

Preparing AI Systems

For

Göksu Uǧur
AI Lead

Behavior Trees – it is not the hot new AI technology, so I would like to focus more on our strategy migrating from text based scripting to behavior trees
and small wins that made big changes for us

Context actions – How our AI gained awareness about the world around them and how we were able to kitbash smaller modules to achieve more
complicated setups

Enhanced mov& verticality – and how these two, combined with some of our other tech enhanced our enemies and combat arenas

•Behavior Trees
•Moving from Lua to Behavior Trees
•Tools support
•Key usages of injected behaviors

•Context Actions
•Achieving modularity & customization
•Different use cases

•Enhanced Movement and Verticality

SPOILER ALERT – be warned

So what did the road ahead look like for Ragnarok when we started?
The needs for Ragnarök :
- Very early on we knew we wanted more dynamic and vertical combat arenas
- And to go along with those, we wanted to have enemies that can move through these spaces more freely. And definitely more enemy variety, different shapes,
behaviors, movements
- More companions– even though they all use same core systems, they had different styles thus slightly different needs
- Home base spaces that has more AI/NPC going about their business
- More realms and more wildlife

Ragnarök is coming …

Some of our systems were already long overdue for some refactor even without these new requirements but these sure made us prioritize some over the other. So with that we
started taking a more detailed look into the current state of some of these starting with:
-Enemy Positioning: The system itself was holding up fairly well and could handle another game BUT it was very flat and melee-based positioning systems : This is what our positioning
looked like, It is just one layer of nodes around player. it had limited capacity to be able to support levels like these: image
-The ways in which we did world annotation for AI behavior was rigid. It needed to be expanded and allow for more systemic behavior as well as easy custom scripted setups
-Companion workflows not allowing for variety : systems around the BOY were implemented very specifically for him. Not modular at all to be able to be expanded and modularized
-Lack of centralize decision making for AI :multiple systems running under the hood that could effect what AI decision making at any given time
-Using Lua for our design scripting language - many challenges that came specifically with this that I will dive into more with detail but we had concerns with: Performance,
debugging, Authorization, stability
There were a fair bit of problems we needed to deal with but could not tackle everything with the amount of time we had.So we started with biggest offender and see if we can
tackle multiple issues with it

Challenges with existing systems

•Enemy Positioning

•World annotation
•Companion workflows not expandable
•Lack of centralized decision making for AI
•Using Lua as our scripting language

We decided to move away from LUA ,which was a text based scripting solution we were using for AI behavior and move to using Behavior trees
which defines AI behavior as a tree of hierarchical nodes that control the flow

This change would allow use to address Lua specific struggles ,centralize AI decision making and allow us to refactor companion handling and
reorganize it to make it easier to implement different companion behaviors with shared functionality

Lua Behavior Tree

On top of that, We were using Lua for both (NEXT) AI scripting and (NEXT) level scripting
And Lua as a level scripting solution was being replaced by (NEXT) a Visual Scripting solution for very similar reasons and more, so moving to (NEXT)
behavior trees us a chance to reduce the usage of LUA even more (Call to Sam’s talk)

Lua

Let me also take a moment to dive a little bit more into issues with LUA
This image here shows lua numbers just for son AI on GOW2018, with the list of things that AI does which was mostly later converted to btree.
- Lua might be considered fast compared to some other options, but it is still a scripting language and we were getting a big hit with the heavy use
we are doing for AI behavior. Because we are a studio that relies heavily on tech design, big part of our systems and AI behavior logic was living in
lua, most of the time doing very expensive things in update ticks
Here you can see out of combat we are looking at avarage around 2.6ms per frame out of combat

Lua

Which gets worse during combat with 3.7 ms on average. This is obviously before we squeezed every bit of performance we could. But with GOWR and behavior
trees, in a similar display we can see that ALL trees run at around ~0.9ms average with peaks up to 1.5. We shipped Ragnarok with a budget of 3ms for btrees with
certain setups going over with peak frames here and there.

- In addition to performance problem we just talked about, our lua scrips were also not very not stable - we had so many scripts doing a certain thing based on an
event, able to make changes at any point in the frame. Tracking bugs were difficult and making sense of sequence of events were confusing
- Lua was difficult to validate in editing time. It was error-prone and we relied on runtime asserts while we lacked reliable debugging tools
- As the functionality in lua grew so did the number of text files, made it difficult to read/author and maintain

Before I dive into how we addressed these problems other than the performance, let me talk a little bit about the process of

Lua
•Performance
•Stability
•Validation & Debugging
•Reading, authoring &

maintaining

Lua Behavior Tree

… migrating to behavior trees. If you ever had to tell your designers that “ we need to throw this thing you are heavily using and have a whole team
of trained designers for. And We need to replace it with something completely new that we need to implement from scratch”, you know that this is
no easy task.

