

Welcome everyone, to my talk on Scaling tools for millions of assets. Before we get

started, please remember to put your phones on silent.

1

Let’s start out with a little scenario. Imagine you're an artist (this might be difficult for a

room of mostly programmers)… but! *CLICK* You’re an environment artist, looking

through concept art for ideas.

As you've just finished all your tasks for previous project and you are excited to start
on the next game.

CLICK But then your realize your SSD can only fit one project so

you first delete the old one. Once that is finished, *CLICK*

You start the 8 hour sync to get all the assets for the new branch.

The next working day, you load up the level editor and search the Asset Browser for
“Oseram" assets. While you wait for the results, *CLICK* you go get a coffee, check
your social media, and call your mom. With your coffee in hand, your level loaded and
the assets displayed, you're finally ready to work.

And then your producer comes up to tell you need to switch back to the old project to
fix a critical bug, *CATTO CLICK* and you have to go through the whole thing again...

2

2

At the start of Forbidden West this is the situation our tools were in.

6

What if instead you could switch projects in less than a minute, be in the game
without any additional download, and have any asset at your fingertips in real time?

In this talk I will explain how we got there.
A little bit about me:

My name is David Marcelis.

For the last 4.5 years I've been at Guerrilla as a Tools Programmer. As part of the
infrastructure team I’ve worked on source control, build systems, packaging, and
other tools-related work for Horizon Forbidden West. As well as supported the
release of Horizon Zero Dawn on PC.
Guerrilla was originally known for their Killzone franchise, *CLICK* and more recently
for the Horizon series with latest of installment being Horizon Forbidden West. Over

the course of these games, the company has grown from a few dozens, to currently
over 400 people.

At 95GB Horizon Forbidden West is twice the size of our previous game, and just

barely under the PS5 package limit. Not only is the game world larger, but it’s also
more densely populated. With more detailed foliage, set dressing, and more playable

•

•

7

content. The average completionist run takes around 90 hours, and is filled with over

Forbidden West being our biggest game so far is just the latest data point in a trend

you must have noticed as players and developers: games are constantly getting

bigger, *CLICK* But not only are they getting bigger, the rate of growth is also
accelerating

8

This isn’t just textures getting higher resolution, but also the number of assets

involved is increasing. As more and more assets are added and more and more files

are involved, the tools slow down and the project becomes cumbersome to work

with. If all these artists would just stop adding ultra high-fidelity moss to every single

rock in the game, our life as programmers would be so much easier. But luckily they
haven’t, so we need to keep pushing the tech and get to give cool GDC talks. In this

talk I will explain how we improved the core infrastructure behind our tooling to
make working with 4 million assets feel like a breeze.

9

I’ll be covering the 2 major systems that were particularly struggling with this

increase in scale:

• First the Asset Database that allows us to reason about all assets

• Secondly how we optimized content loading during development for iteration time

• And finally some powerful and maybe surprising ways these 2 systems synergize

10

Let’s start out with how we handle this many assets. As a user you want to know things

about the content you’re working with.

11

For example, when doing set dressing or level design, you want to see all objects that

you can place in the world based on filters that match your current task.

This Asset browser is a very common and fundamental feature of any level editor.

But you might also want to know “is this asset ever used” or more specifically

“where does this asset get used?”

A Reference Viewer can give you a complete list of all places that link to a particular

assets, such as this barrel.

12

These are two examples of queries that require knowledge of all assets before you

can give a conclusive answer. Reading millions of files every time want to find an

object to place in the world is not feasible.

CLICK A little side note: this may be surprising, as modern NVMe drives can go over

5GiB/s on linear reads, however we are dealing with a lot of small files, and then it

becomes the OS kernel overhead that is the limiting factor. In my test case with NTFS

on Windows I was able to open 25,000 files/s, which

•

•

•

•

means just opening all 4 million files without reading any data would take 2.5 minutes.

So it’s clear you need some kind of database for this. At the start of Forbidden West

we already had a previous solution based on an SQLite database. It was only used by

the asset browser for which it worked well enough, but it was poorly performing and

unreliable to the point of it being a common occurrence for people to throw away

the database to force a rebuild in the hopes of a missing assets appearing.

