
SDL: Past, Present, and Future

Sam Lantinga and Ryan Gordon



What Is SDL?
● Simple DirectMedia Layer

● Cross-platform interface for hardware abstraction
● Windows, macOS, Linux, iOS, Android, etc.

● Covers audio, video, controllers, and much more

● Used by game engines and game/app developers

● No, my middle initial isn’t ‘D’



Who Are We?
● Sam Lantinga
● Author of SDL, Software Engineer at Valve Corporation

● Ryan Gordon
● Partner in crime, Software Engineer at icculus.org

● Unsung heroes
● @1bsyl, @Kontrabant, @madebr, @sezero

● And many many more…



The Past: SDL 1.2
● Born out of Executor, a 68k Macintosh emulator

● Single window, framebuffer access, single audio 
callback, keyboard/mouse/joystick input, CD-ROM 
support

● Used by Loki Software in Linux ports



The Present: SDL 2.0
● Added support for multiple windows, surround sound, 
accelerated 2D video API, Vulkan graphics context, 
game controller API

● Used by Valve Corporation in Steam and the Source 2 
engine across all platforms



25 Years of History
● Started with Loki Software in 1998

● Civilization: Call To Power, Heroes of Might and Magic III, Sid Meier’s Alpha 
Centauri, Tribes 2, Unreal Tournament, etc.

● Continues with Valve Corporation in 2023
● DOTA 2, Half-Life: Alyx, Portal 2, Steam, Steam Link, Steam VR, Team 

Fortress 2, etc.
● Used by hundreds of games, including many published on Steam
● Used by several major game engines, including Unity and Source 2
● Used by games, emulators, embedded environments, and more!
● Has bindings for over a dozen programming languages



25 Years of Portability
● Windows, Linux, *BSD, macOS, iOS, tvOS, Android

● Windows RT, Windows UWP, Windows and Xbox GDK

● Playstation, Nintendo Switch

● Emscripten: reimplemented SDL 1.2 API using Javascript, 
now directly supported in SDL 2.0

● And many more over the course of time… Haiku, N3DS, 
OS/2, PS Vita, QNX, etc.



Open Source Is Great
● Moving to GitHub has greatly increased developer 
engagement and feedback, and has directly contributed to 
the move to SDL 3
● There are over 400 contributors and 1000 forks of the core 
library
● Moving to GitHub has made it much easier to release 
quickly, and now we have a monthly cadence of stable 
release updates



Commercial Products Are Great
● Great feedback from professional developers shipping large 
products
● Battle tested, shipping in Steam to millions of customers 
every day
● Used by Steam Link exclusively for audio, video, and input 
across mobile and desktop platforms
● Shipping SDL pre-release code in Steam betas results in 
more stable releases



The Future: SDL 3.0
● Opportunity to apply what we’ve learned over the last 
10 years, changing the API and ABI

● Simplify and streamline the build process

● Simplify and streamline the API

● Add new useful functionality



The Future: SDL 3.0
● Simplifying and streamlining the build process
● Standardizing on Cmake
● Visual Studio and Xcode projects still available



The Future: SDL 3.0
● Simplifying and streamlining the API
● Symbol naming conventions are more consistent
● Simplifying functions where it makes sense
● Removing functions where it makes sense
● main() handling moved to a standalone header library



The Future: SDL 3.0
● Adding new useful functionality
● New 3D GPU API in development
● Full support for high DPI displays
● Added nanosecond time precision
● Added sub-frame event timing
● And much, much more!



The Compatibility Story
● Compatibility is important so older commercial games continue 
to run as platforms evolve 
● sdl12-compat allows running SDL 1.2 games on the SDL 2.0 
runtime
● sdl2-compat allows running SDL 2.0 games on the SDL 3.0 
runtime
● SDL 1.2 => sdl12-compat => sdl2-compat => SDL 3.0 works!
● Civilization: Call To Power from 1999 runs seamlessly on a 
modern Linux system running Wayland



Easing the Transition
● Careful decisions about how to change the codebase
● Code style reformatting was applied to both SDL2 and SDL3 

so bug fixes could be more easily merged between major 
versions

● We decided not to switch to stdint types for internal code



Easing the Transition
● Careful decisions about how to change the API
● Does the change make life better for developers?
● Are we changing the API in a way that will still make sense 

10 years from now?



Easing the Transition
● Transition guide
● As part of the change acceptance process, each change 

must be documented and a developer transition plan 
provided in docs/README-migration.md

● Coccinelle is a tool that can be used on Linux or on 
Windows via WSL



Topic: Relative Mouse Motion



Topic: Relative Mouse Motion
● When is it useful?
● Camera control in FPS style games
● Dragging the map in RTS or RPG style games
● Precise mouse positioning in emulators
● … etc.