You have seen this very very simplified example of a 1:1 conversation but moving all the content took a lot of effort. And paper planning of it looked a
lot more like this :

Migrating to Behavior Trees

Luckily our now lead combat designer Robert Meyer had a lot of experience with behavior trees so he drove this process. We started from enemies.
Lua for enemies had a shared script that was handling all the initialization and updating through a state machine

Migrating to Behavior Trees

Lua for enemies had a shared script that was handling all the initialization and updating through a state machine and each enemy type had their own lua file for creature
specific setup. Rob spent about 2 months digging into every detail in these files using Draugr as our test case and mapping out a plan. In about 6 months, in parallel with the
run time behavior tree system being implemented and the editor and tools, we had our first version of a similar concept with an enemy core behavior tree and draugr
subtrees. From that point on we started moving designers over, along with their enemy types and tackling any new issue as it arises.
While there were many upsides to using behavior trees as I will dive more in the rest of the talk, we did have to pay for the cost of a learning curve getting all our designers
familiar and efficient in behavior tree. So a lot of effort went into making sure the subtree hookups for each enemy type to be as straightforward as possible. But at the end,
behavior trees proved out to be a lot more stable and less error prone when making additions to shared core functionality compared to state machines in lua with its
hierarchical nature.
And while of course there were some things that could have been handled better, a common post mortem feedback indicates that the process of introduction&transition
to behaviortrees was mostly a successful one. And I think the most important reason for that was that we focused on Build AI systems & tools WITH designers instead of just
FOR them

Migrating to Behavior Trees

Here are some things that I think were key to this transition:
Do not start from scratch – Lucky for us Geurilla was kind enough to give us the Decima framework to start building our Btree editor on top of. So at the very least on the editor side, we were able to get a
head start. it saved us A LOT of time, and we were able to build our edotor tool that we branded as Forge
Create foundational nodes as quickly as possible (not only btree foundational nodes like sequencers, selectors but also data getters, core functionality setters for positioning, animation and combat etc
anything that will be used) so that design team has enough to continue building with
Devoted design group to be constantly checking new features, actively creating core btrees, giving usability feedback. The whole design team did not need to be involved, in fact it was better to move
faster with a smaller focused group and an environment of quick turnaround and iteration
To be able to do that we had to allow for usages of both systems until both programming and design teams are ready. With an easy run time switch option. This way not only we can easily parity test things,
we also allowed our design department continue working on prototyping uninterrupted in familiar systems while things are in progress. But that also meant they would have to be rolled over at some point
So we built documentation as we built the system :
We had devoted wiki pages that had the tech proposals, roadmaps and detailed information for programmers. But also a behavior tree page devoted to new users covering many aspects of transition
from basics, to tutorials, best practices to editor features, each with a lot of visual aid. Because getting newcomers up to speed as easy as possible was very important for our success and we planned for it
and we held each other accountable for updating it as things changed

Migrating to Behavior Trees

•Get a head start if you can

•Create foundational nodes first

•Devoted design support

•Allow usages of both systems

•Build documentation as you build the system

In tool issue reporting button (simplest but biggest win!) that automatically created a jira based on selected options–
Eliminates things slipping through cracks, minimizes effort needed for issue reporting and thus made it more likely that we would

hear about problems .
The button is good to know about all the issues users are facing, but it also means you have so many jiras now. The in tool button is

only effective if you have good production support. You need to constantly triage, prioritize, assign and plan for fix. Even without the button a good
production support and regular syncs was crucial for us early on for tracking and visibility across teams
QA support on tools – on top of the usability feedback we get from designers QA was crucial to keep the floor stable and catch tool bugs before
the builds are released

Migrating to Behavior Trees

•Get a head start if you can

•Create foundational nodes first

•Devoted design support

•Allow usages of both systems

•Build documentation as you build the system

•In tool issue reporting button

•Production support

•QA support

Having a good suit of tools were crucial for us to get our completely new Behavior Tree system up and running successfully. They did not all come
online early on of course, but at least an earlier version of them was available when needed and we continued iterating through the project.
Building tools and training users as we were building these systems and moving content over in parallel was challenging. But they played a big role in
keeping partner teams convinced and content. But more importantly they were crucial to make sure we were solving the problems we were set
out to do

Speaking of Tools …

•Behavior Tree Editor

•Debugger

•Diff/Merge Tool

•Performance Tool

•Runtime Debug Options

•Performance

•Stability

•Validation & Debugging

•Reading, authoring & maintaining

Problems to solve :

This is what it looked like in a nutshell. : As a side effect of Frankesteining an existing editor tool, it does not go from top to bottom like a regular tree, but it goes left to right. Huge
thanks to Josh Phelan, Sam Sternklar and Jeff Miller for their hard work on many aspects of this tool
Fun fact : the very first version of the btree was fully text based and had no editor. We had in game screen draw with boxes for the visualization purposes. Shoutout to our
gameplay director Jon Burk for doing a lot of heavy lifting getting this up and running early on . And Aitor Santamaria Ibirika and Sam Handrick for their continuous hard work
on it
Goal : Have it be easy to organize/navigate/read/author. So our focus was to Optimize designer time with the tool
The regular expected stuff: , search for nodes, make connections….Coloring of nodes to give users a quick idea of the tree at a glance
- And there were also many more quality of life improvements and many more shortcuts added here with feedback from all the users
But I would like to go over some small improvements that build up to bigger differences for us and things that addressed our issues with lua text files
- Grouping comments – they were used similar to code comments but provided more– helps organizing and easy hierarchy look (panel on the left) also navigates to block
when clicked. It might seem like a simple little thing but when you think about how bug and complicated behavior trees might get, they came quiet handy

