
Toon Rendering in Hi-Fi RUSH

Tango Gameworks（Zenimax Asia）Kosuke Tanaka

Tango Gameworks（Zenimax Asia）Takashi Komada

*Please note that the original powerpoint contained movie files and gif
animations which became converted into still images in the pdf.

Image sharpness was also lost during the powerpoint to pdf conversion.

Kosuke Tanaka

Programmer @ Tango Gameworks since 2011.

・VFX Programmer for “The Evil Within”.

・Graphics Programmer for “The Evil Within 2”.

・Lead Graphics Programmer for “Hi-Fi RUSH”.

We’d like to start off the talk with brief speaker introductions.

Hi, I’m Kosuke. I’ve been working as a graphics programmer at Tango
Gameworks since 2011.

For “Hi-Fi RUSH”, I worked as lead graphics programmer working on our core
toon rendering.

I went from bloody vfx for zombie headshots and moody survival horror
lighting to toon rendering.

Takashi Komada

Programmer @ TangoGameworks
since 2016.

• Physics and graphics programmer
for “The Evil within 2”.

• Physics and animation
programmer for “Ghostwire:
Tokyo”.

• Graphics, physics and animation
programmer for "Hi-Fi RUSH“.

Hi, I’m Takashi Komada.
I am a graphics and physics programmer.
I’ve been working as a programmer at Tango Gameworks since 2016.

On "Hi-Fi RUSH“, I was graphics, physics and animation programmer.

Agenda

Game Introduction

Deferred Toon Rendering

Comic Shader

Toon Light

Shadows

Static Shadow Map

Global Illumination

Toon Face Shadow

Final Words

Here’s the agenda for today’s talk.

I’ll cover the core toon rendering topics in the blue frame and Komada-san
will present our toon face shadow implementation in the green frame.

Agenda
Game Introduction

Deferred Toon Rendering

Comic Shader

Toon Light

Shadows

Static Shadow Map

Global Illumination

Volumetric Fog

Toon Face Shadow

Final Words

Okay, I’m going to start off with a brief introduction of our game.

Pop-Up Character Introductions

Kale
CEO

Chai
Rock Star

Who is this mystery man, and
does he have a food name?

I’m sure not all of you have played our game, so I’d like to introduce our
presentation’s pop-up characters first.

The character on the left, Kale, is one of the enemy characters in the game.
Since he’s an evil guy, he’ll mostly be making difficult demands for the
graphics team.

The character in the middle, Chai, is the main protagonist of the game. Since
he’s our friendly hero, he’ll mostly be making enthusiastic comments.

And finally, the robot on the right is John. Despite not having a catchy food
name, John made a strong creative push for our toon visuals, had a
conveniently available texture, and is Hi-Fi RUSH’s creative director, so I’ve
included his comments.

Hi-Fi RUSH Features (Toon Rendering)

Let’s render
everything in a toon
style.

I want you to use
Unreal Engine 4’s
rich 3D graphics,
but make it look like
a 2D comic.

Kale
CEO

It’s the main topic of our talk today, but Hi-Fi RUSH is a game utilizing toon
rendering.

A lot games use toon rendering for characters, but not the environment. In
our game everything is rendered in a toon style.

A big challenge for the graphics team was how to utilize Unreal Engine 4’s
modern graphics pipeline and make it work for a 2D cartoon look.

Hi-Fi RUSH Features (60FPS)

60FPS is a must. We’re a
rhythm action game.

BUT I want nice graphics
as well.

Keywords are sharp, clean,
colorful.

Kale
CEO

Another defining characteristic of our game is that we’re a rhythm action
game that requires a rock solid 60 FPS in order to minimize input latency and
provide the best gameplay feel.

Programmers and artists were told from the very start of development, FPS is
top priority.

But at the same time, we were going to support the new Gen9 hardware, and
the team wanted to pursue great graphics that would do justice to the
hardware.

With goals of great graphics, the keywords that our art director defined for
the team were sharp, clean, and colorful.

Rock Solid 60 FPS & High Resolution
Xbox Series X 4K 60FPS
Xbox Series S 1440p 60FPS

Needs to run great on lower-end PCs.

Let’s strive for native resolution but support super resolution plugins for
lower end specs.

Everyone, I want our renderer and our assets need to be well optimized!

Kale
CEO

I’ll go over the technical make up of our attempt at great graphics in more
detail but notice that two of our key words were sharp and clean.

Image quality was very important to us, and in addition to high frame rate,
one of the key technical features of our game is its high resolution.

We aimed for native resolution on our console targets for sharp, clean,
“artifact-free” image quality. We’re aware of super resolution tech, and we
support super resolution plugins for PC, and they’re great. Because our
resolution is high to begin with, they allowed us to push the limits of our PC
low end specs even further.

Balancing Visual Quality & Performance

Digital Foundry Review
・Adventurous Toon Rendering
・Solid 60FPS
・Xbox Series S 1440p
・Xbox Series X 4K

We did hit our visual quality & performance goals!

https://www.youtube.com/watch?v=8qppoWhanwk

Chai
Rock Star

Because we prioritized performance and image quality, a nagging fear during
development was that people would be disappointed by our technology. In
the end, it was a great win for us that the game’s visual arts was well received,
and we got great technical reviews. Balancing performance, resolution and
rendering features is hard. As graphics programmers we’re excited by new
rendering tech and want great graphics, but our game emphasized
performance and image quality, and the rendering features we chose for the
game were carefully considered so we could hit our goals.

https://www.youtube.com/watch?v=8qppoWhanwk

Agenda
Game Introduction

Deferred Toon Rendering

・・Overview

・・Post Process Lighting

Comic Shader

Toon Light

Shadows

Static Shadow Map

Global Illumination

Toon Face Shadow

Final Words

If a graphics programmer were to introduce our game that would be it.

I’ll now discuss our toon rendering starting off with an explanation of the core
tech; our deferred toon renderer.

Deferred Rendering

Hi-Fi RUSH uses Unreal Engine 4, which out of the box is a photorealistic
deferred renderer and not a toon renderer.

The lighting is forced, but this is what Hi-Fi RUSH looks like when toon
rendering features are disabled from the game.

The main point of the image is that, if we use the default UE4 lighting, there is
gradation everywhere, and the image ends up looking too much like it’s
rendered using a 3D engine.