Topic: Relative Mouse Motion
● Classic approach:
● Mouse warping - originally used in the id DOOM engine
● Generates additional mouse events
● Deltas are affected by desktop mouse acceleration
● Doesn’t work over Windows Remote Desktop



Topic: Relative Mouse Motion
● SDL_SetRelativeMouseMode()
● Uses raw input instead of mouse warping
● Automatically hides the mouse cursor
● Automatically constrains the mouse to the window
● Provides low level, low latency mouse deltas
● Delta scaling disabled by default for predictable movement
● Works with Windows Remote Desktop (sorta)



Topic: Relative Mouse Motion
● Considerations

● Warping the mouse in relative mode does not generate a mouse 
event, but does change mouse position

● You can save and restore mouse position when enabling and 
disabling relative mouse mode

● You can change relative motion sensitivity by setting 
SDL_HINT_MOUSE_RELATIVE_SPEED_SCALE

● You can enable desktop mouse acceleration curves in relative 
mode by setting 
SDL_HINT_MOUSE_RELATIVE_SYSTEM_SCALE



Conclusion: Relative Mouse Motion

● Don’t use mouse warping!

● SDL_SetRelativeMouseMode() is a great way to easily 
add relative mouse motion to your application



Topic: High DPI Support



Topic: High DPI Support
● A tale of screen coordinates, scale, and pixels…
● Screen coordinates, also known as points or device 

independent pixels, are the size in pixels divided by the 
display scaling factor

● Screen coordinates are oriented around content physical 
size

● More pixels means more detail, but not more content



Topic: High DPI Support
● A 4K display with 200% scaling has 1080p screen 
coordinate size



Topic: High DPI Support
● Apple platforms provide screen coordinates, optionally 
allows high DPI back buffers

● Windows provides screen coordinates for non-DPI 
aware applications, pixels for DPI aware applications



Topic: High DPI Support
● SDL 3.0 applications always get screen coordinates and 
high DPI back buffers
● Display bounds, window coordinates, and mouse 
coordinates are all specified in screen coordinates
● Mouse coordinates are floating point with full precision, 
centered on pixels
● Display modes include size in screen coordinates, size in 
pixels, and a display scale



Topic: High DPI Support
● A fullscreen desktop window is 1920x1080 in both 
cases, and a 4K back buffer on the 4K monitor



Topic: High DPI Support
● SDL_GetDesktopDisplayMode() returns the current 
desktop mode, including scale

● SDL_GetWindowSizeInPixels() returns the size of the 
back buffer for a window



Topic: High DPI Support
● SDL 2D Render API has convenience functions:

● SDL_SetRenderLogicalPresentation() sets a logical size for the 
content, rendering to an offscreen texture and then scaling it as 
needed for presentation

● SDL_RenderCoordinatesToWindow() and 
SDL_RenderCoordinatesFromWindow() convert between screen 
coordinates and coordinates in the render viewport

● SDL_ConvertEventToRenderCoordinates() will convert all 
coordinates in an event into coordinates in the render viewport



Topic: High DPI Support
● High DPI events:

● SDL_EVENT_WINDOW_RESIZED is sent when a window is 
resized in screen coordinates

● SDL_EVENT_WINDOW_PIXEL_SIZE_CHANGED is sent when 
the size of a window’s backbuffer has changed, which can 
happen when moving between high and low density displays

● SDL_EVENT_DISPLAY_SCALE_CHANGED is sent when a 
display changes scale, which also triggers window pixel size 
events



Conclusion: High DPI Support
● SDL gives you a consistent way of handling high DPI 
scenarios across all operating systems

● Your game should handle floating point mouse
coordinates, and window sizes that are different than 
your back buffer sizes

● When you get a pixel size changed event, just rebuild 
your back buffer



Topic: SDL 3.0 GPU API



The 2D problem
● SDL's 2D API is limited

● Extending it is hard

● Even in 2D, the thing people want is shaders



The 3D problem
● Most of it is hard to use

● Nothing is portable



SDL 3.0 GPU API
● Turbo charge SDL's rendering offerings

● Offers SDL's focus on simplicity and portability

● Built on next-gen APIs

● Not required!

● Existing 2D API built on top of it



SDL 3.0 GPU Overview
● C-callable API offering modern GPU concepts

● Command queues, pipelines, PSOs, shaders, fences

● Thread safe!

● Uses own shader language and bytecode format



Wait, what?
● Existing offerings didn't meet portability and simplicity 
goals

● You can use other rendering APIs with SDL if you like!

● Transpiling is possible



SDL 3.0 GPU Shaders
● Uses own shader language and compiled shader bytecode 
format

● Bytecode is cross-platform: build once, ship everywhere

● Shader compiler is small open source C library

● Use command line to compile, or embed in your own tools 
or your own game, to use shader source at runtime!



SDL 3.0 GPU Shading Language
● Looks a lot like GLSL, HLSL, MSL, or C

● Removed some footguns

● Improved some syntax in mostly optional ways

● If you’ve ever written a shader, you can handle this

● Vertex and pixel shaders for now, more to come



SDL 3.0 GPU Example
● The "S" stands for "Simple“

● Vulkan: 1157 lines of C.

● SDL GPU API: 153 lines (including error checking!)



SDL 3.0 GPU Conclusion
● Still early in development, but looking good

● Feedback welcome!



Questions?
● Presented by Sam Lantinga (slouken@libsdl.org) and 
Ryan Gordon (icculus@icculus.org)

● Slides and code examples at 
https://www.libsdl.org/gdc2023

● Thank you!