Behavior Tree Editor - Forge

- We also supported in tool data validation as you can see here as an improvement upon the mostly runtime error catching of lua

Behavior Tree Editor - Forge

- We also had the ability of sharing a link to an existing view of a file. This button generated a text that had the info on the file path, the focused node
and position in the canvas. This way anyone can click or paste would automatically be taken to that point in the tool
– super easy/fast to pass things around when talking about things, troubleshooting (especially in a WFH setup)

Behavior Tree Editor - Forge

Goal : Have reliable debugging with breakpoint support while accommodating multiple options across different use cases. This was one of the
bigger wins we had over lua

- The coloring is an easy way to tell what states nodes are in one look. So if we were to look at this section of btree closer. Red indicates a node that
failed this frame, green succeeded, light blue actively running (meaning the task it is doing spans across multiple frames)and dark blue pending
child. The number at the bottom represents the amount of frames since the last time this node was updated, accommodated by light green means
that the last time this node ran was112 frames ago and it succeeded. This kind of information was crucial tracking bugs

Behavior Tree Debugger

So if for example we get a bug with companion left behind too far away from player, by just looking at this behavior tree debug at the time we can
tell that companion was in the process of getting to player but was interrupted (NEXT) 10 frames ago since this node is pink. And there is a current
Environment even the companion is still in the process of resolving. We can also tell that the same frame there was no context action or spline for
companion to engage in seeing the last time these ran they failed. Frame numbers help because we can jump into any subtree and cross reference
what happened in that specific frame to get more information
- Watch window for btree variables and the blackboard values. Blackboard values were used for more cross system communication or for easy
access across different callstacks
- Hot Reload – adds the ability to update the game with the changes in betree files while the game runs without needing to realod the game or
respawn AI (massive help on iteration times)

Behavior Tree Debugger

- We also had full breakpoint support with some different options. When they are hit, users can step through, jump to next breakpoint or resume etc
Our runtime behavior tree actually did not hold the record of the callstack, it only kept the currently running tasks for memory and performance gains. But since

that means we never crawl from parent to children each frame, but instead go from running task to running task, just using processes nodes in runtime for debugger resulted
in incomprehensible jumps from nodes to nodes. So we held the additional info to simulate crawling through the tree each frame for users.
- Similar debug info also helped us with this debug callstack window, to help clear things out when same subtrees being called from different points in the tree

-if you look here (you also see different breakpoint options, which acts as conditional breakpoints for node state. In editor breakpoints actually hit at the end of
the frame after btree is processed. and they are not real breakpoints, they just zero time the game, an ability we use to freeze the time and some system while the game is
running. This way, It gives the user the ability to scrub through each node, forward and back, watch values state changes, recreate the events of that frame. Currently we do
not have support to go backward to a previous frame, but future plans include this ability

- That also meant we also provide “pre execute code breakpoint” for easier programmer debugging- which is an actual forced code breakpoint that happens
in the corresponding code for that the node

Behavior Tree Debugger

Atreus

Goal : This was one of the downsides of switching to behavior trees. These files were being saved text files that were optimized for faster processing when loading and reading but it was not easily readable
or mergeable like scripting text files. So we had to provide a tool to prevent unnecessary blocking of the files, be able to track differences across versions
It worked in a similar manner you would expect from any similar text diff/merge tool would. Here you can see a screenshot from a diff view. There are options to show two or one way, additional options for
navigation in the canvas and coloring to help identify the type of changes. (Like the (NEXT) blue frame here meaning a new node was added and the yellow frame indicating a change in the child count
value.
Same color were also respected in this list view (NEXT), which also gave you the option to click and jump to that change in canvas. You would also get a more detailed view of the values in any specific
node on the attribute view window you can see here on left and right edges
We also supported filtering of the changes (NEXT) as seen here, to help fasten up navigating through many changes since even a positional changes on a node were being tracked. We had full perforce
integration with diffing different versions of files.
Perforce was setup to use this tool for merging and notify the user on a successful merge, as well as give the user the option to review. When conflicts happened, it opened the file in merge view, which had
a similar look and options to diff view here.
The merge worked successfully most of the time except for cases like different nodes being connected to same between revisions. Another bigger challenge appeared when we started working across
multiple branches in perforce and were only integrating selected changelists and we could not guarantee sequential changes on the file. The conflict resolution view became way more important then

Diff/Merge Tool

Goal : have an easy in game method to profile specific btrees. Easy for programmers but also accessible for designers

- It came in with some additional options like (point to new image)

Helped give an easy way for design to pinpoint the problem nodes or problem callstacks within the tree
For programming – can get less handy when you get to the point of needing to squeeze every bit of performance late production so not a
replacement for regular profiling tools

Performance Tool

We also had many useful programming facing debug views in game. I will not go through each of them, but this is an example. This shows important
things like current running node stack at the top left. And important info like max depth, max nodes and bucket info for behavior trees for creatures.
This kind of in game easily accessibly debug options were not only useful for programmers but it was also fastened up the tracking of issues when
other programmers, designers or QA ran into them since we could get a debug view right when it happened.

