Mobile Math: From ATan2 to Gyro
Calibration

Patrick Martin
Developer Relations Engineer, Google

#GDC23

Who am |I?

e Mobile games at Venan Entertainment
e Games for toys at Sphero
e DevRel in games at Firebase, Now Android

March 20-24, 2023 | San Francisco, CA #GDC23

Why this talk?

o I like mobile gaming and want to help make it better
e Pre-production - great for rapid prototyping
e This works on any engine

e Mostly use Godot because it's new to me

March 20-24, 2023 | San Francisco, CA #GDC23

Disclaimer

I've been asked to remind you that I'm here today on my time
and not as a representative of Google. The time for cool
Google related announcements was yesterday, today I got
special permission to just nerd out about math.

March 20-24, 2023 | San Francisco, CA #GDC23

GOC

March 20-24, 2023
San Francisco, CA

Mobile Joysticks

Unofficial anatomy of a virtual joystick

4 h

Puck

Joystick\

Typical Joystick

- A

nc _process_joystick(position: Vector2):

var half_size = rect_size / 2
var normalized = (position - half_size) / half_size
Lf normalized. length_squared() > 1:
normalized = normalized.normalized()
signal("vector_changed”, normalized)

March 20-24, 2023 | San Francisco, CA #GDC23

Example - Just Offset

Math Demos (DEBUG)

Heading: (0.055, 0.005)
heading: 185.194429; magnitude: 0.055227

March 20-24, 2023 | San Francisco, CA #GDC23 GDC

Sometimes you want heading

— 1
0

-~

~

(180°1)

SohCahToa break

sin(B) =0/ h
cos(B) =a/h
tan(B) = o/ a

931sodd| O]

[a]djacent

Triangle to Joystick
/ \ Opposite = y

Adjacent = x
tan(B) =y / X
Y

atan undoes tan

tan(B) =y / X
0 = atan(y/x)
atan2(y, x) = atan(y/x)
“arctangent with style!”

A = 931isoddo

0

/

adjacent = x

March 20-24, 2023 | San Francisco, CA #GDC23

Example - Angle

Math Demos (DEBUG)

oo

March 20-24, 2023 | San Francisco, CA #GDC23 GDC

“LERP”

LERP = Linear Interpolation

J() =0 -0A+1«B)

A and B are points (or anything that can multiply)
At t =0 becomes f(0)=(1-0A+0B=A

Atr=1 becomes f(l)=(1-1)A+1B=B

March 20-24, 2023 | San Francisco, CA #GDC23

While resetting “
“LERP” Turn “seconds
Count Down left” into O to 1

func _process(delta):
Lf _current _reset _time > 0:
_current_reset _time = current _reset time - delta
1T (_current _reset time < 0):
_current _reset time = 0

var rest_position = _joystick.rect_size / 2

var t = 1 - current reset tume / reset _time

t=1t %t

position = (1 -t) * _reset_start_position + t * rest_postition

March 20-24, 2023 | San Francisco, CA #GDC23 GDC

Math Demos (DEBUG)

March 20-24, 2023 | San Francisco, CA #GDC23 GDC

Wheels

Basically a Joystick

var current_touch = event to world(event.postition)

var current_rotation = atanZ2(current_touch.y, current_touch.x)

rotational offset = current rotation - touch start rotation

March 20-24, 2023 | San Francisco, CA #GDC23

Wheels

Get the touch

var current_touch = event to world(event.postition)

var current_rotation = atali2{cemrenbateua’y, current_touch.x)

rotational offset = current rotation - touch start rotation

March 20-24, 2023 | San Francisco, CA #GDC23

Wheels

Use ATan2 to find the angle

S -)

var current_touch = event io«wesbetevererposeeons

var current_rotatiof = atan2(current_touch.y, current_touch.x) B

rotational offset = current Totateen coueEWNSEETCTotat on

March 20-24, 2023 | San Francisco, CA #GDC23

Wheels

Rotating becomes simple addition/subtraction

var current_touch = event to world(event.postition)

var current_rotation = ataplleussent-asudrympsgihirse

rotational offset &= current rotation -

March 20-24, 2023 | San Francisco, CA #GDC23

“How do | add angles?”

