
I am Jan Hlousek, technical lead at Keen Software House.

Currently, my team is developing the next generation of our inhouse engine.

Today, I will talk about improvements of entity prediction techniques in

physics-based games like our Space Engineers.

Space Engineers is a creative sandbox game with solar system scale simulation.

Players can build static bases or flying and riding vehicles.

Players can do so in the multiplayer environment as they either cooperate to achieve

the shared goals…

Or compete each other alone or in factions.

Environments are fully dynamic.

Planets and asteroids are made out of voxels and players can alter them via drilling or

voxel hand tool.

Our design principle is that anything in the world can be constructed, deconstructed or

destroyed.

The game is 10 years on steam, 3 years on Xbox and coming soon to Playstation.

It has sold over 4 million copies and still doing well.

It is heavily modded by design. There are over 500 thousand mods and other user

creations on Steam Workshop and mod.io

There are servers with 16 or 32 players, but biggest servers have up to hundred

players.

There are tens of thousand individual entities called grids per server, which are

composed out of thousands of blocks.

Game is built on top of the inhouse developed engine called VRAGE.

We are using C# for 99% of the code, including engine and renderer.

PC and Xbox platforms are using DirectX 11 with deferred PBR renderer and

dynamic global illumination.

We have developed our custom Voxel technology and we are using Havok 2012 for

physics.

Multiplayer networking uses an authoritative server, where clients are connected via

P2P in a star network topology, so clients never communicate directly with each

other.

We are using steam for PC only networking and Epic Online Services for crossplay

with consoles.

Our protocol is based on UDP with custom acknowledgements for some types of

packets.

The servers are either locally hosted - which means players can set game discovery

to enabled and others can connect to them

or players can spawn a dedicated server.

Server holds the complete world state and portions of it are replicated to clients.

Delta state updates are regularly sent from server to clients. Clients send only

controls updates like button presses to the server.

Players can build any physical contraption, be it a ship, rover or hybrid, connecting it

with rotors and pistons and then control it in multiplayer scenarios.

That’s all for the intro.

Now, let me explain how we predict and synchronise entity transforms in our game:

- First I will establish how the positions are being updated to clients for all

entities

- Then, I will show some issues of that approach along with improvements by

relative positions in chapter 2

- Such solution have a big deficiency and that’s a lag from user’s input to

screen, explained in chapter 3

- I will introduce basic prediction to fix that along with example correction in

chapters 4 & 5

- Such approach works for static worlds like Counter Strike or Fortnite, I will

explain why that does not work well for Space Engineers in chapter 6

- And continue with new proposal of relative prediction in chapter 7

- In chapter 8, I will touch on some specifics of physics setup needed

- And follow up with problems approach can bring and the solutions in chapter 9

So, we have quite long agenda, let’s get to it.

Let’s start having our entity positions updated based on players actions.

First, server world subset is replicated to the client based on the position of the client controlled

entity, in this case his character.

Only client replicated entities get updates for their states and transforms. Server keeps track of

replicated entities for each client.

Updates are sent sparsely the further the entity is from the client’s controlled entity up to 3km

radius.

So for example entity in red circle which has 20m radius gets updates every 4 frames, entity

close to the edge of 3km replication radius gets updates every 60th frame, which means

roughly every 1 second.

Let’s see the packet flow from server to clients.

In the middle, there is a server and clients are on both edges of the diagram.

This is an ideal case of local network conditions without any lag.

In real network conditions, packet travels from server to client for certain amount of

time, which is half of the ping time.

Position updates are streamed using UDP protocol, which means server does not

wait for confirmation.

New data always supersede the old one.

Real UDP networks exhibit behaviors like out of order delivery of the packets, see red

arrow on the left side.

Client interpolates on the last 60ms of data, effectively operating 64ms plus half ping

time late from the server.

If the out of order packet is delivered within this time period, it is still entered into the

position history and used. Otherwise it is discarded.

Another behavior of real networks is dropped packet. Since new data will come very

soon, we just ignore it and interpolate on data we have.