Runtime Debug Options

Now that we covered how we transitioned to behavior trees, lets actually talk a little bit about how we used them. I am not going to dive too much into how it works, but I
would like to give a quick run down to serve as context for some upcoming info
What you see here is a simplified version of what a companion btree might look like.
- we have common nodes like– Dynamic selectors, sequencer, ParallelRepeater as well as some helpers like “FailOnComplete, SucessOnComplete, KeepRunning”
- You can also see these linking nodes that can call into another subtree that is defined elsewhere. So this acts very much like a function that can be called at any given point
in the tree
- We also have these container nodes for variables. Global variables are accessible by any node in the tree and stores as a key-value pair in a runtime dictionary, using its
namehash as key since we can guarantee it will be unique.
- Local variables are on the other hand are only accessibly within their scope by its children. But if you consider the same subtree can be injected multiple times at any given
point in the tree, We cannot guarantee name itself will be unique in root tree level we create a different hash appending their name to their subtree call hierarchy.
- Additionally Subtrees can also have their own variables that can be passed by the caller

Behavior Trees

If you look at this example of a subtree of autonomous logic for companion, you can see another subtree call here :
player game object is a global variable of the root tree. Pink variables are local variables that are created by this subtree and green ones are
passed in by the caller.
Also the variables on the left are considered inputs while the ones on the right are output
So all of this required some special treatment in the dictionary based on the unique node that makes the subtree connection.
It gets very complicated very quick, which led me to draw crazy flow diagrams when explaining what is going on under the hood during production
because Handling these variables in runtime and validating data in the editor was crucial for our btrees and their stability
- So lets talk a little bit more about these linking nodes.
- We actually have 2 different ways

Behavior Trees

- When we know which subtree to call while authoring the tree we use LinkToSubtree nodes
- Good for organization and shared functionality. Many utility subtrees like this one are used often by designers very much like a function call where each variable

is passed in editing time.
- When the subtree we connect depends on on a runtime dynamic variable, we use LinkToExternalTree node. It requires the name of the subtree as well as the file path to it,
which in this case are variables in the tree

This example is from the core enemy behavior tree that every enemy runs, so we use this to find the specific creatures custom positioning logic.. If a realmRunner
was currently running this behavior tree for example, it would connect to a subtree that looks like this. (IMAGE), as you can see it is named
RealmRunner00_CustomPositioning. So designers are in charge of ensuring when they build the “enemySubtreeName_CustomPositioning” string there is a valid subtree to
be called

- While they are really Good for modularization while adding custom setup for variability
- They are also more error prone as we can no longer validate in the editor

As you have seen in enemy btree example, companions also used a similar setup to allow for custom logic while sharing a main behavior tree. In this
example, you can also see how we might build the string for the subtree name.
But there were more usages
- Like Init behaviors : This is a logic that runs in init part of AI brain to run specific behavior that was set by the spawner in Level scripting. Each behavior sets the
subtree name and path to be stored in blavkboard. It is is later read and passed to this this LinkToExternalTree node by behavior tree
- Additionally we had these derived nodes from LinkToExternalTree node that acts the same way but has specific ways of reading the subtree name on
code

- this ExecuteQueuedContextAction node for example reads the path/subtree name values from the Context Action System in game
You heard me talk about Context actions in the beginning and how we used them to achieve a lot of environment dependent behavior for AI. So lets take
a closer look at them and we can get back to talking more about this one specific node

Context Action system allows for designers to place an annotation in the world and assign it settings so that AI can engage with it and run a specific
scoped behavior during the time of its engagement. They Usually consists all three entry, idle and an exit animations or any combination of them

This example is from GOW2018 young Atreus doing a “guide forward” based on a level beat in this area. So as a mentioned before we did have
ways of doing this kind of behavior. But a big part of it was in ua, the code side was sprinkled across many different files and needed a heavy
refactor to support some of the new requirements. We needed a system that can be more robust and can integrate with all other AI systems
without much work needed to support many similar but variable AI behaviors that requires a world annotation
Some of the use cases in Ragnarok included

Context Actions
A set of injected behavior that is triggered at a specific location in the
environment

- Generic companion moments in levels to guide or hint player or to simply give them agency, believability. Things like point, crouch down,
investigate were commonly placed in levels

Contextual narrative moments. Here you can see Sindri looking for food for Tyr when he was at the house for the first time after being saved

AI traversal behaviors
The logic of which path they follow, how far ahead they go, when they continue/pause is all in a context action subtree

We used them in combat. Here you can see both Atreus and Tyr in a context action during combat, Atreus specifically running a subtree to stand
guard and shoot in place while Tyr (or Odin) cowardly hides away

And finally we used them for enhanced movement enemies

They also support multiple creatures! (which we did not really push much further this game but had very promising couple of uses cases like this
one. A good start point for next project)

But how were the context actions themselves setup? Before we dive into the setup, I would like to talk about out goals setting these modules up