Deferred Toon Rendering

This is the same scene rendered with toon rendering features re-enabled. This
is what we were going for as a toon look. Shadow gradation is replaced with
sharper shadows and our comic shader has been applied to the various 3D
render passes adding a 2D touch to the image. This is what sharp, clean and
colorful looks like.

Deferred Toon Renderer 3D Features
・Toon Light
・Dynamic Shadow Map
・Static Shadow Map
・Capsule Shadow
・AO Volume Shadow
・Diffuse Global Illumination
・SSAO
・SSR
・Post Process Outline
・Post Process Toon Shading

・Volumetric Fog
・Camera Motion Blur
・Toon Motion Blur
・Tone Map
・Bloom
・Lens Flare
・Temporal AA

Compared to past games with strictly cel-shaded environments, we
incorporate a lot of 3D lighting/rendering features into the game.

We added rendering passes like static shadow maps and decal toon lights, but
we also stylized and extended the excellent base UE4 graphics features such
as SSAO and SSR and made them work for cel-shading.

Toon Rendering (No Engine Modification)

Deferred
Lighting

Toon Post ProcessFog、
Transparency

Lighting is complete
at this point.

It’s possible to use a standard UE4 post process material to implement a
toon post process.

It’s possible to write a toon renderer without engine customization in UE4.

In the simplest case of using UE4 post process materials, the toon post
process is applied after the scene lighting is finished and most of the
rendering is complete.

Toon Rendering (Engine Modification)

We’re a small team, so we must be
careful with engine modifications,
but I think we can do better.

Kale
CEO

It’s the simplest approach and we wanted to do better.

Toon Rendering (Lighting Layer Toon Stylization)

SSR

SSAO

Apply individual toon
stylizations to each layer
of lighting.

Apply a single toon
stylization to the final
rendering result.

Since we planned on supporting many lighting features, we wanted to be able
to apply toon stylization to each lighting layer with their own stylization
parameters.

Toon Rendering (Per-Volume Rendering)

Toon post processing is
applied per camera.

Toon post processing is
applied per volume.

Volume 1 (Higher Render Priority)

Volume 2

Another thing we wanted to improve on is that UE4 post process materials
are applied per camera.

We felt this was too restrictive and wanted to apply different toon colors and
stylizations to different areas within the same camera.

Deferred Toon Rendering (Engine Customization)

Fog、
TransparencyDeferred Toon Rendering

Toon Post ProcessDeferred Lighting

Toon rendering is complete at
this point.

To achieve our goal, we customized unreal engine 4 and combined deferred
lighting and toon post process into a single deferred toon rendering pass.

Regular Deferred Rendering

Spot LightPoint Light

Decouple the lighting pass from the geometry pass.

Here’s a quick review of regular deferred rendering. Material information are
rendered into GBuffer render targets and the lighting pass is decoupled from
the geometry pass. Point lights are rendered with sphere geometry and spot
lights are rendered with cone geometry in a pass independent from the
geometry they are lighting.

Deferred Toon Rendering

Similar to deferred
lights except the
geometry is a box and
the shader is a toon
post process.

Decouple the toon rendering pass from the geometry pass.

In a similar fashion, we want to decouple toon rendering into a pass separate
from the mesh’s actual geometry rendering.

Our toon post process volumes work like deferred lights except the shader is
a post process.

Like deferred lights, our artists can freely move around the toon post process
volume to locally change the toon rendering.

Deferred Toon Rendering (Box Volume Rendering)

Depth Buffer

We use the GBuffer and world depth
information to apply toon post processing
on the scene geometry enclosed by the box.

We use standard deferred rendering
calculations.

Gbuffer A, B, C

In the slide video, when I move the billboard mesh inside the smaller toon
post process volume, notice that its toon rendering changes.

At its core, our toon post process volumes are using standard deferred
rendering calculations. We use the scene depth to recreate the world position
and use GBuffer information to apply the volume’s toon post processing on
not the volume box geometry, but the underlying scene geometry.

Lighting With Toon Post Process Volumes

HbkPostProcessVolume_St05AIVC

HbkPostProcessVolume_St05AreaA_Room

Our environment artists place many toon process box volumes throughout
our levels. By placing these volumes, our artists adjust toon shading locally
per volume within each area of the level.

Deferred Toon Rendering Timeline

Depth Buffer

Shadow Depth

GBufferA,B,C

SSAO, Capsule
Shadows

Global
Illumination

Dynamic Screen
Space Shadows Static Shadow

Map

SSR
Decal Light

Post Process
Outlines

AOVolume

*Custom render passes are in the yellow frame.

Shadow color volume and
ambient cubemap volume
passes explained later are part
of the toon process pass shader,
so no render targets here.

The above is a Pix for Windows capture of the timeline for our deferred toon
rendering pipeline.

I’m showing you the render passes that are executed in an actual scene in
preparation for the toon post process pass, the render pass of the box
volumes in the previous slides.

Deferred Toon Rendering Input Buffer

Quite a few render targets end up getting generated for the toon post process
pass. My earlier test map was very simple looking, but there are quite a bit
more lighting layers in an actual scene. Toon shaded environment tend to
look simplified, but there are a lot of layers to our environmental lighting.

The Toon Post Process Pass

Before Toon Post
Process

After Toon Post Process

Input
Buffers

Render
the Toon
Post
Process
Pass

Because our deferred toon rendering is a combination of toon lighting and
toon post process, notice that the scene color is completely dark except for
emissives before the toon postprocess rendering is applied.

A regular deferred renderer has scene depth and GBuffers. For deferred toon
rendering, we have scene depth、GBuffers plus the various individual lighting
pass results all waiting to be applied.

What We Do With Our Numerous Input Render Targets (Toon Stylization)

We have available individual lighting
layers for stylizing separately during
the toon post process pass.

SSR

SSAO

The toon post process has available to it all these render target. What do we
do with them?

Because we have all lighting results as input textures, as was one of our initial
goals, we can apply comic stylizations to each lighting layer with individual
parameters.

What We Do With Our Numerous Input Render Targets (Shadow Overlap)

We have a lot of shadow
types.

・parallel light shadows,
・shadow-only light
shadows
・static shadow maps
・capsule volume shadows
・ao volume shadows

Player shadow drawn
inside cascaded
shadow maps.