In case there is not enough transforms to interpolate, client extrapolates from older

transforms.

From the other end, client sends controls updates (like button presses),

server applies them to simulation and sends results.

Real network conditions are a big issue in control updates, much bigger then in

position updates:

Position updates seen on previous slides bare the complete information and every

new packet makes the previous one obsolete.

On the other hand, with control updates, every packet have meaningful information

and failing to apply it in correct simulation step changes the simulation outcome

significantly.

It is very important to deal with such situations.

Hence we introduce a small buffer with 4 packets on server, which helps to cope with

network conditions.

It is called playout delay buffer.

Let me show you how that works.

Let’s say, at the beginning we get packet with timestamp #2 and since it is first

delivered packet, we enter it at the end of the buffer.

Next frame, we push buffer by one place.

We get packet #5 and order it behind the packet #2 since we miss packet 3 and 4.

We are still not applying the packets to the simulation, so there is time to deliver them.

Here we go, out of order packet #3 is delivered and ordered into the buffer.

Next frame, no packet is delivered, but we anyway push the buffer by one place as in

every frame

now the packet #2 reaches the buffer’s head and we apply it to the simulation

Next, packet #1 is delivered, but it is too old.

Applying out of order may change the simulation in unwanted way, so we rather

discard it and instead apply the buffer’s current head, packet #3.

Since we yet did not get the packet number 4, we apply again packet number 3

instead.

Since the packets hold the controls like arrow keys pressed in the frame, it is

desirable controlled entities won’t stop moving for every packet missing. It would

result in jerky movement.

Next frame, the duplicated packet #5 gets delivered. It is discarded, but packet #5

already present in the buffer is applied.

Next frame, we are out of packets, but we keep applying last delivered packet #5.

We stop repeating last packet after few frames, otherwise character will feel it is

having its own agenda.

This was artificial case for our example purposes.

In real networks, these issues are much more rare and rather come in waves.

Our game contains various means of loosely attaching entities together using rotors

and pistons.

Each attachment has some degrees of freedom, but is affected by motion from the

attached entity.

In physics it is called constraints.

When we interpolate each entity’s transform separately, it creates disconnected

movement.

It gets more pronounced when we get further from the entity, since we send position

updates sparsely.

The solution is to create hierarchy of entities, much like with character skeletal

animation. Children stream transforms relative to its parent.

Each transform gets interpolated independently in local space.

Whole hierarchy is then resolved at once.

The challenge is to figure out which entity is root and which is child. With physical

constraints, there is no such notion.

We have to account for cyclic dependencies as well.

There is a heuristic in place, prioritizing either controlled entity as root or at least

largest entity.

With this approach, the animation feels coherent even with sparsely sent position

updates.

So far, we have a working prototype of entity synchronization.

But there is one big issue - time it takes for the action from a button press to appear

on the screen.

This time is referred to as a lag and the game is perceived laggy by now.

Let’s break down the order of operations, that it takes from action as a button press

on the client through server simulation to screen.

First we press a button, which is registered by operating system in about 2ms.

But with discrete frame steps at 60Hz it can actually take up to 18ms to get registered

if we are unlucky.

We sample the input at the beginning of our frame step and send control updates to

server right away.

With 50ms ping time, it takes 25ms to reach the server.

<point>

On the server side, it sits in playout delay buffer for 4 frames, adding another 66ms.

Server simulates the input and sends the result back to client at the end of the next

frame.

It adds one frame latency plus half ping time to overall lag.

Client gets the data delivered and applies them in its simulation tick and sends results

to renderer. This adds another frame latency.

Render processes simulation messages and submits them to GPU, adding another

frame latency.

GPU processes command buffers and send the results to the monitor or TV, adding

another frame of latency.

The monitor itself can take some time to display the results, latencies differ greatly

from 10 to 100ms, especially for smart TVs with image enhancements.

John Carmack once said: I can send an IP packet to Europe faster than I can send a

pixel to the screen.

Let’s pick the average 30ms.

So we are at 231ms in quite optimal conditions. This is without added latencies

caused by bugs in wrong frame update loop order, like sampling controls after

simulation update.