We had large ambitions for the next game. It was going to be much bigger so

performance and reliability of our tools are critical. This tech was holding us back, so we

set out to completely rewrite

it

13

So we created the “Asset Indexer”. As the name implies, it’s a local database that

provides an index into all our 100+ million objects and allows us to reason about the

content without having to open any file.

It is a service that runs on each workstation to scan the files on the user’s disk and

monitors any changes to those files.

The AssetIndexer uses a custom in-

14

house database. As you might come to learn during this talk, we really like making our

own tech. So by creating a completely custom solution we are slightly happier as

programmers. But we can also apply many tricks to make it faster and more compact

than something offthe-shelve by using knowledge about how our specific data is

structured.

•

•

•

•

14

This has become the core database that all our tooling runs against. Any tool that

wants to know about files, objects, or connections between objects asks this

database. That includes our editor, DCC packages, python scripts, and even the game

itself.

To understand the details of the AssetIndexer and what it enables us to do, first a bit of

background about how our content is set up.

We refer to all the files necessary to work on the game or produce a shippable build as “Game
Assets”. These are the 4 million assets I mentioned, which are about 2TB of data.
There are also another 4 million files of what we call Work_Files. This contains original data that

get exported into Game_Assets, such as Maya files for our models, or the Photoshop files for a

texture. For the scope of this talk, I will only be focusing on everything in Game_Assets.

We have binary data such as audio wav files, dds and png textures, and some other loose files

like bink movies.

But the actual structure of game is stored in CoreText. Coretext is a JSON-like text format that

stores every asset you might think of: mesh, quest script, particle system, etc.

Let’s go though an example piece of content to explain this. For this I’ll use the Environment
Probes, which provide pre-baked reflection data for the game, but the details of what it does
are not important.
Here we have Probes.CoreText. It is a CoreText file that contains 1 object, an Environment
Probe.

CLICK Every CoreText file contains a number of Object blocks. *CLICK* An object block starts
with a typename. This matches a class in our C++ code that has been exposed so an instance can

be created at runtime. *CLICK* Every object is then expected to have a UUID and a Name.

CLICK What follows are the type-specific attributes, such as the type of lighting it captures and
the transform. As you can see, all attribute values are stored as strings. Each type like a

transform, Boolean, or enum has its own string representation that is defined in code. *CLICK*

The exception being links to other objects, which are stored in a fixed format that is shared by

•

•

•

•

all types. These have a different syntax using angular brackets that distinguishes them from

other attributes. *CLICK* Here you see the links to the three texture objects that contain the
baked data. These texture objects live in their own files. Let’s follow one of the links.

17

18

Following that link to EnvironmentProbe_albedo.CoreText, *CLICK* we again see the

typename of the object, *CLICK* the UUID and objectname, *CLICK* some texture

settings like compression format and resolution, again stored as strings, *CLICK* and

finally a link to the dds file that holds the actual data. This is a different link format
from the object links, but again strictly defined and using a different syntax indicated

with backticks. This enables us to reason about relations between objects and binary

files. *CLICK* Obviously we don’t edit text files all day, that’s so 10 years ago.

19

For that we have our editor. This is a basic view to inspect any CoreText file. *CLICK*

Objects are represented as nodes, and links between objects as lines. PreviouslyI’ve

only shown 1 object per file, but this can be freely structured in a manner that makes
sense for the specific content, such as grouping all the Textures in the same file with

the EnvironmentProbe. *CLICK* All of the string values are now displayed in an
attribute editor that will show specialized fields such as numbers or dropdowns

depending on the type. *CLICKS* And the links to the Texture objects are even

displayed with a preview of the data.

To recap, every CoreText file has a number of objects in it. And every object has a
Type, UUID, Name, and potentially some links all of which are indexed. As well as
type-specific attributes which are not indexed.
Bringing it back to the Asset Indexer, the data that is common between all types is
exactly what it indexes. We can efficiently store this data in a table of files and a table

of objects. Because the CoreText format is valid for any type in the engine, someone
can re-write the entire light reflection or entity system, and it still fits in this database

format. This means we can create incredibly optimized tools and datastructures that

apply to all content in the entire game.

•

•

•

•

•

•

•

•

20

So with all 4 million files, 100 million objects, and 200 million links indexed, let’s see

what kind of queries we can answer with it.