Because we apply all shadow types to the scene inside the toon post process
pass, we can also easily control the visual look when different shadow types
overlap. For example, when the player shadow is drawn inside our cascaded
shadow maps, we can detect this overlap and adjust the player shadow
darkness, so it doesn’t appear too dark or light. Stylized shadows inside
shadows is a very cool toon thing and we wanted to make it look good.

Making Our Toon World Look Good With A 3D Engine

Chai
Rock Star

We’re using UE4. Let’s
use its graphical prowess
for toon.

UE4 has a great-looking deferred rendering implementation, and it was a
natural progression for us to extend it to a deferred toon renderer. We tried
to utilize UE4’s strengths but at the same time didn’t want to lose our own
visual personality by using the engine too directly.

Locally toon shading different areas by placing toon post process volumes like
deferred lights seemed like good useability for our artists.

Deferring all lighting and toon post processes into a single pass made sense
because we wanted our artists to be able to control how different lighting
layers combine and interact for toon.

Agenda
Game Introduction

Deferred Toon Rendering

・・Overview

・・Post Process Lighting

Comic Shader

Toon Light

Shadows

Static Shadow Map

Global Illumination

Toon Face Shadow

Final Words

That was an overview of our deferred toon rendering. Next, I’d like to
highlight unique aspects of our toon lighting during deferred toon rendering.

I’ll cover shadow color 3D textures and ambient cubemaps. The major
requirement for our toon lighting was artists need to be able to add color and
adjust brightness, but it can’t look too 3D. To make the scene not look
artificial for toon, artists needed to be able to paint the colors themselves.

Environmental Shadow Color

Shadow Color Black

Environment artists need a way to give color to each location. Our art
director’s key words were sharp, clean and colorful, so it was important that
artists be able to control the environment’s shadows with the colors they
wanted. In the slide image, the shadow color is a uniform black color.

Shadow Color Volume Applied

Shadow Color Volumes Applied

This is what the scene looks like with shadow color volumes applied.

The black shadows are now properly colored with artist authored shadow
colors.

I’ll explain in more detail in the following slides, but shadow color volumes
work by mapping a 3D texture to a 3D world position.

Shadow Color Volume Rendering

Apply shadow color not on the box
surface, but on the geometry enclosed
by the box.

Calc world position from scene depth.

Here in the slide video, I’m adding a new local shadow color volume to the
scene with a whiter/greyer shadow color 3d texture.

The rendering of the shadow color volumes is like our toon post process
volume rendering.

The shadows are not applied to the volume box geometry but are projected
onto the geometry enclosed by the box.

3D Texture Mapped to World Positions

Surface world position converted to
normalized local coordinates in the
[0,0]-[1,1] range and used as texture
coordinates for the 3D texture.

If we look carefully, the shadow color volume colors gradually become darker
with increasing height. This positional color change happens because the
enclosed surface world position is converted into the shadow color volume’s
normalized local 3D coordinates and this coordinate is used to the sample the
3d texture. The gradually changing colors inside the 3d textures are hand
adjusted by artists to give the desired shadow color nuance our art director
wants for the scene.

Shadow Color Volume Applied

Interior scenes are usually
initially unlit, making it
possible to adjust the overall
color make up using the
shadow color volumes.

Shadow Color Debug Display

The scene’s shadow color
3D texture.

Here’s an interior scene and its corresponding shadow color 3d texture.

For interior scenes, our environment is usually initially unlit and in shadow
and we light by adding lighting layers to this state.

Because the scene is initially in shadows, artists can use shadow color
volumes to adjust the overall base color make up of the scene.

Ambient Cubemap Volume

Ambient Cubemap Off Ambient Cubemap On

Enable
Ambient
Cubemap

In addition to 3d textures for shadow colors, we also use cubemaps for
postprocess ambient brightness adjustments.

Ambient Cubemap Volume

Chai
Rock Star

We use deferred
rendering of box
volumes a lot in
Hi-Fi RUSH.

Like with our shadow color volumes, we apply ambient cubemaps to the
underlying geometry using a box volume.

As mentioned earlier, our interior scenes are initially unlit, and to this state
we add lighting layers, one of which is ambient cubemaps.

Ambient Cubemap Volume

The GBuffer world normal is
used to sample the cubemap
texture.

World Normal Debug Display

Cubemaps need a sampling direction. Because we are a deferred toon
renderer, we can use the world normal stored in the GBuffer for this purpose.

Ambient Cubemap Volume On/Off Difference

Ambient Cubemap VisualizationCubemap Texture

In the slide image, the ambient cubemap volume is being toggled on and off.

Notice that in the scene, the underside of the surface is lit brighter than the
top and the sides, representing a difference in directional ambient brightness.
This directional brightness comes from the cubemap texture, which our
environment artists create by hand.

Agenda
Game Introduction

Deferred Toon Rendering

Comic Shader

Toon Light

Shadows

Static Shadow Map

Global Illumination

Toon Face Shadow

Final Words

In the next section, I’d like to talk about our comic shaders.

Comic Shader

Lit
・Halftone Dot

Shadow
・Hatching Lines

It’s a recognizable trait of our toon look, but we implemented a comic shader
for rendering halftone dots and hatching lines.

Halftone Dots

SSR

Halftone dots are the round dots that we apply to the lit portions of our
lighting.

Hatching Lines

SSAO

Hatching lines are the rotated lines we apply to the dark shadowed areas of
lighting.

Why Apply A Comic Shader
I want everything in the
world to look toon.
Characters, environment,
everything.

Our goal is to render a 3D world as 2D toon.

Our comic shader removes gradation,
simplifies colors and makes the rendering
look more 2D.

The goal of our toon renderer is to render a 3D world as 2D toon.

Our comic shader is a stylization, but at the same time it’s an important
element in our deferred toon rendering for making the world look less 3D and
more 2D toon.

Comic Shader Off

Comic Shader Off

Here’s what a scene from our game looks like with the comic shader turned
off.

SSAO, GI, Bloom make the world look richer, but since we’re just applying 3D
engine functionality, the final image looks 3D.

Also, the performance-oriented, low-sample count nature of some of our
rendering passes become especially noticeable on our clean toon textures.

