
Modernizing Rendering at Supercell

Timo Heinäpurola



Agenda

• Short history of rendering at Supercell

• The process of rewriting our rendering core

• Overview of the new renderer

• Learnings



Speaker INTRODUCTION

• Timo Heinäpurola

• Supercellian since March 2020

- Focused on building our rendering capabilities

• Background

- IT Industry

- Bugbear Entertainment

- Next Games

- Reforged Studios



Supercell

• Founded in 2010

• 420 people globally

• Known for hit games



FROM FLASH TO NATIVE C++



The Age of Flash

• First game Gunshine.net was made with 
Flash

• Pivot to tablet oriented mobile

- Needed something native for iOS and 
Android

- Wanted to continue authoring in Flash



The Birth of Titan

• Custom Flash to in-house pipeline

• Rendering with in-house system

• Part of Titan

- Not just rendering

- Networking, push notifications, compression etc.

- Maintained by the Tools and Technology team



THE GROWING NEED for 3D

• Early games were all isometric 
with fake pre-rendered 3D



THE GROWING NEED for 3D

• Early games were all isometric 
with fake pre-rendered 3D

• Everdale (beta game) and 
Brawl Stars highlighted the 
potential of 3D



New Winds Blowing For 3D



Apple drops the bomb

• Apple deprecates OpenGL|ES

• We heavily relied on OpenGL|ES

- Some lightweight layers on top

- Many games directly using the underlying API



LEGACY RENDERING ARCHITECTURE

Shader Renderer GLImage …

OpenGL and OpenGL|ES

Game Specific Rendering

Meshes, Materials, Models, Scenes …



FUTURE PROOFING OUR RENDERING

• We saw this as an opportunity

• Legacy render path was holding us back

• We needed a proper abstraction layer



Risky Move?

• Rewriting the renderer of billion dollar games might be considered risky…

• …we think big changes are often necessary to keep us competitive!

• Moving games to new Titan features helps us …

- improve our games with every update

- keep the Tools and Technology team small

- to share learnings and technology between games



ENTER THOR



The BIRTH OF THOR

• THOR abstracts Metal, OpenGL, OpenGL|ES and Vulkan

• When I joined there was already a skeleton of what was to become THOR

- Architecture

- Basic support for OpenGL, OpenGL|ES and Metal



THE FIRST STEPS OF THE GOD OF THUNDER

• During the spring of 2020 I worked on THOR in 
isolation

• Hay Day first steps before summer holidays

• Hay Day chosen due to limited rendering feature set

First (buggy) screenshot of Hay Day with THOR



Preparing for LightNing Strikes

• We set up automated testing for Hay Day

- Predefined scenarios for smoke testing

- Video recording

- Log capturing

- Executed in Google Firebase

• Helped us find multiple issues in rendering before launch

- Allowed QA to focus on the more tricky issues



The hay dayS OF thor

• During fall of 2020 I focused on improving and stabilizing THOR

• Working with the game team was easy

• Hay Day update using THOR was released on the 23rd of November 2020



The Rest of the Live Games

was the second game and also the first game to use any 
3D

was started in parallel with CoC, but took longer to ship 
due to the game’s release schedule

was perhaps the most complicated one due to its heavy 
use of 3D

took the longest to go live due to their release schedule, 
but didn’t provide any major surprises

12t
h of A

pril 2
021

25t
h of O

ct 2021

16t
h of D

ec 2021

2n
d of N

ov 2022



…THAT WAS JUST THE BEGINNING

• The development of THOR has continued non-stop

• Now building on top of THOR

- New rendering techniques

- Easier sharing

- Better tooling



thor



THOR DESIGN GOALS

• Support multiple graphics APIs

• Powerful and efficient, yet easy to use

• Futureproof



THOR IN A NUTSHELL

• Currently supports Metal, OpenGL, OpenGL|ES and Vulkan

• Architectured around the core concepts of Metal

• THOR is built to be multithreaded



DESIGN CHALLENGES

• Must support all devices that the legacy path supported

- Supercell's mission is to create great games that as many people as 
possible play for years and that are remembered forever.

• Added abstractions should be efficient

• Must coexist with the legacy path



THOR

CORE Architecture

Buffer Texture Render 
Pipeline

DepthStencil 
State

Shader 
Function …

Platform Specific Implementation

Meshes, Materials, Models, Scenes …

Game Specific Rendering



Single Frame

CORE Architecture

Command Queue

Command Buffer Encoding

GPU Execution

Present

Command Buffer Encoding

GPU Execution

Emulated on OpenGL
Time



Metal

OpenGL / OpenGL|ESSHADERS

GLSL SPIR-V

MSL

GLSL 150

GLSL ES 
300

…

MetalLib

Vulkan
Run-time

Shader module

Run-time

Shader 
function

Run-time

Shader program 
cache Shader program



EXTENDING THOR

• Some features of THOR not available on all platforms

• Games can check feature availability

• Some functionality is emulated

- Allows for uniform base implementation

- Example: uniform buffers



LOOKING INTO THE FUTURE

• Focus has shifted to building on top of THOR

• Examples

- Adding features to THOR (compute shaders, mesh shaders, etc.)

- Render graph

- ODIN



Worker queueWorker queue

Render Graph

• Render task management system

• Each task implements a piece of the frame 
rendering

- Generic tasks: Like skinning

- Render passes

- Executed on worker queues

• Synchronization based on inputs and outputs

Model Skinning

Encode Color 
Pass

Encode UI 
Pass

Model Skinning

Encode 
Shadow Pass



ODIN

THOR

ODIN

Buffer Texture Render 
Pipeline

DepthStencil 
State

Shader 
Function …

Platform Specific Implementation

Meshes, Materials, Models, Scenes …

Game Specific Rendering



LEARNINGS from ALONG THE WAY



Quality!

• Our games are played on a wide range of devices (250 million MAU)

- Testing everything manually is impossible

- Automated smoke testing takes pressure off from QA

• Proper self-review of implementation before commit

• Respect your QA! They are superheroes that help you sleep at night J



Energy Efficiency

• Batteries and heat dissipation limiting factors on mobile

• Rendering needs to pay extra attention to this

• Important for fulling out mission!

• Examples

- Use cache efficient data layouts on hot memory

- Favour using multiple cores

- Aim to use low power cores

- Write sensible code from the get go



THOR Metal Backend - Energy savings



When Devices Don’t Work As Expected

• Many Android devices have buggy drivers or hardware

• Situation not as bad as I had expected, but still significant

• Examples

- Missing nested code blocks

- Using outputs as temporaries

- Uniform structures



Missing code blocks



Using Fragment Output As Temporary



Uniform Structures

• Black screen with some flickers in the corner

• GAPID (Android graphics debugging tool) showed inconsistencies in uniform data

• Driver didn’t like uniforms defined as structures when updating them with glUniform*



Getting it Done

• Our culture is about empowering people to do their best work

- No red tape

- Responsibility and ownership

• Allowed me to work efficiently

• It’s not all roses, but benefits outweigh downsides



CONCLUSIONS

• We build technology for a need

• We had to proceed carefully

• THOR is our platform for the future

We’re hiring!


