
Managing Source Content

For ‘Overwatch 2’

Rowan Hamilton

What is this talk about?

● Why homebrew source control?

● Evolution for remote work; reducing data transfer by

90%

Problem Space

● One branch is around 5Tb of data

● 4.5 million assets

● 2-week cadence for release branches

● Feature branches

● ~700Gb of data churn per month

What Do I Want

● Launch the game
● Enumerate all assets
● Identifier for each asset
● Hash based on asset content
● Reference information

● Populate Asset Browsers
● Name/Tag/Type information about each asset
● References again

Source Control Basics

● P4 style centralized source control
● History

● Branches, Integration, Merging

● Global exclusive checkouts

Source Control Basics

● Independent of files and the filesystem

● Assets use identifiers instead of names

● Communicates via RPC

● Data is streamed on demand

Asset Structure

Fetching Data

● Asset data is (generally) streamed on demand

● HTTP for transport

● http://{endpoint}/cas/assets/{assetAddress}

Distributed Struggles

● Extremely high pings and low bandwidth hurt

● Better pipelining solves some of this

● More prebuilt snapshots

● Proxies solve the rest (Varnish for HTTP)

Big Files Are Problematic

● Many assets are > 2Gb

● Compression helps a little

● Delta encoding is not great for big binaries

We Need Less Data

●Time to commit a change should depend on the size of

the change, not the size of the file

● Content Defined Chunking (CDC) allows you to

deterministically partition a file, based on patterns in the

content

CDC Basics

● Uses a rolling hash to find chunk boundaries

● Changing data in one chunk will not affect neighbors

● Tunable chunk size

● Really fast (1GB/sec+)

Example

…83b3437cdcd6ec279031586d890e1

b4e1d5c2b2e02757fa0ca807e6fc3052

518c8cdcd66d6e71ae54296d80f09af3

65de5e42946071a56da93d5e89738e5b

df784f08cdcd6039c701c8fa5949f0cf

524d2a1abd1394e8135de45dacc9536b

68ac99a85b10cdcdbb9d9748d27d6…

…83b3437cdcd6ec279031586d890e1

b4e1d5c2b2e02757fa0ca807e6fc3052

518c8cdcd66d6e71ae54296d80f09af3

65de5e42946071a56da93d5e89738e5b

df784f08cdcd6039c701c8fa5949f0cf

524d2a1abd1394e8135de45dacc9536b

68ac99a85b10cdcdbb9d9748d27d6…

…83b3437cdcd6ec279031586d890e1

b4e1d5c2b2e02757fa0ca807e6fc3052

518c8cdcd66d6e71ae54296d80f09af3

65de5e42946071a56da93d5e89738e5b

df784f08cdcd6039c701c8fa5949f0cf

524d2a1abd1394e8135de45dacc9536b

68ac99a85b10cdcdbb9d9748d27d6…

…83b3437cdcd6ec279031586d890e1

b4e1d5c2b2e02757fa0ca807e6fc3052

518c8cdcd66d6e71ae54296d80f09af3

65de5e42946071a56da93d5e89738e5b

df784f08cdcd6039c701c8fa5949f0cf

524d2a1abd1394e8135de45dacc9536b

68ac99a85b10cdcdbb9d9748d27d6…

…83b3437cdcd6ec279031586d890e1

b4e1d5c2b2e02757fa0ca807e6fc3052

518c8cdcd66d6e71ae54296d80f09af3

65de5e42946071a56da93d5e89738e5b

27b5a35fe39282fca68f7afe22794f93

df784f08cdcd6039c701c8fa5949f0cf

524d2a1abd1394e8135de45dacc9536b

68ac99a85b10cdcdbb9d9748d27d6…

Implementation

● Represent a file as a Manifest of chunks
● Header (4cc, version, chunk count)

● Array of chunk addresses

● Chunk’s address is SHA1 hash after compression

● Target chunk size of 128Kb

Integration

● Source control is oblivious to file storage
● All it has is an address

● Asset address can be either a file, or a Manifest

● CDC can be implemented with no API changes

Results

● Unexpected wins through deduplication

● Branch data reduced 5Tb->1.27Tb (75%)

● Problematic files saw the biggest wins
● PSD 2.91Tb -> 296Gb (92% saving)

● Maya 630Gb->142Gb (78% saving)

● TIFF 43Gb ->10Gb (76% saving)

● Some asset types saw less savings

Incremental Results

● 700Gb of data committed monthly

● Reduced to 100Gb of new chunk data (84% saving)

● Again, savings vary wildly by type
● PSD files see average savings of 90% (So editing a 1Gb

psd only requires 100Mb of changes to be uploaded)

● Other types like audio source files only see savings in the

range of ~30%

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000 10000

C
H

U
N

K
 C

O
U

N
T

OF TIMES USED

CHUNK REUSE

Performance

● Storage Engine backed by SQLite

● Read speed can exceed theoretical maximum of the

hardware
● Duplicated chunks only need to be read once

Conclusion

● Reduced file transfer by an order of magnitude

● More caching gives an even better UX

● Investing in tech paid off

Contributors

● Even Braudaway

● Luke Mordarski

● Jesse Blomberg

● David Clyde

● Phil Orwig

Fast CDC

tinyurl.com/owfastcdc

Overwatch Data Pipeline

tinyurl.com/owdpl

Quick CDC

tinyurl.com/owquickcdc
Rapid CDC

tinyurl.com/owrapidcdc