In not-so ideal conditions say, 300ms ping time, it can take half a second for the

reaction.

And it is still not the worst case. We have 700ms ping players over satellite

connection.

You can do your math.

Space Engineers are not competetive shooter, but such a lag is very annoying even

in a builder game.

So what can we do about it?

We can make playout delay buffer optional, detect problematic network conditions like

out of order packets and enable it when needed.

We can disable it on the fly after packet problems won’t happen for some time.

Network issues usually comes in waves - because of internet infrastructure changes

like router malfunctioning and rerouting are happening on the fly.

What else can we do better?

Here we go.

We can predict outcome on the client, instead of waiting for the simulation result from

the server.

The benefit is, it cuts huge amount of time needed for network transfer.

The downside is, it adds possibility of wrong outcome of client simulation, so-called

MIS prediction.

Since we want to obey our server, we have to correct the results later, once we will

get them.

We are left with shy of 100ms on the client.

Bare in mind this is a worst case scenario, where you press controls right after

sampling it and each frame taking exactly 16.6ms to finish in every stage of the

simulation and rendering.

This is rarely the case.

So prediction, how does that work?

We are recording history of positions simulated on client and comparing the results

received from the server later on.

We apply the delta position between client and server not only to the current position,

but to the whole list of historical positions.

<point>

Let’s start with the same state of the character on client (on the left side) and server

(on the right side).

The diagram is from top view in 2 dimensions only for simplicity.

When user presses the forward button

- First, client sends the button press information to the server

- Then, simulates character moving forward from 0,0 coordinates to 0,1

- And last remembers the simulation outcome in the history list

For the next timestep many things happen at once, let’s start from the client on the

left:

- The steps are very similar to last slide

- User presses the right button

- client sends the button press information to the server

- client simulates character moving forward from last coordinates to 1,1

- And finally client remembers the simulation outcome in the history list

In the meantime, server on the right side

- gets the packet with forward button press from last simulation delivered

- let’s say network conditions are good, so we can skip playout delay buffer

- Server simulates the character moving forward to coordinates 0,1

- Server sends the simulation outcome as positions 0,1 to the client

Next frame, let’s again look on the client on the left side:

- User presses the forward button

- client sends the button press information to the server

- client receives the simulation outcome from the server and compares it with

history timestamp #1

- It correlates, so we can freely continue without any change

- client simulates character moving forward to coordinates 1,2

- And finally client remembers the simulation outcome in the history list

In the meantime, server on the right side:

- gets the packet with button press from the last simulation delivered

- Server simulates the character moving right to coordinates 1,1

- Server sends the simulation outcome to the client

Next frame, again client on the left:

- User won’t press any button, null update is sent to server

- client receives the simulation outcome from the server and compares it with

history timestamp #2 and it correlates

Server on the right side:

- gets the packet delivered

- Simulates the character moving forward to coordinates 1,2

- And sends the simulation outcome to the client

And finally:

- User again won’t press any button

- client receives the simulation outcome, compares with #3 timestamp and it

correlates

<pause>

This went pretty smoothly, which is not usually the case. In the next chapter, I will

show you more realistic case.

But now, let’s have a look on the most important prerequisites of prediction,

synchronizing simulation steps.

So, synchronizing simulation steps:

Computers have very precise timing, so why is this actually needed?

Because the client and server frame loops are synchronized until it has just enough

work to do in given time frame (let’s say 60Hz) and just waits some time at the end.

The second some work takes more time than expected, we get a frame drop, but

more importantly for our case, the client and server timings gets out of sync. It can

happen on either of the machines.

Optimizing code so it won’t happen is very important, but it is impossible to achieve it

100%.

Especially with modding, which our game stands and falls with.

So how do we do it:

We are measuring ping time continuously by stamping control update packets sent

from the client with client’s simulation time.

Here you can see packet from frame #1 timestamped as packet #1.

Server, when sending results, hands over this client stamp from the last applied

control update.