As you heard many times before, we wanted to maximize modularity, while supporting custom setups
We also needed to provide our Tech designers a lot of options to be able to create different modules without much programmer support
While Abstract the complication away for level/narrative/combat designers

Context Action Setup

•Maximize modularity

•Allow for easy custom setup

•Max control for tech design teams

•Easy to use modules for designers

Goals

In a very simple designer setup scenario, they would :
- Place markup in the level using one of our in house catalog tool (which autofills subtree name and path for them)
- Chose the category of context action

Context Action Setup

- Then in level scripting, they can right click on that Context Action asset, and choose the type of context action that is associated with it in Visual
Scripting
- Modify exposed values for that instance of that type
- You can see there are some toggle like duration of this action, range to engage in, specific approach parameters and more.

Context Action Setup

But you also realize there is nothing about enter, idle, exit animations we talked about.
Because that is hidden away within this embedded script. Each of these modules expands into more level scripting modules that both passes the
values down but also sets non-changing values for that context action under the hood, like animation names for this observe context action that
always remain same thus does not need to be exposed to user, which minimizes room for error
you can keep going many more levels down until you finally reach nodes that directly tie into game code.

This setup was not only good to minimize errors but it also made it very easy for us to tune default values and apply it to all existing instances and
made bug fixes applicable globally

On top of that you also realize Context Action: Observe node comes in like this by default, the most commonly used value groups expanded, less likely ones
are collapsed for ease of use. If we expand “Player acknowledgement” or “Banter” category, they come with their values and defaults. (goal of abstracting
away complexity)

In this comparison view of these context actions you can also see some of these groups can easily be added or removed.
While some if these functionality was used by code and the behavior tree, some toggles like “player acknowledgeent” were actually just scripts
independent from context action system, just utilizing exiting events like triggering a banter, only based on certain context action events.

All of these abilities together allowed us to easily share common functionality between different type of context actions while giving them an easy way to
opt in or out of content as needed

So how does this work on behavior tree side
Lets look at this part of the companion btree for example where you can see the actions AI can do in priority order
If we look at the context action setup closely you will see that we run a search and execute node in parallel. The execute node is the one we have already seen. It has the ability to inject the
behavior subtree from the creature’s current CA, if they have any. Running search in parallel allows the AI to still dynamically react to new search results
The search is a score based prioritizing things like distance, priority etc. The tech for it was also designed to accommodate different type of searches an AI creature might need.
- Auto engage Search here is intended to realize cases where AI stumbles upon something while naturally navigating through space. This is more like Atreus stopping to pick something up from
the ground while following player naturally. Under the hood it is Atreus getting in the range of the placed context action while his current intention might be something like “following player”
- Second search node had more intention behind it. This is more like a Context Action on demand, rather then stumbling upon. Think about a case like a Grim deciding to get on high ground in
the natural flow of its combat decision making. So they specifically look for all the ceiling hang context actions around them at that moment.
- there is a third hidden case where an AI is forced to a context action based on a current gameplay beat. And both of these nodes automatically prioritize the forced CA. Like when player
presses the interact button to climb up and we want Atreus to immediately follow, we force that follow Context Action so his btree can pick it up right away regardless of search parameters.
So this is how the main brain operates but what happens in the injected behavior tree?

Most common use cases of regular context actions (especially the ones that follow the more traditional approach, enter, idle, exit sequence) use
the same main injected subtree. In its most simple form it looked like this :

When we go into what each of these subtree does (entry and idle for example), you can see they run these operations reading the values set by
the level scripting. And each one can be expanded more to see more detailed logic of operations like triggering the animation to play, or keeping
duration timer and more

So toggling these VS values as you saw before was one way of customization, but it is somewhat limited. But if you recall we had the ability to assign different subtrees to
context actions, so we used that as another customization avenue
If we look at this behavior tree we just saw again, it is all comprised of many subtrees. So this Atreus context action was actually calling into another subtree shared many of
the first subtrees, while expanding it for additional shooting behavior
For even more custom setups, we created completely different subtrees. For example, this very specific grayla context action btree that it used while in combat to attack
from certain points. It supports a very specific behavior without much of the regular entry/idle/exit flow of regular CAs. This way AI in its core still goes through same
streamlined process but can still run a very specific behavior in that instance
This mixed use of Visual Scripting and Behavior Tree injecting gave us the ground to support the two user in mind :
1. Level designers easily dropping Context Action modules and toggling only the options they need for that instance and
2. technical designers who can easily setup custom behaviors and mix/match modules to create new ones for all design use. All that without programming support
And looking at these subtrees it might seem simple and straightforward but these subtrees can get …

…VERY complicated, very quickly.
Here is a zoomed out version of the traversal behavior context actions for AI. Which I will not dive much into but if you are interested go check out
Salaar’s talk

Here is another example. This is a zoomed out look of the subtree that can handle enemy behavior on context actions. Remember those Grims who
would relentlessly spit at you from atop the walls, you can thank this behavior tree for that.
Grims were actually and interesting case and introduced a lot more complication than this specific btree

