
Mobile Math: From ATan2 to Gyro
Calibration

Patrick Martin

Developer Relations Engineer, Google

Who am I?
• Mobile games at Venan Entertainment

• Games for toys at Sphero

• DevRel in games at Firebase, Now Android

Why this talk?
• I like mobile gaming and want to help make it better

• Pre-production - great for rapid prototyping

• This works on any engine

• Mostly use Godot because it’s new to me

Disclaimer
I’ve been asked to remind you that I’m here today on my time
and not as a representative of Google. The time for cool
Google related announcements was yesterday, today I got
special permission to just nerd out about math.

Mobile Joysticks

Unofficial anatomy of a virtual joystick

Joystick Puck

Typical Joystick

Example - Just Offset

Sometimes you want heading

[−1
0] (180∘,1)

SohCahToa break
sin(θ) = o / h

cos(θ) = a / h

tan(θ) = o / a

θ

[h]yp
ote

nuse

[a]djacent
[o]pposite

Triangle to Joystick
Opposite = y

Adjacent = x

tan(θ) = y / x

θ
x

y

atan undoes tan
tan(θ) = y / x

θ = atan(y/x)

atan2(y, x) ≈ atan(y/x)

“arctangent with style!”

θ

adjacent = x

opposite =
 y

Example - Angle

“LERP”
LERP = Linear Interpolation

A and B are points (or anything that can multiply)

At becomes

At becomes

f(t) = (1 − t)A + t(B)

t = 0 f(0) = (1 − 0)A + 0B = A
t = 1 f(1) = (1 − 1)A + 1B = B

“LERP”
While resetting

Count Down
Turn “seconds
left” into 0 to 1

LERP

Wheels

Wheels
Basically a Joystick

Wheels
Get the touch

Wheels
Use ATan2 to find the angle

Wheels
Rotating becomes simple addition/subtraction

“How do I add angles?” 
Add like normal to get

Then cap between 0 and 360 (similar math works for 0 to):

 : shift everything over 180

 : cap it between -180 and 180 (this is 360 degrees)

 : put it back, now we have 0 to 360

This Becomes:

θ
2π

θ = θ − 180
θ = θ % 180
θ = θ + 180

cap(θ) = ((θ − 180) % 180) + 180

“How do I subtract angles?” 
• Always two solutions

• “Long” way and “Short” way

• Choose the smallest

• If above 180 degrees, Subtract 360

• If below -180 degrees, Add 360

Long Short

“How do I subtract angles?” 

The 8-bit way
• “There are 255 degrees in an angle”

• When a uint_8 rolls over, it’s back to zero. No fancy math.

• You will need to scale it out for “real math” to move 255 to

360.

Flicking

Flicking
• Springs sound great, but not for this

• Will come back to this later

Flicking
• Measure beginning and end

•

• Works for fast straight flicks
but…

⃗v′￼ =
⃗p1 − ⃗p0

t1 − t0

⃗p0, to

⃗pn, tn

Flicking
• Spiral?

• Breaks immediately

• Just take the last sample?

• Still want to smooth jitters

Flicking
• Keep a rolling list!

• With samples, gives

us a good result!

• What happens if samples

don’t come in at an even
rate or your frame rate
changes?

n n = 3

Flicking
• Remember LERP?

•

• What happens if is the new sample, and is the old one?

• is fixed at .75

f(t) = (1 − t)A + tB
B A

t

Flicking
• Start with the flick speed

being the first two points
over the time between
them.

⃗v0
⃗v1

⃗v2

Flicking
• The next vector mostly takes

over (75%) but the old one
still factors in (25%)

⃗v0
⃗v1

⃗v2

Flicking
• The next sample has the

most weight (75%)

• The rest are in the last 25%

⃗v0
⃗v1

⃗v2

Flicking
• The end of the spiral is still

in the right direction, but
previous samples are still
factored

⃗v0
⃗v1

⃗v2

Flick - Code
Change in touch position

Duration of change

Velocity
of
sample

The magic LERP

Flicking Demo

Spinning Wheel
• Works with wheels too!

• Use angle deltas over time rather than points

• End with rotational velocity

• Requires subtracting angles

Spinning Wheel

Flicking
•What about 3d?

