SFX were authored at 110
BPM
○ Sounded better after scaling than 120 BPM

● Created a BPM Fmod parameter, used
for scaling the play rate

https://docs.google.com/file/d/19uMGuNpxU4vvOJ4WXb51_5vUnpsefOjM/preview

Enemy Behaviors

● AI Manager and Fire Ticket
system
○ Fire tickets have a beat index for when

the AI should begin the intended
ability

● Custom Behavior Tree nodes for waiting for Fire
Ticket beats, or waiting for a specified beat
count

● Once an enemy ability starts, its execution will
continue to be on-beat due to animation
timing we discussed earlier

Additional Challenges

Performance
Problem: A lot of stuff happens on-beat,
so that makes beat ticks prone to hitches

● Moved enemy spawning to off-beat,
but hidden with collision disabled

● Moved anything that didn’t absolutely
need to be on-beat, to an off-beat tick

● PreMetronomeBeat and
PostMetronomeBeat events for actions
that don’t need to be perfect

● Disable ticking on all actors outside of
current and adjacent chunks

Networking

We somehow need to keep this all
synced, and feeling good with
network latency

● Priority: You need to feel awesome and
on-beat

● Would be nice for friends you’re playing with
to appear on-beat from your perspective -
but this is nowhere near as important, as
long as they feel on-beat from their
perspective

Networking

Solution: Trust the client way more than most games do!

● A client says they did something on-beat, and they reasonably could have? OK!

● Non-gameplay anims are always based on the local music time

● Gameplay actions pass a MusicTime parameter on RPCs

● Dampen all sounds instigated by remote players

Using Music to Influence
Procedural Generation

Music Categorization
We want the experience of the level to feel connected to the song

Pop - Skyland Latin - Beach Classical - Forest Rock / Metal - Volcano EDM - Cityscape

Jazz - Depths Acoustic / Country - Desert Chiptune - Crypt Hip Hop - Jungle R&B - Peaks

Genre

Classified into 12 different genres, which we then mapped into 10 different biomes:

Music Categorization

Mood

No Alteration Orchestral Digital Primal

● Came up with “Family” categorization - Orchestral, Digital, Primal

● Mapped to alteration types on loot and enemies

Music Categorization

● Support Vector Machines
○ Supervised Learning model useful for

classification
○ Calculates a hyperplane that separates

data into classes, maximizing the
separation between the classes

● Used LIBSVM open source
library Source: stackexchange.com

Music Categorization

● Built a large training set by running a large set of audio analysis
algorithms on 867 songs that covered each of the 12 genres fairly
evenly

● Labeled each by “Genre” and “Family” manually - fairly subjective in
many cases

● Initial set of audio analysis algorithms generated 670 parameters per
song

Music Categorization

● At runtime, for imported songs, all of these algorithms would need to be
run, and then classified.

● Accuracy was around ~70% for each axis (genre and family)

● Running all of these algorithms was slow!
○ With trial and error, reduced algorithm count
○ Ended up with 88 parameters while maintaining ~70% accuracy

Music Categorization

~70% accuracy is obviously far from perfect, but,

● Music Categorization is inherently subjective!

● The player doesn’t see the claim about either genre or family directly

● Getting surprised by an unexpected result for a song can be fun!

Audio Analysis -> Level Generation

● Biome selected based on Genre
○ Biome = Persistent Level + Chunks +

Subchunks + Skybox Chunks

● Chunk - rectangular sublevel with
one or more “chunk connectors”

● Subchunk - rectangular sublevel that
slots onto a Subchunk Marker within a
Chunk

● Skybox Chunk - rectangular sublevel
that fills area outside of the playable
space

Audio Analysis -> Level Generation

Level Generation:

● Build a main path out of Chunks

● Add Chunks for branches off main path

● Fill in all Subchunk Markers with
appropriate Subchunks

● Fill in Skybox under and around the
completed playable space

Audio Analysis -> Level Generation

● Level generation tries to make the time to complete the level match the duration
of the song. Sum of:
○ Encounter Estimate - Based on the number of “encounter points” spent in generating an encounter
○ Traversal Estimate - Based on the XY dimensions of the chunk

Audio Analysis Result Level Generation Parameter What it influences in Level Generation

Mean Beat Loudness EncounterRating Proportion of chunks that are encounter-focused

Mean Spectral Energy TravelRating Walking distance travelled to complete level

Mean Spectral Complexity BranchingRating Number of branches generated

Number of Tempo Changes TwistynessRating How straight vs. bendy the level is

Onset Rate PrimaryLevelDirection General direction from start of the level to end

Danceability TreasureChestsPerMinute Number of treasure chests to generate per minute of music

● Additional parameters:

Audio Analysis -> Probabilities

Defining probability weighting

● Default curve mapping probability weight to level
○ “Level” being Mission Intensity or Item Level depending on context

● GameplayTags associated with the Mission can modify this
○ For instance, tags could be Music.Family.Orchestral or Environment.Volcano
○ Tags can cause a multiplier to be applied onto the default curve, or cause an override

curve to be used

Audio Analysis -> Encounters and Enemies

● Genre / Biome
○ Biases Encounters toward certain enemy types
○ Allows / Disallows / Biases elemental enemy types

● Family
○ Biases other enemy alterations and enemy weapon types

No Alteration Bolero Serenade Minuet Requiem Nocturne
Volcano / Jungle Skyland / Peaks Forest / Desert Beach / Underwater Cityscape / Crypts

Audio Analysis -> Loot

● Genre / Biome - Biases elemental type

● Family - Biases all other alteration types

Orchestral Digital Primal

Everything is Tied to the Music

● Everything moves to the beat

○ Global “metronome” heartbeat

○ All timing is in beats, not seconds

● Player actions are tied to the beat
○ Round and fudge Beat time to

encourage and enhance this

● The experience of the level feels
connected to the song

○ Aspects of the music drive every part
of our procedural systems

Beyond Soundfall

Other Things We Tried

● Key / Chord Detection

● Player generated music

● On-the-fly beat detection

Applications for Other Projects

● Syncing background actors to music

● Better emotes - synced to background music

● Syncing actors to player-generated music

● Syncing actors to things like combos or rapid-fire weapons which
have an inherent “beat”

Thank you!
Nick Cooper

drasticnick@gmail.com

linkedin.com/in/drasticnick/

@DrasticNick

@SoundfallGame

soundfallgame.com