Add like normal to get ¢

Then cap between 0 and 360 (similar math works for O to 2x):
0 =0 — 180 : shift everything over 180

0=60%180 : cap it between -180 and 180 (this is 360 degrees)
0 =0+ 180 : put it back, now we have 0 to 360

This Becomes:
cap(@) = ((0 — 180) % 180) + 180

March 20-24, 2023 | San Francisco, CA #GDC23

“How do | subtract angles®?”

e Always two solutions Long Short
e "Long” way and “Short” way

e Choose the smallest
e If above 180 degrees, Subtract 360
o If below -180 degrees, Add 360

March 20-24, 2023 | San Francisco, CA #GDC23

“How do | subtract angles®?”

var delta angle = current_rotation - _last_rotation

Lt delta angle > PI:
delta angle -= 2*PI
eli1f delta angle < -PI:

delta angle += 2*PI

March 20-24, 2023 | San Francisco, CA #GDC23

The 8-bit way

e "There are 255 degrees in an angle”
e When a uint_8 rolls over, it's back to zero. No fancy math.

e You will need to scale it out for “real math” to move 255 to
360.

March 20-24, 2023 | San Francisco, CA #GDC23

=24, 202
San Francisco, CA

Flicking

#GDC23

Flicking

e Springs sound great, but not for this
e Will come back to this later

March 20-24, 2023 | San Francisco, CA #GDC23

DL, e Measure beginning and end
— P1— Do
T s
e Works for fast straight flicks
but...

March 20-24, 2023 | San Francisco, CA #GDC23

Flick

e Spiral?

e Breaks immediately

e Just take the last sample?
e Still want to smooth jitters

March 20-24, 2023 | San Francisco, CA #GDC23

Flick

March 20-24, 2023 | San Francisco, CA

#GDC23

e Keep a rolling list!

e With n samples, n =3 gives
us a good result!

e What happens if samples
don’t come in at an even
rate or your frame rate
changes?

Flicking

e Remember LERP?

e (1) = (1 — DA + B

e What happens if B is the new sample, and A is the old one?
ot is fixed at .75

March 20-24, 2023 | San Francisco, CA #GDC23

Flick

e Start with the flick speed
being the first two points
over the time between
them.

March 20-24, 2023 | San Francisco, CA #GDC23

Flick

e The next vector mostly takes
over (75%) but the old one
still factors in (25%)

March 20-24, 2023 | San Francisco, CA

Flick

e The next sample has the
most weight (75%)

e The rest are in the last 25%

March 20-24, 2023 | San Francisco, CA #GDC23

Flick

e The end of the spiral is still
in the right direction, but
previous samples are still
factored

March 20-24, 2023 | San Francisco, CA #GDC23

Flick - Code Duration of change

Change in touch position

var delta = world_click - _start_position

var time = 0S.get_ticks_msec() VeIOCIty
var time _delta = time - _last _time ()f'
1f time _delta !'= 0:

_last_time = time Sdm ple
var current_flick = (world_click - _last_position) / msec_to_sec(time_delta)

_flick vector = (1 - slew) * flick vector + slew * current fluick

_last_position = world_click

_sync_postition _start_local_position + delta

The magic LERP

March 20-24, 2023 | San Francisco, CA #GDC23

Flicking Demo

Math Demos (DEBUG)

March 20-24, 2023 | San Francisco, CA #GDC23 GDC

Spinning Wheel

e Works with wheels too!

e Use angle deltas over time rather than points
e End with rotational velocity

e Requires subtracting angles

March 20-24, 2023 | San Francisco, CA #GDC23

Spinning Wheel

March 20-24, 2023 | San Francisco, CA #GDC23 GDC

Flicking

e\What about 3d?
eProject it to 2D
eBut we need picking...