•Project it to 2D

•But we need picking…

3D Picking

Picking (the easy way)
Screen point to ray Pick an object

Picking Demo

Projection (Math Break!)
What if your engine doesn’t do picking?

• The math is well known, but complicated

• Let’s talk about how we see a triangle in game

Projection

M ⃗v

Cool cube!

Model transform
Whatever we’re transforming

(A vertex)

Projection

M ⃗v

Cool camera!

Projection

VM ⃗v

View matrix makes the camera
the center of the world

Projection

PVM ⃗v

Projection matrix turns a “view
frustum” into a box

Projection

PVM ⃗v

Projection
• Something weird called “homogeneous division”

•
Your vertex right now is 4D:

•
Divide by to get to “normalized device coordinates”

• There’s a bunch here I’m skipping, the math works

x
y
z
w

w

x
w
y
w
z
w

Projection
• Values are now -1 to 1 on any axis

• Stretch from -1, 1 to 0, screen size

• Squish on z to get a screen point

Screen NDC

-1

1

0

height

Unproject
• screen point to NDC (change to -1 to 1)

• Remember ? Take and invert it

•
You will have a 4D vector:

•
Make it 3D by dividing out :

[x
y]

PVM ⃗v PV
x
y
z
w

w

x
w
y
w
z
w

Unproject

World Point

Subtract camera position to
get a look vector. Makes a
ray.

Unproject

Raycast like before!

Flicking (3D)

This is why we needed to learn about picking…

Flicking (3D)
Ray start

Ray direction

Ground

Flicking (3D)
Point on ray: f(t) = R + t ⃗v

R

⃗v

Flicking (3D)
A point on the ground:

 where ’s y coordinate is t f(t) 0

R

⃗v

Flicking (3D) A point on the ground:

f(t) = R + t ⃗v
f(t)y = Ry + t ⃗vy
0 = Ry + t ⃗vy

t = −
Ry

⃗vy

R

⃗v

Flicking 3D Ray from touch

Where it hits
the ground

Put an object there

Flicking 3D Demo

Flicking 3D
• Same as 2D

• Work in the plane

• Works best with an angled plane

Flicking 3D
• Math just like ground plane, but with more dot product

• Ray is ; Plane is

• A point is on a plane if

• Find such that

•

•

•

R, ⃗v P, ̂n
Q (Q − P) ⋅ ̂n = 0

t ((R + t ⃗v) − P) ⋅ ̂n = 0
R ⋅ ̂n + t ⃗v ⋅ ̂n − P ⋅ ̂n = 0
t ⃗v ⋅ ̂n = − R ⋅ ̂n + P ⋅ ̂n

t =
−R ⋅ ̂n + P ⋅ ̂n

⃗v ⋅ ̂n

Flicking 3D
• Align the plane to the camera

• Especially in AR

Flicking (Carousels)
•Carousels are like flicking

•Project to cylinder

•Use Atan2 again to get an
angle

•Measure angular velocity

Latency Reduction

(Perceived)

Latency Reduction

Latency Reduction
• You can’t get rid of lag

• So lean into it (springs)

• Adds weight to the interaction

Latency Reduction

Latency Reduction
• Springs already in your physics engine

Latency Reduction
• But if not, Fs = − kx

Spring force
Spring strength

Distance from “rest” length

(Distance from touch)

Latency Reduction
• But if not, Fs = − kx

x = ⃗touch − ⃗obj

Latency Reduction

Pinch to Zoom

Pinch to Zoom

Just measure the distance?

Pinch to Zoom
• Works for 3D

• Especially if the camera doesn’t just linearly zoom

• But for 2D, we want to glue the camera to the fingers

Pinch to Zoom
• 3 Components

• Scale - most important

• Pan - useful

• Rotate - you don’t always want this

Pinch to Zoom
Naïve solution:

• Break into parts

• Apply each

Translation
Track how the middle moves over time

Scale
Track how the length changes over time

Rotation
Track the rotation over time (Atan2)

Pinch to Zoom
Put it all together and it works right?

(No)

Pinch to Zoom (bad)

Pinch to Zoom (good)

Pinch to Zoom (good)
• Moved all math into world space (remember picking?)