This way, we know exactly the time it took for the round trip, including sitting in the

playout delay buffer and server simulation time.

On top of that, server stamps the packet with its frame #.

Client is then responsible to keep his prediction simulation time half ping sooner than

the server time and interpolation time half ping later.

When client is falling behind, it tries to speed up the simulation, if possible - it waits

smaller amount of time at the end of the simulation loop.

When there is too much work in the frame for speed up to be possible and it falls

behind up to 1 second, it skips all frames up to the current server time.

When client is ahead, we slow it down by adjusting the wait time at the end of the

simulation loop.

Of course, we have to make sure, the timing won’t fluctuate and the time changes are

subtle enough not to be noticeable by the player, so there is some complicated

smoothing and hysteresis going on.

<pause>

So, we had a look on ideal case of client prediction. Let’s now have a look on the less

ideal case.

What happens if the predicted entity’s position is different from the server’s results?

We call it prediction desync or misprediction and trust me, it is quite usual.

Let’s start with the same state as last time, but having the obstacle on the server side,

which is not yet present on the client side. So called desync.

<point>

When user presses the forward button

- client sends the button press information to the server

- simulates character moving forward from 0,0 coordinates to 0,1

- and remembers the simulation outcome in the history list

For the next timestep

- User presses the right button

- client sends the button press information to the server

- client simulates character moving right from the last coordinates to 1,1

- And finally client remembers the simulation outcome in the history list

In the meantime, server on the right side

- gets the packet with forward button press from last simulation delivered

- let’s say network conditions are good, so we can skip playout delay buffer

- Server simulates the character moving forward to coordinates 0,1

- Server sends the simulation outcome as positions 0,1 to the client

Next frame, on the client:

- User presses the forward button

- client sends the button press information to the server

- client receives the simulation outcome from the server and compares it with

history timestamp #1

- It correlates, so we can freely continue without any change

- client simulates character moving forward to coordinates 1,2

- And finally client remembers the simulation outcome in the history list

In the meantime, server on the right side:

- gets the packet with the right button press from the last simulation delivered

- Server simulates the character trying to move right, but hits the obstacle, so

the simulation outcome is same coordinate 0,1

- Server sends the simulation outcome to the client

Next frame client on the left:

- client receives the simulation outcome from the server and compares it with

history timestamp #2 and it is not correlating, so we have a desync registered,

finally

- The correction delta is 0, -1 is applied to both current position and the whole

history of positions starting from timestamp #2

Meanwhile, server on the right side:

- gets the packet delivered from the last frame

- Simulates the character moving forward to coordinates 0,2

- And sends the simulation outcome to the client

Next:

- client receives the simulation outcome, compares with #3 timestamp and it

correlates because we corrected it during previous frame

At some point, the other body finishes streaming and appears on the client as well.

This was of course just an artificial case of desync, let’s have a look on some real

case.

Let’s say, predicted entity on the client runs through the door.

At the same time, other client closes the door.

Server gets both events at the same time and starts closing the door, preventing

player from running through them.

Client later gets server’s truth and will have to comply - backing with the client

character off the closed room.

In similar case with better network conditions for one of the clients, other player may

even close the door later than and still win.

Life is not fair.

In our examples, we use integers for positions, but in reality, those are floating points

and unless you have 100% deterministic simulation, the predicted entity is all the time

slightly off.

Messing aroung with the player controlled entity’s position can be distracting to the

player. We have to make sure to correct only when necessary, in other words when

difference is big enough.

Lastly, the correction should be applied over time with small doses - exponential to its

extent.

So far, we were operating in the static world, where only player character is moving.

In our game, it is quite usual the other player is influencing client’s simulation. Take

an example of player controlling the ship with other players inside.

Where the two of these worlds meet, the Time paradox happens.

Clients have to do a prediction based on the current state of the world, but they get

positions streamed from the server with latency.

Effectively, server simulates client’s controls on a world state, which is one ping time

newer than what was the state of the client’s world when doing the prediction.

Let’s see an example of character flying alongside of the ship in 50m per second to

the left.