March 20-24, 2023 | San Francisco, CA #GDC23

March 20-24, 2023
San Francisco, CA

GOC

3D Picking

Picking (the easy way)

Screen point to ray Pick an object

var origin = project_ray_origin(event.position)
var direction = project_ray_normal(event.position)

var space_state = get _world().direct_space_state

var result = space_state.intersect_ray(origin, origin + direction * 100)
Lf result:

print("Hit at point: ", result.position, " with object: ", result.collider)

)

March 20-24, 2023 | San Francisco, CA #GDC23

Picking Demo

Math Demos (DEBUG)

March 20-24, 2023 | San Francisco, CA #GDC23

Projection (Math Break!)

What if your engine doesn’t do picking?
e The math is well known, but complicated
o | et’s talk about how we see a triangle in game

March 20-24, 2023 | San Francisco, CA #GDC23

Projection ool cube

N

Model transform

Whatever|we’re transforming

j / (A vertex)

Projection

Cool camera!

Projection

SRS
L

View matrix makes the camera

Projection

/ Projection matrix turns a “view
frustum” into a box

Projection

Projection

e Something weird called "homogeneous division”
X

Your vertex right now is 4D: z
®
w

Divide by w to get to "normalized device coordinates”

e =< 2=

e There’s a bunch here I'm skipping, the math works

March 20-24, 2023 | San Francisco, CA #GDC23

Projection

e VValues are now -1 to 1 on any axis hig%[een NDC

e Stretch from -1, 1 to 0, screen size 1
e Squish on z to get a screen point Q

March 20-24, 2023 | San Francisco, CA #GDC23

Unproject

. [)yc] screen point to NDC (change to -1 to 1)

e Remember PVM©yv? Take PV and invert it
X

You will have a 4D vector: z
®
"

Make it 3D by dividing out w:

T | =< =%

March 20-24, 2023 | San Francisco, CA #GDC23

Unproject

_

Subtract camera position to
get a look vector. Makes a
ray.

World Point

Unproject

Raycast like before!

/ar origin = project_ray_origin(event.position)
/ar direction = project_ray_normal(event.position)

- space_state = get_world().direct_space_state
var result = space_state.intersect _ray(origin, origin + direction * 100)

1f result:

print("Hi1t at point: ", result.position, " with object: ", result.collider)

)

March 20-24, 2023 | San Francisco, CA #GDC23

March 20-24, 2023
San Francisco, CA

Flicking (3D)

This is why we needed to learn about picking...

#GDC23

Flicking (3D)

Ray start

Ground

Ray direction

Flicking (3D)
R

Point on ray: f(t) =R + tv

‘—/’

Flicking (3D)
R

A point on the ground:
t where f(r)'s y coordinate is 0

‘—/’

fH) =R+ tv
f(H), =R, +1v,
O0=R,+ 1,

Fllelng (3D) A point on the ground:
R

‘—/’

FIiCking 3D Ray from touch

func _unhandled_input(event):
if event 1s InputEventMouseButton:

touch_origin = project_ray_origin(event.position) Where |t h|tS

‘ar touch_ray = project_ray_normal(event.position)

the ground

/ar t = - touch_origin.y / touch_ray.y
var point = touch_origin + t * touch_ray

_marker_obj.translation = point

Put an object there

March 20-24, 2023 | San Francisco, CA #GDC23

Flicking 3D Demo

o Math Demos (DEBUG)

March 20-24, 2023 | San Francisco, CA #GDC23

Flicking 3D

e Same as 2D
e Work in the plane
e \Works best with an angled plane

‘‘‘‘‘

-y
.....
.......
.........
.....
.....
l...