CLICK For example, let’s try to find all the EnvironmentProbes in our Game_Assets
folder. In 2.8ms we find all 3721 Environment Probes.

CLICK Or let’s find all objects that have Main Quest 2 in the object and file name.
This takes a little bit longer to compare strings, but 16ms it found 17000 of them.

CLICK Maybe for one of these results we want to know if it’s referenced at all. This

is where our custom database comes in huge, as it has an acceleration table that can
answer that its referenced once in 6 MICROseconds.

This is orders of magnitude faster than the old system.

A common operation like “query all objects with MQ02 in the name” would take at
least 2.5 minutes if we were to open each file. With our old SQLite solution this was

taking in the order of 10s of seconds. But with the Asset Indexer that’s down to

16ms. And that’s a real-world example of something people to every day in the Asset
Browser. This is the difference between someone walking away to get a coffee vs

realtime interactivity. *CLICK* Not only is it much faster, the size of the database for

21

2TB of input data has shrunk from 25GB to 5GB. This means it can now be kept in

memory, which one of the things that helps to achieve this high performance.

Let’s go over a few of the interesting things we did on the AssetIndexer.

For achieving the small size, we split path components into different strings pools and
bit pack the data. Let’s look at an example to explain that.

Here we have the files from earlier. *CLICK* As you can see, all these files share the
same directory, and there are only 2 unique extensions.

So we can save on memory by deduplicating these *CLICK* and putting them in string

pools. Each pool contains unique strings.

And each cell just contains an index into one of these pools. In this example

that reduces the total number of characters from 271 to just 81. That saves 70%!

But that’s not entirely fair, because we also need to store these indices. To handle all
types of larger data, the database use 64 bit integers, but that means we are now
spending 168 bytes on indices. Almost all our savings are gone again! So this is where
the bitpacking comes in.

•

•

•

•

•

•

•

Directory
SimpleCoderLevel /
SimpleCoderLevel /
SimpleCoderLevel /
SimpleCoderLevel /
SimpleCoderLevel /
SimpleCoderLevel /
SimpleCoderLevel /

Filename
Probe1_albedo
Probe1_albedo
Probe1_depth
Probe1_depth
Probe1_normal
Probe1_normal
Probes

Extension
.CoreText
.dds
.CoreText
.dds
.CoreText
.dds
. CoreText

Directory
SimpleCoderLevel /
SimpleCoderLevel /
SimpleCoderLevel /
SimpleCoderLevel /
SimpleCoderLevel /
SimpleCoderLevel /
SimpleCoderLevel /

Filename
Probe1_albedo
Probe1_albedo
Probe1_depth
Probe1_depth
Probe1_normal
Probe1_normal
Probes

Extension
.CoreText
.dds
.CoreText
.dds
.CoreText
.dds
. CoreText

Directory
0
 SimpleCoderLevel /

Filename
0 Probe1_albedo
1 Probe1_depth
2 Probe1_normal
3 Probes

Extension
0 .CoreText
1 .dds

Directory
1
1
1
1
1
1
1

Filename
1
1
2
2
3
3
4

Extension
1
2
1
2
1
2
1

Directory
0
 SimpleCoderLevel /

Filename
0 Probe1_albedo
1 Probe1_depth
2 Probe1_normal
3 Probes

Extension
0 .CoreText
1 .dds

Directory
00000000 00000000 00000001
00000000 00000000 00000001
00000000 00000000 00000001
00000000 00000000 00000001
00000000 00000000 00000001
00000000 00000000 00000001
00000000 00000000 00000001

Filename
00000000 00000000 00000001
00000000 00000000 00000001
00000000 00000000 00000002
00000000 00000000 00000002
00000000 00000000 00000003
00000000 00000000 00000003
00000000 00000000 00000004

Extension
…00000001
…00000002
…00000001
…00000002
…00000001
…00000002
…00000001

Directory
0
 SimpleCoderLevel /

Filename
0 Probe1_albedo
1 Probe1_depth
2 Probe1_normal
3 Probes

Extension
0 .CoreText
1 .dds

22

By grouping several cells in a column together, we can determine the optimal

packing. In this example all files are in the same directory, *CLICK* so we can simply

store a single bit to index the directory for all cells. *CLICK* The file name has more
variation, so every cell needs 2 bits to index its filename. *CLICK* For the extension

we only need 1 bit per cell. *CLICK* This means in total we only need only 3 bytes to
store all the indices!