Comic Shader On

Comic Shader On

Here’s what the same scene looks like with the comic shader enabled.

The scene is stylized, but at the same time, gradation is also removed, making
everything look less 3D.

The dirty look of GI and SSAO have been made sharper with lines and dots,
and the image looks much cleaner.

Comic Shader On/Off

Comic Shader On/Off

Here’s the comic shader on/off as an animation.

Signed Distance Function

Halftone/Lines are generated in shader using signed distance
functions.

2D signed distance functions are often used in procedural shaders.

For our comic shaders, programmers used SDFs to create the comic shader
halftone and hatching lines procedurally inside our shaders.

Implementing Halftone (First Step)

float3 CalcHalftone(float2 UV, float3 HalftoneColor, float3 BGColor, float Radius)
{

float2 UV2 = 2.0*UV.xy - 1.0;
float Dist = length(UV2);
if(Dist < Radius) { return HalftoneColor; } // Radius is 0.5.Halftone Color is white.
return BGColor; // BGColor is black.

}

(0,0)

(1,1)

We just do basic stuff in terms of SDF. For clarity, I’ll go over an example
halftone shader.

My example shader is a postprocess which uses screen space UVs.

The first step is to calculate the distance from the center of the screen. If this
distance is below the halftone radius, we draw a white color, if the distance is
above the halftone radius, we draw a black color.

Implementing Halftone (Aspect Ratio)

UV.x = UV.x * (Res.x/Res.y); //Take into consideration aspect ratio

We take into consideration the aspect ratio to go from an ellipse to a circle.

Implementing Halftone (Repeating Grid)

float3 CalcHalftone(float2 UV, float3 HalftoneColor, float3 BGColor, float Radius, float Freq)
{

float2 UV2 = 2.0*frac(UV.xy*Freq)-1.0;
float Dist = length(UV2);
if(Dist < Radius) { return HalftoneColor; } // Radius is 0.5.Halftone Color is white.
return BGColor; // BGColor is black.

}

We don’t want large circular dots, but want multiple smaller dots in a grid
across the screen.

Using the frac instruction, we scale and wrap the screenspace UVs.

Implement Halftone (45 Degree Rotation)

Art requested that the halftones be rotated 45 degrees.

Art wanted the halftones rotated 45 degrees. For this we just rotate the grid
UV.

Implementing Halftone (Aliasing)

Aliasing can occur due to the simple 0/1 thresholding.

Because we are using a simple 0/1 step function for the distance function
threshold, aliasing can occur.

Implementing Halftone (Anti-Aliasing)

Step Smoothstep

By using smoothstep instead of step and alpha blending the boundary region
of the halftone dots, we can implement anti-aliasing.

Implementing Halftone (Smoothstep Width)

Stefan Gustavson. 2012. “Procedural Textures in GLSL”. Linköping
University Electronic Press (OpenGL Insights, Chapter 7).

smoothstep(Radius-Width, Radius+Width, Dist)

The yellow frame area is 2*width.

Where do we want to apply the antialiasing?

We want to apply anti-aliasing on threshold
border pixel.

How to calculate the width?

Use ddx, ddy instructions to calculate the per-
pixel distance gradient.

Reference

The area inside the yellow frame is the width of the smoothstep function
where AA is applied.

Since we want to apply anti-aliasing only on the threshold border pixel, we
use the ddx, ddy instruction to calculate the per-pixel rate of change of the
distance function and use this value as the basis for our width.

Bloom Halftone AA On/Off In-Game (Zoomed)

No AA With AA

UE4’s TemporalAA blurs the halftones, so the AA is only obviously noticeable
on halftones applied after TAA such as our bloom halftones.

The difference also becomes not very noticeable with camera movement, so
the benefits of AA is somewhat limited for us, but we kept the calculations for
the moments that the user might notice the difference.

*Image sharpness was lost during the powerpoint to pdf conversion, so it may
be hard to see a difference in the pdf file here.

Implementing Hatching Lines

float3 CalcLines(float2 UV, float3 LinesColor, float3 BGColor, float Radius, float Freq)
{

float2 UV2 = 2.0*frac(UV.xy*Freq)-1.0;
UV2.y = 0.0;
float Dist = length(UV2);
return lerp(LinesColor, BGColor, StepWithAA(Radius, Dist));

}

So that was an explanation of how halftones are rendered using screen space
UVs. Hatching lines are the same shader code, just with UV.y fixed to 0.

SDF UV Grid Generation (Screen Space)

Screen Space UVs Screen Space Halftone Using Screen Space UVs

For effects such as bloom and volumetric fog, we use screen UV coordinates
in actual scenes.

We don’t do anything complicated, and the example shader is close to how
we render actual in-game screen space halftones.

SDF UV Grid Generation (World Space)

・GI halftones on the wall
are using world space UVs.

・Bloom halftones on the
floor lights are using screen
space UVs.

Screen space UVs work well for stuff without depth, such as bloom and
volumetric fog, but on actual polygonal surfaces, we want our halftones and
lines to look as though they are printed on the surface and not attached to
the front of the camera. For these cases, we use world space UVs.

SDF UV Grid Generation (World Space)

Use the Gbuffer world normal to map the plane on
which to generate the world space UVs.

Only 3 planes, XY, YZ, XZ.

Z-axis is dominant in the RED plane.
Use XY Plane. UV.xy is WorldPos.xy.

X-axis is dominant in the GREEN plane.
Use YZ Plane. UV.xy is WorldPos.yz.

Y-axis is dominant in the BLUE plane.
Use XZ Plane. UV.xy is WorldPos.xz.

To calculate world space UVs, we use the GBuffer world space normal to
calculate the dominant axis of the surface and just project onto this axis’s
plane.

For example, if the z-value is the largest direction of the world normal, we
want to project onto the xy plane, and so we simply use a scaled
WorldPosition.xy as our UV coordinates.

SDF UV Grid Generation (World Space)

For intersections of planes, we don’t use triplanar mapping.

World Space UVs World Space Halftones

For the intersections of planes, we don’t use triplanar mapping. We
experimented with it, but blending artifacts were noticeable and we simply
project onto a single plane. I didn’t get complaints about the halftones and
lines cutting off at the plane intersections, and the final implementation was
kept simple.