March 20-24, 2023 | San Francisco, CA #GDC23

Flicking 3D

e Math just like ground plane, but with more dot product
e Ray is R,v; Plane is P, n

e ApointQisonaplaneif (Q-P)-n=0

e Find r such that (R+vv)—-P)-7n1=0
oR-A+tv-i—P-n=0

eV-Ai=—R-A+P-i
_R.I/’i_I_P.ﬁ ---------------------- 5 .

ol =

-y
.....
.......
""""""
.....
.....
l...

e d A

V-n

March 20-24, 2023 | San Francisco, CA #GDC23

Flicking 3D

e Align the plane to the camera
e Especially in AR

March 20-24, 2023 | San Francisco, CA #GDC23

Flicking (Carousels)

eCarousels are like flicking <
eProject to cylinder N
eUse Atan2 again to get an

angle
eMeasure angular velocity

Y

March 20-24, 2023 | San Francisco, CA #GDC23

GOC

March 20-24, 2023
San Francisco, CA

Latency Reduction

(Perceived)

Latency Reduction

&

Latency Reduction

e You can’t get rid of lag
e S0 lean into it (springs)
e Adds weight to the interaction

March 20-24, 2023 | San Francisco, CA #GDC23

Latency Reductlon

March 20-24, 2023 | San Francisco, CA #GDC23 GDC

Latency Reduction

e Springs already in your physics engine

Latency Reduction

e But if not F = —fxe——" Distance from “rest” length

(Distance from touch)
Spring force

Spring strength

Latency Reduction

e But if not, F, = — kx

x = touch — obj

Latency Reduction

func _physics_process(_delta):
1f _pressed:
var distance = _spring_to - transform.origin
apply_central_impulse(distance x spring_force)

March 20-24, 2023 | San Francisco, CA #GDC23

GOC

March 20-24, 2023
San Francisco, CA

Pinch to Zoom

Pinch to Zoom

& @

Just measure the distance?

Pinch to Zoom

e Works for 3D
e Especially if the camera doesn’t just linearly zoom

e But for 2D, we want to glue the camera to the fingers

March 20-24, 2023 | San Francisco, CA #GDC23

Pinch to Zoom

e 3 Components

e Scale - most important

e Pan - useful

e Rotate - you don’t always want this

March 20-24, 2023 | San Francisco, CA #GDC23

Pinch to Zoom

Naive solution:
e Break into parts
e Apply each

March 20-24, 2023 | San Francisco, CA #GDC23

Translation

Track how the middle moves over time

_process_translation():

start_center = (_touches[0].first_touch + _touches[1].first_touch) * .5
r end_center = (_touches[0].last_touch + _touches[1].last_touch) * .5
r touch_delta = end _center - start _center

offset = start offset - touch delta

March 20-24, 2023 | San Francisco, CA #GDC23

Scale

Track how the length changes over time

var start_length = (_touches|[0@].first_touch - _touches|[1].first_touch). length()
var end_length = (_touches[0].last_touch - _touches|[1].last_touch). length()

var scale = start_length / end_length

zoom = scale * start _zoom

March 20-24, 2023 | San Francisco, CA #GDC23

Rotation

Track the rotation over time (Atan2)

_process _rotation():

start vector = touches|@®].first touch - touches|[1].first touch
end vector = touches|[0®].last touch - touches[1].last touch
start_rotation = atanZ(start_vector.y, start_vector.x)

end rotation = atan2(end_vector.y, end_vector.Xx)

delta = end rotation - start rotation

rotation = start rotation - delta

March 20-24, 2023 | San Francisco, CA #GDC23

Pinch to Zoom

Put it all together and it works right?
(No)

process(delta):

en(touches) == 2:

March 20-24, 2023 | San Francisco, CA #GDC23

Pinch to Zoom (bad

==
-
.
“s
g .
T b4
" "
- O mC
< &
r
|
I =
. =
¥ .
e e
M S AEEEEE S ANNNS S Am— T A— W NS S A— —
e e e e e e e e e
e e e e e
. - =
., . =
L u
M u
i
. :
= ‘my e = “s
n
s
ae @ = “e “e e
-.— !
n
s
i
:

March 20-24, 2023 | San Francisco, CA

Pinch to Zoom (good)

e
y
s
v v
- W
. ,
Y
o
- .
= .-
v
“e “e
e e e e e e e e
M TS S T
o e S e S e e e
- - -
» L
o il
= » us “s =
W
n
I
.e - .e .e “e

March 20-24, 2023 | San Francisco, CA #GDC23

Pinch to Zoom (good)

e Moved all math into world space (remember picking?)

viewport = get_viewport()
view transform = viewport.canvas_transform

start 0@ = view transform.xform inv(touches|0].first touch)

end @ = view transform.xform inv(touches|®].last touch)

[
l.

start 1 = view transform.xform inv(touches|1l].first touch)
l.

end 1 = view transform.xform inv(touches|1].last touch)

March 20-24, 2023 | San Francisco, CA #GDC23

Pinch to Zoom (good)

e | repositioned everything around the center of the touch...

var center start = (start 0 + start 1) *
var center end = (end 0 + end 1) * .5

var working = Transform2D(0®, -center_start) * _start_transform

March 20-24, 2023 | San Francisco, CA #GDC23

Pinch to Zoom (good)

e Scale and Rotation always apply to the “origin”

Pinch to Zoom (good)

e But we want it from the middle of our pinch

@%Q ”
U=

Pinch to Zoom (good)

e Three part process:

e Move the center to the origin 7!

e Scale (or rotate) §

e Restore the center to where it belongs T
o V' =TST™y

March 20-24, 2023 | San Francisco, CA #GDC23

Pinch to Zoom (finish up)

e Rotate

start vector = start 1 - start 0

end vector = end 1 - end 0
start_rotation = atanZ(start_vector.y, start_vector.x)

end_rotation = atanZ(end_vector.y, end_vector.x)
delta = end rotation - start rotation

working = working.rotated(delta)

March 20-24, 2023 | San Francisco, CA #GDC23

Pinch to Zoom (finish up)

e Scale

var start_length = (start_1 - start_0).length()
var end_length = (end_1 - end_0). length()
var scale = end_length / start_length

working = working.scaled(Vector2(scale, scale))

March 20-24, 2023 | San Francisco, CA #GDC23

Pinch to Zoom (finish up)

e Undo the translation then apply our touch offset

working = Transform2D(®, center_start) * working

working = Transform2D(0®, center_end - center_start) * working

transform = working

March 20-24, 2023 | San Francisco, CA #GDC23

March 20-24, 2023
San Francisco, CA

Sensor Stuff

Everything but the touchscreen

#GDC23

Sensor stuff

e IMU = Inertial Measurement Unit
e All phones have this
e How auto-rotate works!

March 20-24, 2023 | San Francisco, CA #GDC23

IMU

e Accelerometer most common
e Most reliable
e Measures acceleration
e As a vector \ J
e Usually gravity

e Can’t “twist” v

e Don't fall for double integral

March 20-24, 2023 | San Francisco, CA #GDC23

IMU

e Gyroscope usually included
e Measures change in orientation
e Often read as absolute orientation
e As a quaternion
e Thanks to accelerometer finding gravity
e Drifts on Yaw
e Interesting for VR
e Phones don’t always calibrate well = Drift

|

March 20-24, 2023 | San Francisco, CA #GDC23

IMU

e Magnetometer is fairly common
e Reads magnetic fields
e As a Vector

e Usually Earth’s
e Would give you perfect orientation... if it worked

e Everything messes with it

March 20-24, 2023 | San Francisco, CA #GDC23

GOC

March 20-24, 2023
San Francisco, CA

Tilt Controls

Tilt Controls

Makinc \arble maze” kind of game, what do you use?