Fundemantally, they follow the same thing – approach, entry, idle, exit. But they needed to be doing a little bit more than jut playing an entry anim, they needed to
jump to an offnavmesh location and align with the wall and similarly exit to a safe spot on the ground. More importantly :
- Support entry from multiple angles and heights to accommodate for our high animation fidelity requirements
- Also give users the ability to mark safe entry/exit zones, adjust placement, shape and size of these zones within our metrics
- For future design plans, we also needed to support a way to go from one wall hang to another without having to come down and go back up
So we looked at our existing systems and decided to improve upon an already existing module that was doing kind of a similar thing in terms of creating
connections through non-navmesh area – traverselinks : this is what they looked like in maya
They were representing a text defined set of data that looked like this in runtime, two ends that connects two edges of navmesh, an animation associated with this
for AI to play, and an area attached to both ends that mark valid entry and exit zones
And not so surprisingly, this simple system was a beast of its own by the time we were done with it

Enhanced Movement and Context Actions

•Support entry/exit animations from
multiple angles and heights

•Ability to adjust the placement of
these entry positions

•Ability to adjust the size and
shape of valid entry/exit zones

•Support direct transitions from one
Context action to another

So the end result was context actions with a bunch of traverselinks that are connected to them. And we created templates out of them (kind of like prefabs as a more
common term) to be placed by designers.
Tech designers would be creating each of these templates:
- by starting with a context action – regular setup of assign category and a subtree to run.
- then they would place a traverselink and chose the type This is mostly a list of animation sets to play for both forward and backward.
- Then traverselink is connected to Context action which automatically moves them as child in hierarchy
- As you can see we usually ended up more than one link, to represent different animation coverage angles, so these metrics we pre discussed metrics with animation team
- Each traverselink came with its valid zone, that can be different type as you can see based on the need.
- Once the position of each traverselink is also adjusted as needed (yellow arrow represent the angle to be facing at the end of anim), the type is selected and a template
can be created

We supported transition requirement in a similar way by simply providing an interface to assign a type to traverselinks.
Templates had ability to be updated
Once ready, designers can just place them in the environment and manipulate that instance as they see fit by disabling certain links, or manipulating
values like the position, angle and size of the zones

Here you can see the example of our “pillar hop” template that comes with full set of animation support. Design then is expected to pick and chose
based on the environment and adjust as needed. And another template for ceiling hang that is slightly simpler.

Templates needed updates as we go through the production, so we also needed to support the updates of existing instances in the most design
friendly way possible

So if this is what you see in Maya, how does all this playout in runtime?
As mentioned before, it starts with an intentional search of a specific type of context action.You see a bunch of different options here but We did not start with this
many options as you can guess. As we playtested enemy behavior, we started adding more to prevent them from doing silly things like walking behind the player to
enter into a wall cling that is in front of him.
When CA is found there is a bit of an extra step this time. If it is a CA off navmesh like this one, we need to choose the best entry link based on distance (NEXT)
Then AI needs to move to the entry zone, which had its own specific node with some options and once this node succeeds, all that is left is to play the anim. EXCEPT we
cannot just play because AI can end up at a completely different position based on his pos and angle so we warp them to position identified by Context action (that
yellow arrow)as we do so
The rest is the good old idle behavior (+ their combat attacking behavior running in parallel with awareness that creature is in a CA)

Exit also had similar set of rules. These zones were already deemed safe by design, so they could just use any to exit safely back on navmesh by using
this node. Here target location and facing were optional parameters. If nothing is passed we just pick a random link.
But lets say this Grim is targeting Brok here. Then it would make sense for AI to get as close to their target as possible. So we not only chose the closes
zone, we also warp them (NEXT) to the closest position within the zone to their target. Similarly, we had the ability to make them face to their target if
requested to achieve more believable AI in combat

So lets get back to this one requirement from before, supporting direct transitions between context actions. I even showed you how to set those up,
what were they for? They were actually intended to support some cool movement in the new combat arenas. These context actions were not only
used as “perch and attack” but also as means of transport as they followed their target around

•Support direct transitions from one Context action to another

And an example setup to achieve this would have looked like this
If you have 2 CAs setup like this in 2 pillars and their entry moves setup as seen.
If you also turn on transitions from the template, and lets hid entries for now for clarity They actually represent areas that a creature can transition TO
the CA they are associated with
SO Looking at just these 2 CAs and 3 transition animation possibilities, designer would need to turn one on that can encapsulate as seen from this top
down view
If we do the same thing for the other 3 context actions you have seen in that video, you achieve what you just saw in that video

Grims were actually one of the earliest creature prototypes we worked on. Here you can see a very early movement test I put together without any
of the tools that I had just talked about, back when they did not even have their own model. And this is the video you have seen, something we used
to prove out that our new tools and systems were able to accommodate for a setup like this and finally an example encounter arena using this
setup in shipped game

Air dragons also used Context Actions because they shared a similar problem of marking safe perch points to land to from their flight.
If you look at this flying dragon in this video, he is currently engaged with perch context Action here (Next)
His behavior tree for this context action is setup to use a special node (instead of a regular walk on navmesh) that was lovingly created by Geoff
Harrower using some dynamic spline system. You can see the debug draw for it in here.
As he continues flying, right at this point he actually enters the entry zone for traverselink, same way the Grims would do and the plays its entry move

