
Render Graph
A Data Oriented Approach

by Zhenglong ZHOU & Huabin LING
Cocos Technologies



- Huabin LING (aka panda)

- Technical Director of Cocos Engine

- Building engine team of Cocos

- Dr. Zhenglong ZHOU

- Render Pipeline Architect

- Love game engine programming



CONTENTS

1. Cocos: Build an Open Source Engine

2. Open Source Sample Project

3. Design Context of Render Graph

4. Core Design Explained



Cocos: A Cross Platform Open Source Engine

Framework Editor workflow



How Open Source Helped Us

⚫ Cocos2d-x
⚫ 16.7K stars / 7.1K forks / 624 contributors

⚫ Cocos Creator engine
⚫ 3.4K stars / 1.3K forks / 135 contributors



How Open Source Helped Our Developers

⚫ Better understanding of the engine, for 
debugging or learning

⚫ Easy extending the engine with needed 
features

⚫ The engine isn’t perfect, but users 
feel they are in control

⚫ Knowing the roadmap and direction, 
participating in it

⚫ Building trust with total transparency



Overall Engine Architecture 



Focusing on the Renderer



The Open Source Sample Project for 
Render Graph

02.



Open Source Sample Project for Render Graph



Cyberpunk Demo published in Cocos Store



Render Graph Editing



Design Context of Render Graph

03.



Frame Graph

• Build high-level knowledge of the entire 
frame

• Simplify resource management

• Simplify render pipeline configurations

• Simplify async compute and resource 
barriers

• Allow self-contained and efficient 
rendering modules

• Visualize and debug complex rendering 
pipelines



Frame Graph vs Render Graph

Frame Graph

• Build high-level knowledge of the entire 
frame

• Simplify resource management

• Simplify render pipeline configurations

• Simplify async compute and resource 
barriers

• Allow self-contained and efficient 
rendering modules

• Visualize and debug complex rendering 
pipelines

Render Graph (Data-oriented)

• Build high-level knowledge of the entire 
frame and scene

• Full description of a rendering task

• Simplify configurations with declarative 
programming

• Decouple pipeline setup and execution
• Better testability

• Allow graph transformation and 
modification



Frame Graph
• User write features as callbacks

Render Graph (Data-oriented)
• User provides description

User C++ CallbackSetup Code

Frame Graph

Inversion of control

Render Hardware 
Interface

Setup Code Render Graph Data

Graph Execution

Render Hardware 
Interface

Frame Graph vs Render Graph



• Base Graph: Command Graph

Lighting Pass

Opaque 
Queue

Transparent 
Queue

3D Scenes Particles

Graph data is layered

Post-processing

Tone-
Mapping

Dispatch3D Scenes3D Scene ParticleParticle



• Overlay Graph: Dependency Graph

Post-processingLighting Pass Radiance Texture

Opaque 
Queue

Transparent 
Queue

3D Scene Particles

Tone-
Mapping

Dispatch

Render Graph
= Command Graph
+ Dependency Graph

Graph data is layered

3D Scenes3D Scene ParticleParticle



Render Graph Example

Depth 
Pre-pass

Geometr
y Pass

Opaque 
Queue

Cutout 
Queue

Shadow 
Pass

Opaque 
Queue

Cutout 
Queue

Opaque 
Queue

Depth 
Texture

Lighting 
Pass

Shadow 
Texture

Albedo 
Texture

PBR 
Texture

Objects Grass Objects Grass
Objects 
& Grass

Fullscreen 
Quad



Sample code: Graph setup



• Compiler/Analyzer is easy to write 
• Reflection is not needed

Post-processingLighting Pass Radiance TextureUser Input

Schedule

Direct Queue

Barrier Before Barrier After

Sync: Render Target Sync: Compute

Access: Render Target Access: Shader Resource

Layout: Render Target Layout: Shader Resource

Sub-resource: 0

Schedule

Direct Queue

Wait for 
Lighting Pass

Deduced
execution 

plan

Graph data is inspectable



• Engine can modify render graph
• User code is the same
• Execution code is the same