e

"

€ Accelerometer)

S——

y
* MagnetOmeter

March 20-24, 2023 | San Francisco, CA #GDC23

Tilt Controls

e \Want offset in a 2D plane
e X (left/right) is usually fixed U
e Y/Z needs to be calibrated

March 20-24, 2023 | San Francisco, CA #GDC23

Tilt Controls (x)

e If you normalize acceleration
e X = 0 not tilted
e X = 1 or -1 full tilt

e Looks a lot like sin(6) —OO—>

e S0 asin(accel,) = 0 or how much we’re tilting

March 20-24, 2023 | San Francisco, CA #GDC23

Tilt Controls (y/z)

e Need to calibrate

e Have two axis that feed into it

e Sounds like aran2() time!

e "Calibration” is saving an angle and restoring

March 20-24, 2023 | San Francisco, CA #GDC23

Tilt Controls

func calibrate():
_calibration = read accelerometer()

func _process(_delta):
1f not _calibration:
calibrate()
var down = read accelerometer()
var roll = -asin(down.x)

var pitch = atan2(down.y, down.z) - atan2(_calibration.y, _calibration.z)

transform = Transform(Quat(Vector3(pitch, 0, roll)))

March 20-24, 2023 | San Francisco, CA #GDC23 GDC

Tilt Controls

0.078213
-7 .770966
-5.986825

March 20-24, 2023 | San Francisco, CA #GDC23

GOC

March 20-24, 2023
San Francisco, CA

Gyroscope

Gyroscope

e Great for when you need to rotate around gravity
e Like a 1st person camera
e There will be drift
e Reads angular change
e Often can get "attitude” (device orientation)
e As a quaternion

March 20-24, 2023 | San Francisco, CA #GDC23

Gyroscope

e Test scene - 1st person camera/look
e Aim at sphere

GOC

March 20-24, 2023 | San Francisco, CA #GDC23

Gyroscope

e What could go wrong?

var orientation = ReadGyroscope();
transform. localRotation = ortientation;

March 20-24, 2023 | San Francisco, CA #GDC23

Gyroscope

e WOT?

Gyroscope

e Need to “"calibrate”
e \What is “calibration?”

March 20-24, 2023 | San Francisco, CA #GDC23

Gyroscope

e Gyroscope "attitude” is an orientation in 3D space
e We need to “"undo” this before applying a new one

March 20-24, 2023 | San Francisco, CA #GDC23

Gyroscope

e 2D example
e Camera starts at 4 =27.1°
® We Want thls tO be 9/ — Oo D

.
.* *
.
.
.
.
.
.
.
**

= .

. -
- o* =

.
.
.
.
.
.
.
.
.
.
®

4

March 20-24, 2023 | San Francisco, CA #GDC23

Gyroscope
e Simply subtract 27.1° from every new reading

¢ f(reading) = reading — 27.1°
e How do we do this in quaternions?

: -
I

March 20-24, 2023 | San Francisco, CA #GDC23

Gyroscope

f(reading) = reading '. _A

March 20-24, 2023 | San Francisco, CA #GDC23

Gyroscope

f(reading, calibration) = readin—calibmtiOn

March 20-24, 2023 | San Francisco, CA #GDC23

Gyroscope

Quaternion Multiply

f(reading, calibration) = readingi+X—calibration))

Quaternion Inverse

March 20-24, 2023 | San Francisco, CA #GDC23

Gyroscope

— N1
f (Qreading’ Qcalibmtian) _ Qcalibmtioan’eading

March 20-24, 2023 | San Francisco, CA #GDC23

Gyroscope

public void Calibrate() {

_calibration = ReadGyroscope();

}

var orientation = Quaternion.Inverse(_calibration) * ReadGyroscope();
transform. localRotation orientation;