In-Game Comic Shader (Gradation)

・We adjust halftone,
hatching size based on
luminance.

・It’s a 2D toon expression
of gradation.

One final important feature of our comic shader.

*Start animation.

Because we procedurally generate our halftones and lines, we can easily
adjust their look based on the scene lighting conditions.

We use scene luminance to adjust halftone and hatching line sizes.

For the image in the slide, the GI halftones become larger the closer to the
emissive light source and smaller the farther away.

It’s a simple technique that allows us to express the lighting’s distance
attenuation while avoiding using gradation, which makes our scenes look
more computer generated.

Agenda
Game Introduction

Deferred Toon Rendering

Comic Shader

Toon Light

Shadows

Static Shadow Map

Global Illumination

Toon Face Shadow

Final Words

In the next section, I’d like to talk about our toon lights.

Key Light (Lit/Shade)

・Hi-Fi Rush uses a simple
Lit/Shade 2-tone toon
shading.

・A global key light is used to
determine the direction of
the lit/shade toon shading
using forward rendering.

Regular Lambert 2-Tone Toon Shading

Hi-Fi RUSH’s toon shading uses a simple 2-tone lit/shade toon shading model.

The toon shading’s lit/shade calculation is not performed in a deferred pass
but is calculated by a global key light that is forward rendered in UE4’s base
pass.

Why Forward Render Key Lights?

We’re a small team. We need
to be careful with UE4 engine
modifications.

Kale
CEO

Chai
Rock Star

With forward rendering, we can
experiment with toon shading
without affecting the entire team
with engine updates.

We chose to forward render our key lights because we could do so without
UE4 engine modifications.

In later stages of development, we began utilizing UE4 render commands for
data passing and render thread delegates for render pass callbacks that would
allow us to implement original render passes game-side. We’re now more
experienced about how to approach UE4 engine modifications, but that
realization came after our core tech was implemented.

The Case for Deferred Rendering Key Lights

Two separate key lights
are used here. One for
indoor and another for
outdoor.

Supporting multiple key
lights add complexity to
our base pass.

Deferred key lights
would have been more
efficient for multiple key
lights.

A single keylight struggles when different lighting conditions
occur within a single camera frame.

We eventually needed to support 2 key lights and it may have been more
performant to associate the key light with a toon post process volume and
render it in a later deferred pass. Our lighting’s mix of deferred and forward is
probably something we can improve on.

Placeable Toon Lights

Forward Light Decal Light

Light actors such as forward lights and decal lights can be placed to perform lighting.

Besides key lights, artists can use familiar light actors such as point lights and
spotlights to perform local environmental lighting.

Toon Light (Forward Light)

No engine modifications allowed
during the COVID transitioning
period. Lighting will be done
with forward lights.

Kale
CEO

・Forward lights can be implemented without engine modification.
・Decal lights, implemented with engine modification eventually
became a faster more powerful superset of forward lights.

Forward Light

For placeable lights, again we supported forward lights for the same reason as
key lights. A lot of smaller teams probably struggle with this, but how much
UE4 engine modifications is safe is something we struggled with especially in
the earlier phases of development.

We initially experimented with forward lights, but decal lights, which run in an
original deferred pass, were easier to optimize and eventually more useful for
our artists.

My toon light explanation will focus on decal lights since they’re more
interesting.

3D Light (With Gradation)
The gradation makes the
lighting look 3D. I want it
to look more 2D.

Usually with placeable light actors in a 3D engine, light distance attenuation is
expressed with color gradation.

For Hi-Fi RUSH, this was a big No, because using gradation led to the scene
looking 3D.

Toon Light (Cutouts)

I like it.

In addition to halftones and hatching lines, we use cutouts to 2d stylize our
toon light distance attenuation.

The color becomes darker the father away from the light source in cutout
steps.

Toon Light (Decal Light)

Arbitrary cutout textures can be
used with decal lights.

Our art director prepared 7
cutout texture patterns to be
used by environment artists.

The scene in the slide looks unlit.

* Play animation displaying the decal light.

Add a decal light with cutout light attenuation and the scene is lit by a 3D light
without making the scene look 3D.

Decal lights support arbitrary cutout textures. Our art director prepared 7
cutout texture patterns to give variation to the decal lights used throughout
our maps.

Decal Light Rendered Simply As Lights

Spot lights are rendered
with cone geometry just
like a regular deferred
lights.

Decal lights are Hi-Fi’s RUSH deferred lights, and so when a decal light is
placed in the world, they are deferred rendered with a sphere or cone
geometry just like regular deferred lights.

Decal Lights Rendered Using Decal Volumes

１）Place a decal light
decal volume on the
ground.

２）Assign a decal light
to the decal light decal
volume.

3) Regular decal light
geometry rendering will
be skipped, and the
decal light will be
rendered as a decal.

How to use a decal light
decal volume

Decal light’s namesake and what makes them special is that they can be
assigned to decal light decal volumes to render as a decal.

Environment artists can place lights as light sources in a traditional way, but
they can limit the projection volume of the light separately using decal
volumes.

Decal Light Decal Volume Optimization

Rendering a thin box decal volume.Rendering the spot light cone.

VS

One obvious benefit of projecting to a decal volume is a smaller area to
render and better performance.

Adding A Decal Light For The Wall

In addition to performance, decal lights provide finer artistic control over
which parts of the environment the light affects.

For example, we can add a separate decal light with its own projection
texture specifically to light the wall.

• Play animation.

The scene displays a star cutout projection for the ground, but a teardrop
cutout projection for the wall.

Preventing Light Leaks

Decal Light Decal Volume Prevent Light Leaking

In the Evil Within 2, our PBR lights could use clip volumes to prevent
spotlights from light leaking to the next room.

Decal light decal volumes also function as clip volumes and can prevent light
leaking.

* Play animation.

What About Characters?

Some of you might be wondering, doesn’t decal volumes mean characters
aren’t properly lit.

Let’s try lighting our game’s hero Chai with a decal light.

• Play decal light animation.

In Hi-Fi RUSH, character lighting is a separate system from environmental
lighting. Forward lights and decal lights don’t affect characters.

Agenda
Game Introduction

Deferred Toon Rendering

Comic Shader

Toon Light

Shadows

Static Shadow Map

Global Illumination

Toon Face Shadow

Final Words

Next, I’d like to explain what we do for shadows in Hi-Fi RUSH.