Post-processingLighting Pass

Post-processingLighting Pass

Copy Pass

Radiance Texture

Debug Texture

Radiance 
Texture

User Input

New pass 
inserted

Graph data is mutable



Descriptor Layout Optimization
• Simplify shader management

• Render Graph need descriptor layout

• Hand-written layout is error prone

A Layout 0

Set 0 Texture2D Lightmap

Set 1

Set 2 Texture2D Main

Set 3

B Layout 1

Set 0 Texture2D LUT

Set 1

Set 2 Texture2D BaseColor
Texture2D Normal

Set 3

• Render Pass
• Shader A

• Bind Set 0
• Bind Set 2
• Draw

• Shader B
• Bind Set 0
• Bind Set 2
• Draw

A Layout 0

Set 0 Texture2D Lightmap
Texture2D LUT

Set 1

Set 2 Texture2D Main
Texture2D [Empty]

Set 3

B Layout 0

Set 0 Texture2D Lightmap
Texture2D LUT

Set 1

Set 2 Texture2D BaseColor
Texture2D Normal

Set 3

• Render Pass
• Bind Set 0
• Shader A

• Bind Set 2
• Draw

• Shader B
• Bind Set 2
• Draw

Merge layout Fewer state changes



Lighting Pass

Scene Shader Character Shader

Scene Phase Character Phase

Tex 0: Lightmap Tex 0: LUT

Tex 0: Lightmap Tex 1: LUT

3. Overwrite 3. Overwrite

1. Collect Descriptors

2. Merge Descriptors

Descriptor Layout Graph

Tex 0: Lightmap Tex 1: LUT



Core Design Explained

04.



• Array of Structure • Structure of Array

Vertex

Out Edges

In Edges

Type

Name

Data

v0

…

v1

…

v2

…

Example: data structure optimization

Vertex v0 v1 v2

Out Edges … … …

In Edges

Type

Property v0 v1 v2

Name … … …

Property v0 v1 v2

Data … … …

• Profile and decide implementation

• Should use same access interface
• get(property, g, v)



Generic Graph Interface
• Based on boost.graph

• Decouple graph data structure and graph 
algorithms

• Zero-overhead abstraction

• Many existing graph algorithms
• Reduce development cost

• There are a lot of graphs in game engine!
• Render Graph, Scene Graph, Shader Graph, 

Behavior Tree, Pathfinding, etc.

• All benefit from a generic graph interface



• Generic algorithms built on graph concepts

• Reduce implementation cost
• O(M x N) -> O(M + N), where

• M is number of graph types
• N is number of algorithms

Property Graph

Getter

Setter

Property Map

Bidirectional Graph

Depth First Search

Topological Sort

Graph Coloring

Addressable Graph

Get Parent

Get Child

Lookup Path

Generic graph interface



Implementation details
• Code generator

• Written in C++

• Register types with DSL

• Generate graph implementations
• C++ and Typescript

• PROS
• Support more features than generic 

implementation

• No template meta-programming is required

• Generated code is easier to read

• CONS
• Introduced another layer of tool

• A lot of type registration



Graph concepts references
• Supports C++ and Typescript

• Common concepts
• Graph
• Incidence Graph
• Bidirectional Graph
• Adjacency Graph
• Vertex List Graph
• Edge List Graph



Graph concepts references

• Component Graph
• Named Graph
• Tree
• Parent Graph

• Requires Named Graph
• Requires Tree

• Addressable Graph
• Requires Parent Graph

• Polymorphic Graph
• UUID Graph



RenderGraph

• Bidirectional Graph
• Vertex List Graph
• Edge List Graph
• Component Graph
• Named Graph
• Tree
• Polymorphic Graph

LayoutGraph

• Bidirectional Graph
• Vertex List Graph
• Component Graph
• Named Graph
• Parent Graph
• Addressable Graph
• Polymorphic Graph

Render Graph implementation



Thanks ! 
Questions ?

github.com/cocos/cocos-engine/
www.cocos.com/en/creator-download
store.cocos.com/app/en/detail/4543

@CocosEngine


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