Animated ship on client’s machine is 2.5m late to the server’s state.

Character will attempt to board the ship through the door in front of him.

On the left side, you can see the client state, on the right side the server state.

On the client, character will start flying towards the ship.

And eventually boards the ship.

In the meantime on the server, character starts flying towards the ship.

Next frame, it tries to continue in the flight on the server, but hits the wall.

Server sends this outcome to client, which has to back out of the ship to the player’s

disappointment.

Similar behavior can happen in case of the other player controlling the ship.

The right hand side player starts turning the ship, while left hand side player runs

around the ship.

By the time, left hand side player’s client realizes

the ship has been turning

many simulation steps has passed.

The client has to start correcting to the different simulation results from the server.

These scenarios are not good for player’s experience.

We have to find a way how to be able to operate on the world state as close to

server’s when it is receiving our controls

including the state changes from other clients.

And that is just impossible as we don’t have all the information at hand.

Thankfully, there is a different solution –

And that’s relative prediction.

Let’s revisit our example of character flying alongside of the ship in 50m per second to

the left and character attempting to board it.

When character starts flying towards the ship

- server detects close proximity,

- parents player to it

- And notifies client.

It is very similar concept to the hierarchy I have introduced for the entities connected

via physical constraints. The main difference is that this relation is just logical for

prediction purposes.

From now on, all character’s positions will be delivered to the client as relative

transforms to the ship.

When parented, client corrects player’s position to be relatively the same to the parent

ship as on the server.

This can be quite distracting to the player as the displacement between animated and

predicted entities can be many meters.

It has to be smoothed out via interpolation.

Now, when character proceeds to fly towards the ship.

It correctly bumps to the wall on the client.

Since player sees the wall he can only blame his poor jetpack controlling skills and

not the game.

Same happens later on the server and no further correction has to be made.

Let’s see some rules on how we are finding proper parents.

Character walking on any surface is parented to that very surface.

From the moment it stands on the surface, its coordinates are streamed to the client

relative from surface’s origin to character’s pivot.

Let’s see an example of different player rotating the ship while our character is

walking on it.

We don’t mind it anymore, since our transforms are always relative to the parent, no

matter how ship will twist and turn.

Another case is

- flying character

- or other player controlled entity like small ship

approaching bigger entity.

We will inflate the bounding box of the big ship as a hint for parenting.

When velocities get to similar values, it indicates player wants to land or dock to the

other ship, thus needs to be parented.

We take velocities into consideration, not to parent to entities which are just passing

by in different directions, as it would affect the positions negatively.

In case of multiple overlapping inflated bounding boxes and the similar velocities at

point, we will parent to the bigger bounding box.

To wrap it up:

We stream transforms relative to parent, in his local space.

We apply corrections in local space as well

Only after that we convert to the world space.

Let’s now have a look on some specifics of the physics setup.

Since client is animating all of the world entities but also attempting to simulate the

controlled entity,

it warrants special treatment in physics,

very different to how the world is simulated on the server.

All animated entities are static rigid bodies on the client.

When we start predicting some entity, it switches to dynamic rigid body.

From that moment,

- we start streaming relative transforms and

- Velocities

- from the server

- And we inherit parent’s transform changes.

Let’s see it on example of steps taken during one frame on the client.

On server, ship is moving 50m/s, while character is running in the same direction at

10m/s, totalling 60m/s velocity.

On client though, static bodies does not have any velocity in the physics simulation,

so ship moves 0m/s.

Character as a predicted entity has just its own motion relative to parent, which

means 10m/s.

Client frame update starts with animating all non-predicted entities,

so ship in this case.

Then, animation delta is propagated to the predicted entity,

so character gets moved as well

Lastly, physics simulation runs for predicted entity, applying run velocity

<pause>

And that’s it, easy.

So we have it figured out nicely and implemented. The theory is sound.

What can possibly go wrong?

So, this is a typical situation of desync between client and server state.

The hole is dug only on client

whereas character on server stands still on the surface.

This causes client’s position being reset periodically to server’s ground truth.