The actual algorithm that determines this packing is much more complicated. It
stores data in pages of cells, where a page can have a lookup table and offsets within

a particular range, but the basic principle stays the same.

And this is fairly representative of the real world, the extensions really reduce to only

2 bits per cell!

It’s worth noting that this is very dependent on the variation in the data. We’ve laid

out the database so it packs well, but some data doesn’t compress at all. A 64-bit

hash is not going to bit-pack to anything smaller, unless we had a bunch of duplicated

files or a bad hash.

Directory
0

Filename
00 00 01 01 10 10 11

Extension
0 1 0 1 0
1
 0

Directory
0
 SimpleCoderLevel /

Filename
0 Probe1_albedo
1 Probe1_depth
2 Probe1_normal
3 Probes

Extension
0 .CoreText
1 .dds

23

So string pools and bit-packing are a big part of what makes the database so

compact.

Briefly going over some of the other things we did:

• Because we have complete control over our database, we can make custom

acceleration tables specific for our dataset like I showed earlier with getting

incoming links.

• Memory mapped the database into tools, much faster than sending data between

processes using TCP/NamedPipes. I’ll come back to this later on.

• Implement all queries as batched and multi-threaded by default

• Store the filesystem attributes such as modtime, filesize, and a hash. So we don’t
need to access the disk for that.

• For monitoring changes on disk, we previously used Windows’

ReadDirectoryChanges API. But have since switched to using the FileSystem’s NTFS

USN Journal directly as it much more reliable. It allows us to check all disk I/O has
been processed by the database and to replay any activity that happened while

the AssetIndexer wasn’t running without having to re-scan the entire project.

•

•

•

•

•

•

•

24

One important mention on reliability is that we had to make sure that any code in

our engine that loads an asset does so through links in content. Let’s look at this

fictional example to explain this.

Here are 2 files Quest_01.CoreText with the Quests name and description, and

Quest_01_Script.CoreText with the scripted logic. *CLICK* Previously our code would

get the *CLICK* path of the quest object,

CLICK add some special string to it, and then *CLICK* load that assets. The

dependency between these 2 files is not expressed in the files themselves, but only

deep inside the quest code.

35

CLICK We jokingly refer to this as String Magic, as to any outside code this object

just magically appears. So any tool we make would be wrong or it would need to

know about all exceptions like this.

CLICK In our modern code, we create a link attribute on the Quest object that

points to its script. The code can now simply load that link, and any generic tool will

know that these 2 files are related.

This was a big project to fix all the individual cases, but it’s vital in being able to base

our entire engine and tooling on this concept.

36

So, with a reliable and highly performance asset database we can now have an Asset
Browser and Reference Viewer that are a joy to use.

But what other cool things can we do?

•

•

•

37

One scenario that all of you are probably familiar with is broken builds because
someone forgot to submit a file. For us this was one of the most common build

breakages. For example, someone adding a link to a new file, *CLICK* but only

submitting the link and not the new file. Validating something like this could take
minutes with the old system and wasn’t 100% reliable. So it was optional and only

used by extra careful users.

CLICK With all this data available in the Asset Indexer, we can check for these cases

in less than a second and have great confidence in the result. *CLICK* Because of

this, we now enforce the validation and even block the user’s submit if we detect an
issue. This has virtually eliminated this type of build failure. To the great joy of

everyone, including the submitted who now doesn’t get an angry build master

complaining that they broke the build.

I must admit that we’ve gone a little overboard with the validation. It now does diffs

of the files you’re submitting and even communicates with the Asset Indexer on a

builder to check the if objects have been deleted at HEAD revision. But we realized it

was possible, so we just had to do it. And it has really made everyone’s life better.

38

Taking this one step further, we can not only reason about the relationship between

2 individual objects, but about the entire game’s content. We can find what level an

object is linked to, as well as _how_ it is linked in.

CLICK Sticking with the previous example, here we have our trusty

EnvironmentProbe and its Textures. *CLICK* This is linked into a Tile to only load the

content that is directly around the player. *CLICK* And this tile is then linked into the

Level.