Shadows

Shadows are
important in
toon rendering!

60FPS, native
resolution with
proper
shadowing is
what I want.

Kale
CEO

Shadow On/Off

Having proper shadows for the environment and characters is extremely
important for quality even in toon rendering.

Shadows can also be very performance intensive if applied without a strategy.
In UE4, shadows look good but can be costly.

To balance quality and performance, we were careful in how we chose to
render our shadows.

Toon Lights Cannot Cast Shadows

Forward Light Decal Light

No Shadow

Toon lights cannot cast dynamic shadows.

No Shadow

We limit shadow casting lights for performance.

Toon lights are unable to cast shadows.

Cascaded Shadow Map (Dynamic Shadows)

Outdoor Cascaded Shadow Map

For outdoor environmental shadows, we use UE4’s standard cascaded
shadow maps.

We have our own pre-baked static shadow map system and use it for parts of
directional light shadows for performance, but for the most part, we needed
the extra quality that dynamic cascaded shadow maps provide us with.

Shadow-Only Lights (Dynamic Shadows)

Player Shadow-Only Light Character Shadow-Only Light Environment Shadow-Only Light

・Shadow-only lights are modified UE4 PBR lights customized to only cast shadows.
・Toon lights and shadow-only light are separate light actors.
・Shadow-only lights usage is limited to areas where the quality/cost tradeoff made sense.

For dynamic shadows other than cascaded shadow maps, artists are required
to use shadow-only lights.

Shadow-only lights are customized UE4 PBR lights specializing in only casting
dynamic shadows.

Because we were going for a 2D toon look, having different lights for lighting
and shadowing was not a problem.

Player Shadow-Only Light

An exclusive shadow-only light was assigned to the player character.

In outdoor areas, the player shadow is not drawn by the cascaded shadow
map, but by this separate, player-exclusive shadow-only light.

Character Shadow-Only Light

Giant bosses are allowed their own shadow-only light because their shadows
can look very dramatic.

The character shadow-only light in the slide doesn’t cast shadows from the
player or the environment and only casts shadows from the giant boss.

Shadow/Light Transition Stylizations

Static Shadow Map Stylization

Player Shadow Stylization

Player shadows and some of our static shadow maps are drawn with
stylizations for the shadow-to-light transition.

The hatching lines become thinner the further away the shadow becomes
from the shadow casting object representing a 2d toon style shadow to light
transition.

Capsule Shadows

Capsule Shadow On/Off

Non-player characters
use capsule shadows.

We use standard UE4
capsule indirect shadows.

Non-player characters use the more cost-effective capsule shadows for their
shadowing.

Capsule shadows are a standard UE4 functionality. Artists prepare capsule
shapes approximating the character mesh and these shapes are used to
calculate per-pixel visibility towards a global light direction to approximate
soft shadows.

It wouldn’t work for a photorealistic game, but we can get away with the
blobby look of capsule shadows because we are toon.

Capsule Shadows Cast Shadows Anywhere

CapsuleShadow On/Off

Because capsule shadows don’t require shadow casting local lights, we get
cost-effective character shadows outdoors, indoors, regardless of lighting
conditions.

AO Volume Decal Shadows

AO Volume Shadow On/Off

・Flying robots and our
partner cat are too far
away from the ground for
capsule shadows.

・CPU raycasts are
performed in order to
find a world position
where a decal shadow is
rendered.

Capsule shadows become too large and dispersed for small characters that
are floating in the air far away from the ground.

For these characters, we implemented a simple AO volume decal system. CPU
raycasts are used to find the proper decal placement world position.

Environment Shadow-Only Light

Finally, we also allow a single shadow-only spotlight for the environment
team.

For the scene in the slide, a shadow-only light casts exclusively from the
moving giant robot arms.

The only thing shadow-only lights can do is cast shadows, but just like for the
character boss shadows, a well-placed shadow spotlight can be very dramatic
in a toon look.

Agenda
Game Introduction

Deferred Toon Rendering

Comic Shader

Toon Light

Shadows

Static Shadow Map

Global Illumination

Toon Face Shadow

Final Words

I’ve mentioned we have a static shadow map system. I’d like to explain this
system in more depth in the next section.

Static Shadow Map

Static shadow maps are an important element of Hi-Fi RUSH’s shadow system.

Static Shadow Map Off Static Shadow Map On

Static shadow maps are offline baked shadow maps.

They are important for us both in terms of performance and artist’s ease-of-
use.

UE4 has a static shadow map system which is integrated into Lightmass
baking, but we created our own for better integration with our deferred toon
rendering pipeline.

What Gets Offline Baked?

Shadow Light Space Depth Map
Screen Space Shadow Map
Generation Final Render Results

Shadow mapping is composed of two steps.

The first step is light space depth map generation from the perspective of the
shadow casting light.

The second step is comparing the pixel’s light space depth against the depth
map to generate the actual shadow map.

What we prebake in static shadow maps is the first depth map capture step.

Static Shadow Map On/Off

In the slide image, I’m toggling on and off the static shadow map display.

The environment team had strict limitations on dynamic shadow map usage
and interior environmental shadows will typically disappear completely
without static shadow maps.

Static Shadow Map Actor

Scene Capture Camera

Screen Space Shadow Map
Render Volume

Chai
Rock Star

Again we use
deferred box
volumes for
rendering.

By placing static shadow map actors in the environment, environment artists
can use static shadow maps.

The static shadow map actor is composed of two components. A scene
capture camera for capturing the depth map and a deferred box volume for
rendering the shadow map.

When the static shadow map actor is selected, the captured depth map is
displayed in the lower right corner of the screen in the editor.

Maximizing Depth Map Coverage

Ortho Width Adjusted

Artist manully adjust camera direction, position,
projection parameters such as ortho width to
maximize the shadow caster’s depth map draw
area.

Artists use the depth map preview in the lower right portion of the screen to
manually maximize depth map coverage of shadow casters to improve
shadow map quality.

Calculating The Screen Space Shadow Map

Light Space Depth Pos

Scene Depth Buffer
Pixel’s
World Pos

Pixel’s Light Space Depth
Pos

Render Screen Space Shadow
Map

Compare
Distance

Screen space shadow map calculations and rendering are
done within a static shadow map decal volume.