Drekis also used context actions for their in water behavior as you see in this video

These behaviors were supported by Context Actions in these “pools” as we called them. If you look at this image you can see the (NEXT) these two
entry zones that go into two pool context actions in water.
A behavior requirement for Drekis was for them to be able to dive into one pool and resurface on another one, which as you can guess called for
transition traverselinks. So if we were to go underground from this look …

This is what it looks like in game. Tow context actions can be seen here, with two transition links going to them encapsulating each other
So if you think about this, we actually did not need them animating from one CA to another, they were invisible to the player. So what we needed
was essentially them warping from one Context Action to another. But instead of introducing a custom setup, we chose to use traverselinks with an
animation that was only 2 frames of static poses. . Since transition time is completely driven by animation, they would essentially warp from one to
another this way

Callout the transition traverse link and how we achieved instantaneous warp

Before I end this, I also quickly want to touch on one of the problems I brought up earlier regarding the transition from GOW2018 to Ragnarok -> the flatness of our positioning systems, when our
plan was to have combat arenas with many platforms like this one
Well, we actually chose not to solve this problem for this project. Updating our positioning system fully to account for the verticality in the way we would have wanted was too much to take on
top of the major works I had mentioned today.
HOWEVER we did come up with a simpler solution that would do the job for the planned encounters of GOWR
First We did some minor improvements for positioning to be able to recognize different layers (show image with just fight knowledge) – more sensitive to height and pink ones
Then Created this simple system called “Area of operations” (show image) – It was essentially boxes encounter designers would place and assign AI to. Once an AI is assigned to one, AI’s
navmesh would be cut off to the limits of these boxes – This helped minimize them going up and down if they are not actively attacking, also encourage player to move up and down as well
We also had Context Actions for their posting behavior in this zone and adjusted Context Action search to only give results for CAs that are within AOOs if assigned
This combined with the enhanced movement context actions and traversals gave you the end result you saw in these fights
So the important thing I would like to point out here was that this was us being realistic with the time we have, without sacrificing content. So I also urge you to think about putting your resources
and time to get the bigger gains and Looking for simpler ways out for others to reach desired end result

We covered a breadth of topics today relating to AI and how we prepared them for Ragnarok to realize the vision
This was a huge team effort across different engineering teams and our partners in design, production, QA teams. Huge shoutout to everyone
involved for their support.
And to everyone who gave their feedback to this talk for me to represent our joint efforts best way possible

Challenges :

•Positioning

•Systemic world annotation

•Non expandable companion workflows

•Lack of centralized AI decision making

•Lua scripting

•Performance

•Stability

•Validation & Debugging

•Reading, authoring & maintaining

Needs and requirements :

•Dynamic & vertical combat arenas

•Enhanced movement enemies & more enemy variety

•More companions

•Spaces with more AI agency

•A more
Solutions :

•Behavior Trees

•Moving from Lua to Behavior Trees

•Tools support

•Key usages of injected behaviors

•Context Actions

•Achieving modularity & customization

•Different use cases

•Enhanced Movement and Verticality

And finally thank you for coming to listen

Thank you!
Göksu Uǧur

goksu_ugur



A n i m a t i o n i n ‘ G o d o f W a r R a g n a r ö k ’  A n i m a t i o n S u m m i t






M O N D A Y , M A R C H 2 0  9 : 3 0 A M – 1 0 : 3 0 A M  R O O M 3 0 3 , S O U T H H A L L

P l a y t e s t i n g G o d o f W a r R a g n a r ö k A c c e s s i b i l i t y O p t i o n s  U X S u m m i t



M O N D A Y , M A R C H 2 0  1 : 2 0 P M – 1 : 5 0 P M  R O O M 2 0 0 1 , W E S T H A L L

R e i n v e n t i n g t h e W h e e l f o r S n o w R e n d e r i n g A d v a n c e d G r a p h i c s S u m m i t


M O N D A Y , M A R C H 2 0  1 : 2 0 P M – 2 : 2 0 P M  R O O M 3 0 1 , S O U T H H A L L

A u t o m a t e d T e s t i n g a t S a n t a M o n i c a S t u d i o  T o o l s S u m m i t


M O N D A Y , M A R C H 2 0  4 : 4 0 P M – 5 : 1 0 P M  R O O M 3 0 0 4 , W E S T H A L L

T h e A r t o f M a k i n g V i s t a s  A r t S u m m i t



T U E S D A Y , M A R C H 2 1  3 : 0 0 P M – 3 : 3 0 P M  R O O M 3 0 0 7 , W E S T H A L L

R e a l - t i m e N e u r a l T e x t u r e U p s a m p l i n g i n ‘ G o d o f W a r R a g n a r ö k ’ 
M a c h i n e L e a r n i n g S u m m i t



T U E S D A Y , M A R C H 2 1  2 : 1 0 P M – 2 : 4 0 P M  R O O M 2 0 1 0 , W E S T H A L L

P r e p a r i n g A I S y s t e m s F o r G o d o f W a r R a g n a r ö k  P r o g r a m m i n g
Ğ 