CLICK By following the links of an object until we reach the Level, we can create the

hierarchy of how an object is loaded in the game. This allow us

•

•

to do rapid static analysis and validation of the content, answering questions like “do

all tiles have EnvironmentProbes” or “which tiles contain a particular object”. All of

this can be analyzed from just the AssetIndexer’s database without opening any

CoreText file.

38

We can then also take our map of the world, follow the link chain of each

EnvironmentProbes and *CLICK* plot it on the map. This allows the lighting team to
quickly check if an area is sufficiently covered.

Taking this even further, we can run more complex logic. *CLICK* For example to find

expensive meshes that are only placed once in a specific area. Plotting this on the map,

we can find single objects that have a heavy memory cost because their data isn’t

shared with other instances.

CLICK Or we can plot that barrel from earlier! I happen to have picked an object for this

example

39

that only has 2 instances in this area, so maybe I should join Tech Art to help optimize

content…

•

39

So in summary, we are super happy with this tech. It has sped up a lot of workflows
and enabled us to do things that were previously impossible due to reliability or
performance issues.
It’s so successful that this tech has become the core of all of our development tools.

If an object or link isn’t known to the AssetIndexer, it does not end up in the game.

Which brings us to the next section. So far, I’ve been talking about reasoning about

assets. But another big part of development is loading the content into the game.

40

And here we have the other exponentially growing number: the package size. As I

mentioned, it’s almost too big for a PS5 blu-ray. *CLICK* I’d highly recommend to

check out Jan-Jaap’s talk later today about our completely new approach to

packaging. But this talk is about tools. And that 95GB is the consumer package; the

development package is even bigger as it also contains debug data.

I will be explaining how we have completely redesigned how content gets loaded

during development and can now start any build in 20

42

seconds.

43

But let’s start at the beginning and do a little history of this system starting from

before Horizon Zero Dawn. Installing a package of over 100GB is absolutely terrible

for your iteration time. In our case it takes about an hour to generate and another

30 minutes to install. Waiting 1.5 hours to test your changes on a devkit is not cool.

So instead, we approached this differently.

44

During development, the game didn’t load from an installed package, but we loaded

individual pieces of content. Iterating gets faster as you go for a finer and finer

granularity. For us, that means we iterate at a per CoreText file.

45

Make a change to your texture compression settings, and only that CoreText file gets

reprocessed. As you might imagine, JSON-like text and png files are not very optimal

for the runtime game, so there is a process in between that converts the source data

into a binary format that the game reads.

46

The PS4 devkits have an old fashioned spinning disk. Reading and writing to that is

incredibly slow, *CLICK* so instead of copying those results to the disk, we streamed

it from the workstations’ SSD over the network to the game running on the devkit.

This got us to 1Gbit per second network, which is the fastest the PS4 is going to get.

47

But we were still spending a lot of time on the workstation converting assets from

CoreText into a binary format. This involves texture compression, shader

compilation, audio compression, and more, which can all take a long time.

48

Most people are only editing a tiny portion of the content, so we could cache the

results on a network share. The user’s workstation just downloaded the already

converted content from there and then streamed it to the game.

49

This is the state we were in during Horizon Zero Dawn. This is a perfectly functional

solution, we’re sharing all the heavy CPU work and caching the results, and not

storing anything on the slow PS4 HDD.

But! This is still not as fast as we’d like it to be. After syncing to the latest revision,

you’d spend 15 minutes downloading all the new converted content to your

workstation before you could load the game. As I mentioned before, filesystems do

not like many small files, and networked file shares are even

49

worse for this. Reading small files from our current SMB share only does about 700

files/s compared to the 25,000 of my local filesystem.

The network stack is perfectly capable of doing this, so we did some tests back in

2015 with different solutions. We tried SMB on Windows, Apache on Linux and

dedicated hardware, but none of it met our expectations. So we did what we love to

do in a situation like this, and rolled our own.

50

The GlobalStore is a key/value server that has large amounts of data in memory and

is accessible through a simple get/put protocol. Think of this more as a network-

attached hashmap than a file system. It runs on Windows and is heavily optimized

with I/O completion ports and DirectMemoryAccess to transfer data to the network

through pipelined requests. For small reads it's about 3x faster than NTFS on an

NVMe. The GS manages 75,000 files/s compared to the 25,000 of my local disk. And

that is just on a single thread, this system is designed for highly parallel access.