Standard comparisons between the pixel’s light space depth position and the
depth map’s light space depth position are performed to render a screen
space shadow map inside the static shadow map decal volume.

Screen Space Shadow Map AA

No Filter 4x4 PCF

・4x4PCF is used for shadow map antialiasing.
・The Gather4 instruction is used for optimization.
・Our code is based on UE4’s ShadowFilteringCommon.ush.

Without AA, our screen space shadow maps look very jaggy. We use 4x4 PCF
for antialiasing our shadow maps.

Screen Space Shadow Map AA

4x4 PCF On/Off

Here’s a GIF animation of 4x4 PCF being toggled on and off.

As you can see, the algorithm does a pretty good job of alleviating jaggies for
us.

Static Shadow Map Camera Placement

Here’s a screen shot of static shadow map camera placement in an actual
scene. Many static shadow map cameras with small coverage are placed
throughout our levels.

A Single Static Shadow Map Camera

Selected Static Shadow Map On/Off

Each static shadow map camera renders its own depth map and its associated
render volume owns that static shadow map’s depth map texture data.

A Different Static Shadow Map Camera

Selected Static Shadow Map On/Off

Even the small handrail in the slide image has its own static shadow map.

Static Shadow Map Streaming

・Focus on efficiently distributing shadow map texture streaming across multiple frames.
・Multiple static smaller shadow maps instead of a single large static shadow map.
・Static shadow map streaming levels with a per-frame memory limit.

Static Shadow Map Streaming Level

Our artists use many static shadow map cameras not just for artistic reasons,
but for texture streaming efficiency as well.

One of the first concerns we had when we considered using static shadow
maps was memory usage and streaming hitches.

We managed static shadow map texture streaming workloads by monitoring
texture size and focusing on being able to efficiently distribute streaming
across multiple frames. For this reason, we can’t have individual static
shadow map textures being too large.

Our static shadow maps are placed in their own streaming level and within
the streaming level, we distribute texture streaming across multiple frames by
placing a per-frame streaming memory limit.

Agenda
Game Introduction

Deferred Toon Rendering

Comic Shader

Toon Light

Shadows

Static Shadow Map

Global Illumination

Toon Face Shadow

Final Words

The final topic I’d like to talk about is how we handle global illumination.

Toon with Global Illumination

GI is noticeable around
the center data sphere.

Global illumination is being toggled on and off in the slide image.

We felt supporting standard 3D lighting features in our toon rendering was
important for quality and this included GI.

Global Illumination What To Use?

Sad Chai
Rock Star

Chai
Rock Star

Let’s use Unreal Engine 4
Lightmass!

Lightmass Lightmap Problems
・Don’t want artists struggling with
lightmap UVs.
・Don’t want long nightly GI builds.
Need quick iteration!

We decided early on that we wanted to try to use UE4 Lightmass since we
were satisfied with its quality and baked lighting is great in terms of
performance.

At the same time, we also thought, a workflow using Lightmass lightmaps was
too costly for our artists due to needing to deal with lightmap UVs and
possibly long GI bake times.

Toon assets require artist handcrafting for quality and all artists including our
environment team were super busy throughout the project.

Let’s Customize UE4 Volumetric Lightmap
What to do？
・Customize Lightmass volumetric lightmaps and use light probes.

Engine
customization
permission given.
Let’s improve bake
iteration speed and
useability.

Kale
CEO

Light Probe Debug View

We had noticed that Lightmass volumetric lightmaps could be used for the
environment. Lightmass volumetric lightmap light probes bake faster and
don’t require lightmap UVs.

We decided that we would customize the volumetric lightmap functionality
with a focus on further improving bake iteration speed and useability.

Local Volume GI Lighting

Bake Only the
Window Area

A big factor that allowed further customization is the fact that our game has a
toon art direction, and we can be artistically selective in which parts of the
map we apply global illumination.

In the slide image, only a small area around the window has global
illumination, and that can be okay for our look.

GI Baking Limited To Necessary Areas

Here’s the same level with the GI light probe debug display enabled.

The environment artist has decided to bake probes around strong emissives,
but in areas without a strong light source, no probes are baked.

World Volume Lighting Volume

What’s the key point in our volumetric lightmap
customization.

Per-Level Baking changed to Per-Actor Baking

Baking & rendering done per World Volume
Lighting Volume.

UE4 has a functionality called Lightmass importance volume that limit light
probe baking to the area within the volume.

We customized this functionality to implement our own global illumination
lighting volume actor.

In vanilla UE4, light probe data is stored per-level. We customized UE4 so that,
in our game, light probe data can be stored per actor.

Optimizing Volumetric Lightmap Data

AmbientVector + SHCoefficient[0-6] = 8 x 3D Textures

AmbientVector 3D Texture = 1 x 3D Texture

Need only directionless ambient color.

*An indirection 3D Texture x 1 is also used.

I’ll should mention that we did optimize the UE4 volumetric lightmap data to
save memory. Because we only need directionless ambient global illumination,
we cut down the light probe spherical harmonics 3d textures from 8 to 1. It’s
a big memory saving.

World Volume Lighting Baking Workflow

Place World Volume Lighting Volume

1) Enclose the area you
want to bake GI with a
World Volume Lighting
Volume actor.

Since I emphasized bake iteration speed and useability as keypoints, I’ll give a
quick overview of what our GI bake workflow looks like.

We start by enclosing the area we want to add global illumination to with a GI
lighting volume.

World Volume Lighting Baking Workflow

2) Start a bake from
the menu.

3) Wait 1, 2 minutes.

４）The area enclosed by the World
Volume Lighting Volume will have its
global illumantion baked.

After the volume is placed, artists select from the menu “Build Selected
Volumes.”

A customized Lightmass GI baking code is executed, and the GI bake is limited
to the area enclosed by the lighting volume.

Bake times are dependent on Lightmass settings and PC specs, but as a
general idea, for a standard dev PC at our company, a GI bake should finish in
a minute or two.

Since the bake is isolated to the selected actor, artists can iterate baking on a
specific area quickly.

World Volume Lighting Volume Parameters

Cell Size 30 (Used Memory: 0.25MB) Cell Size 100 (Used Memory: 0.04MB)

Light probe cell size is adjusted to balance memory usage and bake quality.