W E D N E S D A Y , M A R C H 2 2  9 : 0 0 A M – 1 0 : 0 0 A M  R O O M 3 0 3 , S O U T H H A L L

T h e F i n a l B a t t l e o f ' G o d o f W a r R a g n a r ö k ' : T e c h n i q u e s F o r D e l i v e r i n g
H i g h - s t a k e s S e q u e n c e s  D e s i g n



W E D N E S D A Y , M A R C H 2 2  1 0 : 3 0 A M – 1 1 : 0 0 A M  R O O M 2 0 0 2 , W E S T H A L L

R e n d e r i n g ' G o d o f W a r R a g n a r ö k ’  P r o g r a m m i n g


W E D N E S D A Y , M A R C H 2 2  2 : 0 0 P M – 3 : 0 0 P M  R O O M 3 0 3 , S O U T H H A L L

M o d e r n i z i n g m u l t i p l a y e r s e r v i c e s f o r " G o d o f W a r : A s c e n s i o n " (P S 3) 
P r o d u c t i o n & T e a m L e a d e r s h i p  P r e s e n t e d b y A m a z o n W e b S e r v i c e s



W E D N E S D A Y , M A R C H 2 2  2 : 0 0 P M – 3 : 0 0 P M  G D C P A R T N E R S T A G E , E X P O F L O O R , N O R T H H A L L

' G o d O f W a r R a g n a r ö k ’ s ’ V i s u a l S c r i p t i n g S o l u t i o n  P r o g r a m m i n g


T H U R S D A Y , M A R C H 2 3  1 0 : 0 0 A M – 1 1 : 0 0 A M  R O O M 2 0 0 6 , W E S T H A L L

B r e a k i n g B a r r i e r s : C o m b a t A c c e s s i b i l i t y i n ' G o d o f W a r R a g n a r ö k ’  D e s i g n


T H U R S D A Y , M A R C H 2 3  2 : 0 0 P M – 2 : 3 0 P M  R O O M 2 0 0 2 , W E S T H A L L

P r a c t i c a l T o o l s f o r T r a n s i t i o n i n g I n t o L e a d e r s h i p R o l e s  L e a d e r s h i p
Ğ 

T H U R S D A Y , M A R C H 2 3  2 : 0 0 P M – 2 : 3 0 P M  R O O M 3 0 3 , S O U T H H A L L

' G o d o f W a r R a g n a r ö k ’ : B u i l d i n g T h e U I F o r a A A A T i t l e  D e s i g n


T H U R S D A Y , M A R C H 2 3  4 : 0 0 P M – 5 : 0 0 P M  R O O M 3 0 3 , S O U T H H A L L

C o m p a n i o n T r a v e r s a l i n ' G o d o f W a r R a g n a r ö k ’ P r o g r a m m i n g


F R I D A Y , M A R C H 2 4  1 0 : 0 0 A M – 1 1 : 0 0 A M  R O O M 2 0 0 2 , W E S T H A L L

J o i n t - b a s e d S k i n D e f o r m a t i o n i n ' G o d o f W a r R a g n a r ö k ’ P r o g r a m m i n g


F R I D A Y , M A R C H 2 4  1 : 3 0 P M – 2 : 3 0 P M  R O O M 2 0 0 6 , W E S T H A L L

H o w t o B u i l d a H o m e : D e s i g n i n g N a r r a t i v e F o r S i n d r i ’ s H o u s e i n ' G o d o f W a r
R a g n a r ö k ’ D e s i g n



F R I D A Y , M A R C H 2 4  3 : 0 0 P M – 3 : 3 0 P M  R O O M 2 0 0 1 , W E S T H A L L

@ santamonicastudio@ santamonicastudio @ SonySantaMonica@ SonySantaMonica @ santamonicastudio@ santamonicastudio

We’re expanding our family across disciplines and would love
to meet you. Please visit sms.playstation.com/careers for all
openings or drop us a line at sms.recruiting@sony.com

We’re expanding our family across disciplines and would love
to meet you. Please visit sms.playstation.com/careers for all
openings or drop us a line at sms.recruiting@sony.com

We’re hiring for what’s next!We’re hiring for what’s next!

Extra slides

Some more quality of life improvement features of behavior tree editor

We even had an additional “Context Action Sequencer” module that allowed us to easily mix and match and create more complicated setups with
multiple context actions while minimizing the need for each
module that allows designers to an easy setup for sequencing.
With this module designers can create “Context Action Sequencer Stage Data” that allowed them to pass in context actions per stage and manage the
trigger for each stage to be handled by the module automatically. They also had different options in terms of how sequencer operates and callbacks
when certain things happen to tie events in level if necessary
On top of that we had API calls like you see in this image. It also threw certain events with useful information at the time for designers to hook things up to like
when a stage is completed
This was a common setup for cases like puzzles in levels that required a sequence of actions (put a gif that shows this working in a level) as well as narrative
spaces where AI can walk around in the space doing multiple actions (Freya Garden)