Reason is obviously a bug in a code,

client and server world state should be in sync at all times.

In this case, client decides that character should fall down because of slight difference

in simulation outcome,

- but server character stays hanging at the edge of the surface.

- As we detect the big desync, we will reset to the server position,

- but the character does not get attached to the surface and

- starts falling down immediately,

- creating neverending fall / reset loop.

The solution is to let the client know the state of the server’s character physics

controller.

In this case - state of being attached to the surface

and apply it when being reset on the client.

Next set of problems is caused by players being able to create complex contraptions

and control them.

This is a strandbeest-like walker.

It is created using multiple chains of rotors.

If we try to predict it in multiplayer,

- the prediction error accumulates and

- corrections breaks the physics simulation.

Solution: do not predict constrain chains

- switch to animation.

- As constrain contraptions have latency by themselves,

- the network latency is not a big issue anyway.

Next set of issues comes from interaction with small entities.

Let’s break down the proble

- (point) the entity on client is static, so character will not push it, but rather walks on

top of it.

- (point) server side, the entity gets pushed by character.

This situation will create a desync.

So we have to come up with a new rule:

- Entities affectable by controlled entity should not be used as a parent.

- In other words do not parent to small or light entities.

This is similar case, where the character parents to the nearby entity.

We should adjust the rule to parent only to entities we stand on.

And of course, during testing period, the definition of what is small and light had to be

adjusted,

as QA was coming up with new cases over time.

Let’s have a look on another set of problems regarding centrifugal forces.

Locally simulated physics does not simulate same centrifugal force,

- since the entity we stand on have zero velocity.

As you can see, it creates major desyncs.

In this case, angular velocity of the ship is 25degrees per second, which means

~40m/s velocity at the position of character on the server.

- which is exactly zero on the client

When player jumps, it has very different outcome.

So, we have to introduce a new rule:

- when client simulation outcomes are sufficiently different to server’s, we switch off

prediction and resort to animation.

The animation has worse latency, but without any desyncs.

Another case of physics non determinism comes from interaction of multiple entities.

In this case, the controlled entity is the vehicle.

Since it is controlled, it has dynamic rigid body on both client and server.

(point) There is a small disconnected block inside of it, which is

- dynamic on the server as well

- but it is not controlled on client, so it is static and animated on the client

When player starts controlling the vehicle, the small block acts as a hard stop for

prediction locally,

creating erratic movement

Solution is to disable prediction when we detect too many contact callbacks between

- predicted entity and other entities that are dynamic on the server, but static on the

client.

We can switch back to prediction after some time of not penetrating any other

surface.

This was just a glimpse of possible problems this setup can bring.

Nevertheless, the solution allowed us to

- reduce latency in common scenarios by significant amount,

- so I believe it is a sound solution, worth invested time.

Let’s bring it all together.

We are streaming transforms of entities from server to clients

And we do it hierarchically for better interpolation outcomes.

We interpolate or extrapolate transforms on the clients

In physics on client, all the entities are represented as static rigid bodies.

Except for controlled entities,

which are simulated and

corrected once server delivers its results

Corrections are delivered relative to close by entities,

so called parents,

to prevent desyncs from having old world state on clients.

Predicted entities are physically simulated on client

As dynamic rigid bodies

<pause>

And that’s it from me. Thank you for listening. And now

- hit me with any questions.

Later I will be available outside for any follow up discussions.

Also, Keen Software House have a booth at GDC Expo near Connect Lounge.

Please, come visit us.