.........
...
‘‘‘‘‘‘
) 0 0 v W& v v dw bt U w e @ vt v ¥ w090 0P v & 6 0 66 0 0 0 & & & 0 06 0 0 0 0 0 O 0 0 o 0 o 0 o o O 0 O o o o 0 o 0 0 o o o 0 O o o O O 0 o O o 0O O O o o 0 0 0 0 0

Gyroscope

Calibrate

March 20-24, 2023 | San Francisco, CA #GDC23 GDC

Quaternion

e Need to convert to "game engine” space
e See my Quaternion talk at a previous summit
e Unity tells us do this in their docs, so I copied it

private Quaternion ReadGyroscope(){
var reading = AttitudeSensor.current.attitude.ReadValue();
return new Quaternion(reading.x, reading.y, -reading.z, -reading.w);

March 20-24, 2023 | San Francisco, CA #GDC23

Quaternion

Calibrate

March 20-24, 2023 | San Francisco, CA #GDC23 GDC

Quaternion

e Note that Unity doesn’t use TYPE_ GAME_ROTATION_VECTOR
e This means the magnetometer factors in
e You'll do this near metal:

March 20-24, 2023 | San Francisco, CA #GDC23

Quaternion

e Correct “up” vector

e Avoid tilting sideways (good outside VR)

e Really quick (avoid too much quaternion math)
e There is a quaternion talk later today!

March 20-24, 2023 | San Francisco, CA #GDC23

Quaternion - correct “up”

var refRight = Vector3.Cross(transform.forward, Vector3.up);
var targetUp = Vector3.Cross(refRight, transform.forward);
var angle = Mathf.Atan2(
Vector3.Dot(transform.up, targetUp),
Vector3.Dot(transform.up, refRight)) - Mathf.PI /

)

transform. localRotation = Quaternion.AngleAxis(angle * Mathf.Rad2Deg, transform.forward)
* transform. localRotation;

March 20-24, 2023 | San Francisco, CA #GDC23

Quaternion - correct “up”

var refRight~= Vector3.Cross(transform.forward, Vector3.up);
var targetUp«s_Vector3.Cross(refRight, transform.forward);

var angle = Mathf.ATan2{
Vector3.Dot(transform.up, targetUp),
Vector3.Dot(transform.up, refRight)) - Mathf.PI / 2f;

transform. localRotation = Quaternion.AngleAxis(angle * Mathf.Rad2Deg, transform.forward)
* transform. localRotation;

oooooooooo ®© © 0 © 6 0 0 0 0 0 0 0 0 06 06 0 0 0 0 0 00600000000 0606060060606 0 0006000 0000060060600 00 0000000000 0°© 00 06000000000 006060 000060 000
ooooooooooooooooooooooooo ®© © 0 © 0 0 0 0000000000606 0060000000000 000006060 0000000000 0000600006000 0000000006060 00600000 ¢
ooooooo © © © © 0 0 0 0 0 00 0 0 0 0 060 00600 0© 00 0000000006060 0000000000000 0 0006000000000 0006060 000 000000060006 060606000 0 o _
ooooooooooo © 06N A 0 06 0 0 0.0 0 06 ¢ 0 0 0 0 0 0 0 0 00 0000000000000 00000000000 0606060600000 0000000600600 000000000000 000 e (e , o o e
 March 20-24 2022 | San Francicco CA #GDC222 © © © © © © © © 0 © © 0 © 0 0 © 0 © 0 0 0 0 0 0 0 0 0 0060 0 0 0 0 o - - | =