•

•

•

•

•

51

CLICK Replacing SMB with the GlobalStore for our cache was much better. For

typical access the GlobalStore is 100x faster than the SMB share. This is great! But

we’re now still spending a bunch of time downloading all the converted content

after every sync, and all of this time is again the OS

overhead…

52

And this is where the lightbulb turned on. We have a server that is capable of serving

millions of requests per second, and the game is already streaming all of the data

over the network….

53

What if we just cut out the middleman?

When content is converted, it does not get written to disk, but gets uploaded to the

GlobalStore. A process on the workstation tells the game what to load, and the game

loads everything over the network from this server. This is the

system we now use everywhere and this is working very well for us. *CLICK* This one

server

53

provides data to all devkits, workstations, and build machine. The user no longer

needs to wait around 20 minutes while all the data gets cached locally before they

can start the game. And loading itself even get 10-20% faster.

54

For Forbidden West we had a single server with 768GB RAM, 14TB of storage, and

80Gbps network that was serving around 350 people.

Another way of looking at this, is that instead of duplicating all converted content to

every devkit and workstation, and having to invest in an extra 500GB SSD for every

developer, we invest in 1 big machine with ‘only’ 14TB of storage.

CLICK We have since upgraded the machine and are now running a staggering 4TB

of RAM.

55

That single machine is able to serve the entire company and numerous build

machines. Throughout the day we average around 2.5GB and 250K requests per

second. As people come in to work, there is clear rise in traffic, with a dip around

lunch and a roll off after 6pm. And it’s doing all of this with around 5% CPU load.

56

But this is where the fun begins! Now that we have a system where all data is

streamed in from a central server, loading your local version of the game is no

different from loading any other build.

A build is composed out of many assets. Every asset maps to a converted result in

the Global Store. *CLICK* By creating a single mapping for all asset in a build and

uploading this mapping itself to the Global Store, we can address the whole build

with just a single identifier for that mapping.

#94f5cb8e…

Our build machines produces a new build every 10 minutes. You can load into any of

these builds, just like that.

56

To illustrate, here is our Level Launcher. Let’s say you wanted to compare your

changes against the same version without your changes. You would open the list of

builds, select the revision you’re synced to, and click launch. The launcher first

downloads the executables, and then starts the game. You could also have picked a

build from this morning or last week. Or a something a colleague is working on, which

they can share with a simple link. All of this without having to sync or revert any of

your changes.

57

And within 20 seconds we are loaded into something completely different from your

local state.

Here's a little real-world anecdote to illustrate this:

After one of my test runs of this presentation, I was chatting with our lead technical

producer. While chatting, he was using the level launcher to load into several

57

cinematics. During this conversation that took only about a minute he had managed

to check 3 cinematics for performance and visual issues. When someone submitted a

fix, he could select simply select a different build, and 20 seconds later he has verified
the fix worked and can mark the item off his list. Seeing this, my thoughts were "you

know, we could probably make this even faster.” But hey, at least it's already faster

much faster than getting a coffee!

58

Like I briefly mentioned, you can also share anything you are working on with your

colleagues. By creating one of those identifiers for your local changes, you can create

a link that can be shared with anyone in the company and with a single click, they can
then launch your exact changes in 20 seconds. This is incredibly useful for getting

feedback on a prototype or having QA test a change.

Another example of the power of this system is being able to distribute our light

bakes. *CLICK* We can have every idle workstation in the entire office load into the

same version of the game in just a few minutes.

The light bakes are an expensive process that requires running the full game logic,

including GPU rendering. Previously our build machines would sync to a particular

revision, unshelve someone’s change, convert the content, and then start the lengthy

bake process. This was putting significant stress on our server farm at the end of the
project.

We have a lot of idle workstations during the night, but changing someone’s sync
state, reverting their changes, and applying someone’s work is insanity and would

definitely lead to problems. So with global store streaming, we can put a single

•

•

•

#94f5cb8e…

#94f5cb8e…

59

executable on their machine, and it simply streams in everything without having to

change any of their local state.

This allows us to distribute the light bakes over all idle workstations, guaranteed

they’re baking the exact same thing without change users’ state. This has unlocked a
lot of compute power.

By going from monolithic packages to granular content loading, we have massively

improved iteration times.