- we are working on new generation of our inhouse engine with many improvements

you can see on this slide

- Let me know if you would be interested in knowing more on my twitter

	Slide 1: Predicted Physics Based Multiplayer in Space Engineers
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Space Engineers in numbers
	Slide 8: Space Engineers custom engine
	Slide 9: Space Engineers multiplayer
	Slide 10: Space Engineers multiplayer
	Slide 11: Agenda
	Slide 12
	Slide 13: Naive Position Updates
	Slide 14: Position updates
	Slide 15: Position updates - with lag
	Slide 16: Position updates - with lag
	Slide 17: Position updates - with lag
	Slide 18: Position updates - with lag
	Slide 19: Position updates - with lag
	Slide 20: Position updates - with lag
	Slide 21: Position updates - with lag
	Slide 22: Position updates - with lag
	Slide 23: PDB - out of order
	Slide 24: PDB - out of order
	Slide 25: PDB - out of order
	Slide 26: PDB - out of order
	Slide 27: PDB - too old
	Slide 28: PDB - repeat
	Slide 29: PDB - duplicated
	Slide 30: PDB - congestion
	Slide 31: PDB - congestion too long
	Slide 32
	Slide 33: Relative Position Updates
	Slide 34: Relative Position Updates
	Slide 35: Relative Position Updates
	Slide 36
	Slide 37: Lag
	Slide 38: Lag
	Slide 39: Lag
	Slide 40: Lag
	Slide 41: Lag
	Slide 42: Lag
	Slide 43: Lag
	Slide 44: Lag
	Slide 45: Lag
	Slide 46: Lag
	Slide 47: Lag
	Slide 48: Lag
	Slide 49: Lag
	Slide 50: Lag
	Slide 51: Lag
	Slide 52
	Slide 53: Prediction overview
	Slide 54: Prediction
	Slide 55: Prediction
	Slide 56: Prediction
	Slide 57: Prediction
	Slide 58: Prediction
	Slide 59: Prediction
	Slide 60: Prediction - synchronized simulation steps
	Slide 61: Position updates - with lag
	Slide 62: Position updates - with lag
	Slide 63: Position updates - with lag
	Slide 64: Prediction - synchronized simulation steps
	Slide 65
	Slide 66: Prediction - desync
	Slide 67: Prediction - desync
	Slide 68: Prediction - desync
	Slide 69: Prediction - desync
	Slide 70: Prediction - desync
	Slide 71: Prediction - desync
	Slide 72: Prediction - desync
	Slide 73: Prediction
	Slide 74: Prediction
	Slide 75: Prediction - desync
	Slide 76
	Slide 77: Prediction - time paradox
	Slide 78: Prediction - time paradox desync
	Slide 79: Prediction - time paradox desync
	Slide 80: Prediction - time paradox desync
	Slide 81: Prediction - time paradox desync
	Slide 82: Prediction - time paradox desync
	Slide 83: Prediction - time paradox
	Slide 84
	Slide 85: Relative Prediction
	Slide 86: Relative Prediction
	Slide 87: Relative Prediction
	Slide 88: Relative Prediction
	Slide 89: Relative Prediction
	Slide 90: Relative Prediction
	Slide 91: Finding a proper parent
	Slide 92: Finding a proper parent
	Slide 93: Finding a proper parent
	Slide 94: Finding a proper parent
	Slide 95: Relative Prediction
	Slide 96
	Slide 97: Client Physics Setup
	Slide 98: Frame update
	Slide 99: Frame update
	Slide 100: Frame update
	Slide 101: Frame update
	Slide 102
	Slide 103: Problem #1 - client state desync
	Slide 104: Problem #1 - client state desync
	Slide 105: Problem #1 - client state desync
	Slide 106: Problem #1 - client state desync
	Slide 107: Problem #2 - constraint chains
	Slide 108: Problem #2 - constraint chains
	Slide 109: Problem #2 - constraint chains
	Slide 110: Problem #3 - small entities
	Slide 111: Problem #3 - small entities
	Slide 112: Problem #3 - small entities
	Slide 113: Problem #3 - small entities
	Slide 114: Problem #4 - physics non determinism
	Slide 115: Centrifugal force
	Slide 116: Problem #4 - physics non determinism
	Slide 117: Problem #5 - physics non determinism
	Slide 118: Dynamic vs static RB
	Slide 119
	Slide 120: Summary
	Slide 121: Summary
	Slide 122: Summary
	Slide 123: Summary
	Slide 124: Summary
	Slide 125: Summary
	Slide 126: Summary
	Slide 127: Summary
	Slide 128: Questions?