) 0 8 v e e S e v b e V0NN e e e e W00 00w w8 © © © © © © © © © © © © © © © © © © 0O © O © O O © 0 © 0 0 0O © 0 0 0 0 0 0 0 0 0 0 O 0 0 0 0 0 ° 0 0 0000060 0 060 0 0 0 0 e/ \» @ 6
®© 6 0 006 0606 0606 00000 00 00 0 0 0 o e o o ° © © 600600000 0000600000000 0 0 0 © © © 0 06 06 0 © 0 00 06 00 060 0 0 0000000060 00000 000 0 0 ___. v __o _® e
ooooooooooooooooooooooooooo © © 0 0 0 00000006060 000060600000 0 0 0 o © © © © © © © © 0 0 0 0 0 00 0 06060 00 0000000 00060060 00000 0 ¢
ooooooooooooooo ® © O © © © © © © © © © © © © © © O © 0O O © 0 O O © O © 0 O 0 0 O O 0 O © 06 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Quaternion - correct “up”

var refRight = Vector3.Cross(transform.forward, Vector3.up);
var targetip = Vector3.Cross(refRight, transform.:Torwatd) ;

var angle = Mathf.Atan2(
Vector3.Dot(transform.up, targetUp),
Vector3.Dot(transform.up, refRight)) - Mathf.PI / 2f;

transtormstecalRotation = Quaternion.AngleAxislangte™* Mathf.Rad2Deg, transform.forward)
* transform. localRotation;

oooooooooo © © 0 0 0 0 0 0 00 00 0 0 0 0 0 0 0 0 0 0000 0000000000060 0600060000600 00 000006000 0000 06 0000060000000 0600600600060 00000000
ooooooooooooooooooooooooo © © 0 0 00 00 0600006000060 0000000 0000600000000 00000000 000 0 060600 0600000000000 000006000000 ¢
ooooooo © © 0 0 0 0 0 0 0 0 00 0006000000 000000000000 0000 0006000000000 0000000600000 0000006000600 0006000 060606060600 0, ~ o @ ®
ooooooooooo © 0 N 2 0 0.0 0 0.0 0 0. ¢ 06 0 0 0 0.0 0 00 0000 0000600000000 0000600006000 0600000000000 0606000600000 0060060000000 e (e s, o 6
 March 20-24 2022 | San Francicco CA #GDC222 ©@ © © © © © 0 © 0 0 © 0 0 0 0 0 © 0 0 0 0 00 0 00 0 0 0 0 0 0 0 0 o - - | -

B i S R HUE S DU Ve e e e YN0 00w w8 © © © © © © © © © © © © © 0 0 O 0 0O 0O 0 0 0 0 0 © 0 0 0 0O O O 0 0 O 0 O 0 0 O 0 O 0O 0 0 O O 0 0 0 0 0 0 0 0 00 00 0 0 0 0 o ¢/l \ s o @
®© © e 000606060 00 0 00 0 00600 0 0 0 e o o ° ®© © 0 0 0060060006060 00000000 0 00 © © © © 0 © © © 0 0 0 0 06 0 0 0 0 00 0 0 000 06000 0 0606000 0 0 0 0 _ v o _e ®
ooooooooooooooooooooooooooo © © 06 0 0 000006 0000000000000 0006000006000 0000000006000 0000606060006 0600 0060000606000 060000 0 ¢
ooooooooooooooo ® © O © © © © © © © © © © © © © © O © 0O O © 0 O O © O © 0 O 0 0 O O 0 O © 06 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0

Quaternion - correct “up”

var refRight = Vector3.Cross(transform.forward, Vector3.up);

var targetUp = Vector3.Cross(refRight, transform.forward);
var angle = Mathf.Atan2(
Vector3.Dot(transform un.. targetip-)

-t & ijUP}I’

\leetOr3.Dot(transform.up, refRight)) - Mathf.PI / ;

transform.localRotation = Quaternion.AngleAxis(angle * Mathf.Rad2Deg, transform.forward) [us
* transform. localRotation;

March 20-24, 2023 | San Francisco, CA #GDC23

Quaternion

March 20-24, 2023 | San Francisco, CA #GDC23 GDC

Follow me:
@pux0r3 on Twitter and mastodon.gamedev.place o

That's a zero and a silent 3 at the end

#GDC23