And by no longer storing duplicate data on every devkit or workstation, and instead

streaming everything over the network, we have decoupled the size of the game

from the data that you’re working with.

Loading your own local changes, last week’s build, or the prototype your colleague

has shared is all just as fast. Which enables completely new workflows.

We now have a content loading system that streams everything from a

highperformance key value store, and an asset database that doesn’t need to read
any files. These systems synergize together in a quite a powerful way.

60

As mentioned, we store our converted content in the GlobalStore. But that’s just one

example of the things we can cache. We also store executable artifacts from the

build machines, so we don’t need check them in to Perforce. Or a shader compiler
cache which helps speed up our conversion. Because we have this high-performance

store that is well integrating into our infrastructure, adding new caches is a just a few
lines of code.

One great example of that is the AssetIndexer. It builds up its database from the files

in Game Assets. To do this, it needs to read and parse all millions of files once to the

extract the indexed data.

But every single workstation needs to do this and apart from a tiny number of local

changes, they’re all parsing the exact same files. *CLICK* We can store an extract of

each file in the GlobalStore keyed on its metadata: file path, file size, and

modification time. The AssetIndexer can then build its database by only listing files

to get the metadata

•

•

•

•

•

•

63

and downloading the extract from the GlobalStore, without even having to open any

of the files. Because the GlobalStore is optimized for millions of small requests this is

much faster than reading and parsing the files themselves. This means we can build

up a database of every single file in the game in about 5 minutes, without opening

any of them.

64

Another example of this synergy is during conversion. When we load something like a

robot entity, *CLICK* we also need to load its mesh, textures, animations, etc.

CLICK These might be stored in separate CoreText or binary files, so to find the

converted results in the GlobalStore for all of these files, *CLICK* the convert process

recursively follows the links between objects and files to create a graph of what

needs to be loaded. This is a process we call dependency checking.

65

Previously we were reading the files from disk to figure out the link structure and to

calculate hashes for comparison. This meant -you can probably guess by now-

opening thousands of files every time the game tries to load something. *CLICK* But

with

•

•

•

65

the AssetIndexer, we have all of that data available already in a memory-mapped

database.

Let’s take this moment to dive a little deeper into why this is so much faster.

66

The problem with opening many files is that for every file, you need to do a kernel

call to get the handle, and another kernel to close it again. Even without any other

disk access the CPU needs to transfer into kernel mode and back into user mode

twice for every file. The file system also has to provide guarantees about consistency

of files between processes so most of the calls get serialized on internal locks.

KernelBase CreateFileW
ntdll NtCreateFile
FLTMGR FltpCreate
Ntfs NtfsFsdCreate
ntoskrnl ExAcquireResourceExclusiveLite
ntoskrnl KeWaitForSingleObject

67

For our shared memory, *CLICK* we only need to do one kernel call to map the Asset

Indexer database into the converter’s process space, *CLICK* and one more call to

get a reader lock on it. *CLICK* With 2 kernel calls we can now access the indexed

information about all 4 million files like any other data in process memory. *CLICK*

After mapping it, looking up the hash for a file only takes 1.2 microseconds.

μ

68

So using shared memory we can look up 700,000 hashes per second. Compare that to

our previous numbers

• The network share did 700 files/s, which isn’t even visible on this chart.

• NTFS file system was 25,000 files/s

• The GlobalStore did 75,000 files/s

But it gets better! That’s just on a single thread. *CLICK* While holding our read-only
lock, the Asset Indexer scales perfectly to parallel operations. Spreading this out over

16 cores I get 13,000,000 files/s. That means we can look up the hash of every single

file in our game in 1/3 of a second. Compare that to the 2.5 minutes you would
spend just opening the files.

69

And when I say memory-mapped database, that’s just not a matter of

memorymapping a SQLite file and performing queries on it. The database is an actual

datastructure that has been designed for our content.

Files and objects are stored in separate tables for efficient storage, but navigating the

data structure is still highly performant. *CLICK* A file’s entry has a direct index into

the object table, pointing to contiguous rows that containing the objects for that file.

No need to run complicated queries or iterate over all rows to find the related data.

And the same thing goes for links.

70

That means we can build up the link graph, compare hashes, and do some other

checks and in 40 seconds we know for all million coretext files in the game if they

have been converted.