Pinch to Zoom (good)
• I repositioned everything around the center of the touch…

Pinch to Zoom (good)
• Scale and Rotation always apply to the “origin”

Pinch to Zoom (good)
• But we want it from the middle of our pinch

Pinch to Zoom (good)
• Three part process:

• Move the center to the origin

• Scale (or rotate)

• Restore the center to where it belongs

•

T−1

S
T

⃗v′￼= TST−1 ⃗v

Pinch to Zoom (finish up)
• Rotate

Pinch to Zoom (finish up)
• Scale

Pinch to Zoom (finish up)
• Undo the translation then apply our touch offset

Sensor Stuff

Everything but the touchscreen

Sensor stuff
•IMU = Inertial Measurement Unit

• All phones have this

• How auto-rotate works!

IMU
• Accelerometer most common

• Most reliable

• Measures acceleration

• As a vector

• Usually gravity

• Can’t “twist”

• Don’t fall for double integral

IMU
• Gyroscope usually included

• Measures change in orientation

• Often read as absolute orientation

• As a quaternion

• Thanks to accelerometer finding gravity

• Drifts on Yaw

• Interesting for VR

• Phones don’t always calibrate well = Drift

IMU
• Magnetometer is fairly common

• Reads magnetic fields

• As a Vector

• Usually Earth’s

• Would give you perfect orientation… if it worked

• Everything messes with it

Tilt Controls

Tilt Controls
Making a tilt “marble maze” kind of game, what do you use?

• Accelerometer

• Gyroscope

• Magnetometer

Tilt Controls
• Want offset in a 2D plane

• X (left/right) is usually fixed

• Y/Z needs to be calibrated

Tilt Controls (x)
• If you normalize acceleration

• x = 0 not tilted

• x = 1 or -1 full tilt

• Looks a lot like

• So or how much we’re tilting

sin(θ)
asin(accelx) = θ

Tilt Controls (y/z)
• Need to calibrate

• Have two axis that feed into it

• Sounds like time!

• “Calibration” is saving an angle and restoring

atan2()

Tilt Controls

Tilt Controls

Gyroscope

Gyroscope
• Great for when you need to rotate around gravity

• Like a 1st person camera

• There will be drift

• Reads angular change

• Often can get “attitude” (device orientation)

• As a quaternion

Gyroscope
• Test scene - 1st person camera/look

• Aim at sphere

Gyroscope
• What could go wrong?

Gyroscope
• WOT?

Gyroscope
• Need to “calibrate”

• What is “calibration?”

Gyroscope
• Gyroscope “attitude” is an orientation in 3D space

• We need to “undo” this before applying a new one

Gyroscope
• 2D example

• Camera starts at

• We want this to be

θ = 27.1∘

θ′￼= 0∘

Gyroscope
• Simply subtract 27.1° from every new reading

•

• How do we do this in quaternions?

f(reading) = reading − 27.1∘

Gyroscope

f(reading) = reading − 27.1∘

Gyroscope

f(reading, calibration) = reading − calibration

Gyroscope

f(reading, calibration) = reading + (−calibration)

Quaternion Multiply

Quaternion Inverse

Gyroscope

f(Qreading, Qcalibration) = Q−1
calibrationQreading

Gyroscope

Gyroscope

Quaternion
• Need to convert to “game engine” space

• See my Quaternion talk at a previous summit

• Unity tells us do this in their docs, so I copied it

Quaternion

Quaternion
• Note that Unity doesn’t use TYPE_GAME_ROTATION_VECTOR

• This means the magnetometer factors in

• You’ll do this near metal:

Quaternion
• Correct “up” vector

• Avoid tilting sideways (good outside VR)

• Really quick (avoid too much quaternion math)

• There is a quaternion talk later today!

Quaternion - correct “up”

Quaternion - correct “up”
Use “forward” to find “right” with no tilt

Use “right” to find “up” without rolling

Quaternion - correct “up”
Atan2: angle between current “up”

and desired “up”

Quaternion - correct “up”
Multiply it all in!

Quaternion

Thanks!

Follow me:

@pux0r3 on Twitter and mastodon.gamedev.place

That’s a zero and a silent 3 at the end