So by switching dependency

•

•

•

70

checking to use the Asset Indexer, the whole process got significantly faster. But

maybe more importantly, we can load into the game without reading a single

CoreText file from disk. We do the dependency checking against the database and

stream the converted content from the Global Store. And this will become even

more relevant later on.

Because almost exactly 3 years ago, March 2020, everyone suddenly had a very

strong desire to start working from home.

All of these designs were made with our office network in mind. Which is 10Gbps and

less 1ms latency to every workstation. We had decided we were going to send

complete workstations home, which meant some people were working through a

20Mbps connection in the worst cases. That’s 500x slower than our office.

Downloading a 95GB package on such a connection would have taken an entire

workday. But obviously streaming over the internet as I’ve been describing also

wasn’t going to work.

71

So we set up GlobalStore proxies on every WFH pc. In a fit of irony this meant we

now had Local

GlobalStores. This wasn’t ideal as we’re back to every workstation containing

duplicated data that needs to be read from disk.

But all of the work we did was still incredibly valuable. By having the data split into

smaller chunks and only loading what is needed, people didn’t have to download a

full 95GB every day. Instead, after they get the latest revision, they only download

the delta of converted content since the

•

•

•

•

•

•

last sync and only in the area where they are working. And our own GS proxies achieve

much higher throughput than the network file share for these small requests.

72

Our biggest bottleneck at this point was syncing the game assets from Perforce. Users

had to download 10-40GB everyday, but similar to the converted content, most of

that wasn’t actually used by that person. Luckily we were able to use a most excellent

Virtual File System by some industry friends. *CLICK* In summary, the file appears to

be there to the user or any program, but the content only gets downloaded when the

file is actually read. For more details, Brandon Moro had a great talk on the subject at

GDC last year. This was rolled out to everyone and made syncing for people at home

go

73

from hours to minutes and even improved it for those in the office.

73

The Virtual File System was the final piece of our triforce. By combining it with the

AssetIndexer and the Global Store, we can start working on the game without having a

single piece of content on disk.

Only the content that is needed is downloaded on demand. To put it all together, let’s

go through the lifetime of a file.

It starts with someone submitting a file to Perforce.

Someone else then syncs the file using the Virtual File system. Perforce provides enough

metadata for it to pretend the file is there.

The Asset Indexer sees this new file, and based on the metadata pulls an extract with

objects, UUIDs, etc from the Global Store.

75

75

The user then opens the Asset Browser in the Editor, which asks the Asset Indexer for

the list of objects, which now includes the new file.

If the user opens the file, the full contents are fetched on-demand

76

from Perforce by the Virtual File System.

The user can then make some edits, and on save the Asset Indexer re-scans the file with

the new changes.

76

To tests the changes the user starts the game, which also starts a conversion process.

This asks the Asset Indexer for the state of the disk.

Noticing there are local changes that haven't been converted yet,

77

77

it converts those and uploads them to the Global Store.

Finally the game then streams those new assets.

78

And being happy with their changes, they submit their file back to source control,

completing the cycle.

79

Even this spaghetti of a chart is still somewhat simplified, but all of these systems

working together means we locally only ever store the data that we absolutely

need.

DRINK

Thanks to this, syncing and starting the game on a new branch no longer takes more
than 8 hours, but only 20 minutes.

And because you no longer need all game assets and converted content, you can
easily have multiple branches synced without running out of storage space, so

switching between projects is just a few seconds.

→

80

So in conclusion, by having a local Asset Database that can rapidly provide

information about all the game’s content,

a loading system that streams all data over the network,

And by combining these 2 systems in smart ways.

We can greatly reduce the time spent waiting around and make working with

millions of assets feels like a breeze.

Hopefully the coffee machine doesn’t start feeling

81

too lonely.

82

I want to give a big shout out to all my amazing colleagues at Guerrilla. In particular
to these people for their support of this presentation, all of their smart ideas, and
actually making a lot of the things that I've talked about.

And thank you all for your attention!

One more note:

83

Here’s the obligatory “We are hiring” slide! We still have a lot of ideas, so if you’re

interested in joining us to push this tech even further, come talk to me or apply on

our website!

84

A reminder to please fill out the questionnaire.

With that, are there any questions?