The GI lighting volume contains parameters for both baking and rendering.

An often-used parameter for baking is the detail cell size parameter, which
controls the distribution granularity of the generated light probes.

Our environment artists use this parameter to balance bake quality and
memory usage.

Rendering A World Volume Lighting Volume

HbkWorldVolumeLightingVolum
e_St07ParkMain_11 On/Off

Chai
Rock Star

Once again,
we use
deferred box
volumes for
rendering.

Finally, the GI lighting volume not only defines the GI bake extent, but also
serves as a rendering volume.

Here, I’m toggling on/off the GI box rendering for a specific volume. Note how
all the other volumes in the scene are unaffected by the toggling.

Deferred rendering a box volume is a local lighting technique that is used
throughout our game and makes a final presentation appearance in this slide.

My References
Stefan Gustavson. 2012. “Procedural Textures in GLSL”. Linköping University Electronic Press (Same as OpenGL
Insights, Chapter 7).

Kevin Myers. 2016. “Sparse Shadow Tree”. SIGGRAPH 2016.

Li Bo. 2019. “A Scalable Real-Time Many-Shadowed-Light Rendering System”. SIGGRAPH 2019.

Zhenzhong Yi. 2020. “From Mobile to Console: Genshin Impact’s rendering technology on Console”. Unite Seoul 2020.

Nikolay Stefanov. 2016. “Global Illumination in Tom Clancy’s The Division”. GDC 2016.

Noriaki Shinoyama. 2018. “Lightmass Deep Dive 2018 Vol.1”.

Noriaki Shinoyama. 2018. “Lightmass Deep Dive 2018 Vol.2”.

Carsten Wenzel. 2006. “Real-time Atmospheric Effects in Games”. Siggraph 2006.

Miles Macklin. 2010. “Inscattering Demo”. http://blog.mmacklin.com/2010/05/29/in-scattering-demo/

Yossarian King. 2000. “2D Lens Flare”. Game Programming Gems 1.

*Includes bonus slide references.

Here are my references.

Now, I’m going to hand it off to Komada-san for his section on the tech
behind our toon face shadows.

http://blog.mmacklin.com/2010/05/29/in-scattering-demo/

Agenda
Game Introduction

Deferred Toon Rendering

Comic Shader

Toon Light

Shadows

Static Shadow Map

Global Illumination

Toon Face Shadow

Final Words

Toon Face Shadow

I’m going to explain the face shadow of Hi-Fi Rush in this section.

Hi-Fi RUSH Character Self Shadow

Cel-shading style.

→The shapes of the shadow areas
should be “always clean”!

The self-shadows of the characters in Hi-Fi RUSH are in a cel-shaded style.
The shadowed and non-shadowed areas are clearly separated, and the
shadowed areas are given a specified shadow color.
With shadows like this, the quality is all about the choice of shadow color and
the shape of the shadow area.
Hi-Fi RUSH’s art concept was sharp, clean, and colorful, so the shadows also
needed to always have clean shapes.

Hi-Fi RUSH Character Self Shadow

The shadow shapes are determined by NdotL

“except for the face”.

// Pixel Shader

NdotL = Dot(normal, lightVector)

If (NdotL > threshold) {

return baseColor ;

} else {

return shadowColor ;

}

Whether a pixel is in a shadow area is determined by whether the dot product
of the pixel's normal and the light vector is less than a threshold.

This is a typical method for cell shading.

The vertex normal is used for the normal.
However, this method is not used on the face.

Problems With Vertex Normals

Problem 1: It’s difficult to generate a smooth curve.

The face requires higher quality than other parts.
However, there were problems in achieving the desired quality with vertex
normal shadows.

The first problem is that using vertex normals makes it difficult to create a
smooth curve.

As shown in the image on the right, depending on the direction of the light,
the shadow shape can become quite messy.
It is because there is a limit to how much geometry can be divided, and the
shadow shape is affected by how it is divided.

Problems With Vertex Normals

Problem 2: Facial motion breaks the shadow shape.

The second problem is that the shape of shadows created by vertex normals
is easily broken by facial motion.

When the bone orientation changes due to facial motion, the orientation of
the vertex normals also changes, which unintentionally breaks the shadow
shape.
In this scene where the facial expression is extreme, the shadow shape
becomes considerably broken depending on the direction of the light.

Problems With Vertex Normals

Problem 3: It is difficult for artists to solve problems 1 and 2
by adjusting the model.

Problem 1: It’s difficult to generate a smooth curve.
Problem 2: Facial motion breaks the shadow shape.

The third problem is that it is difficult for artists to make adjustments.
Artists can adjust the geometry and vertex normals, but it is very difficult for
them to avoid problems 1 and 2 completely through manual adjustments.

It is difficult to intuitively understand the resulting shape of the vertex normal
and geometry adjustment in all the various lighting directions.
Even if you use a normal map instead of vertex normals, problem 1 may be
solved, but problems 2 and 3 will not be solved.

Shading With A Threshold Map

lightDirHorizontal = Normalize(lightDir - Dot(lightDir , headBoneUp))

lightAngleHorizontal = ArcCos(Dot(lightDirHorizontal , headBoneForward))

threshold = lightAngleHorizontal / PI

// pixel shader

height = TexSample(thresholdMap , uv)

If (height > threshold) {

return baseColor ;

} else {

return shadowColor ;

}

• Create a height map texture called a "threshold map".

• Convert the horizontal orientation of the light to a threshold value.

• Determine the shadow shapes by height.

To solve these vertex normal problems, in Hi-Fi RUSH, we used a heightmap-
like texture.

Internally, we call this texture a threshold map.

I will explain how to author it in later slides, but will first explain the
calculations involved.

First, calculate the angle between the horizontal component of the light
direction and the forward direction of the head.
The horizontal component here refers to the horizontal component in the
coordinate system of the head bones.
The threshold value is the angle divided by pi and normalized to a range of 0
to 1 .
Then, it is determined whether the area is a shadow area or not based on
whether the sample value of the threshold map is greater than the threshold
value.

Shading With A Threshold Map

Reference:

Unity Seoul 2018

" From mobile to high-end PC: Achieving
high quality anime style rendering on
Unity "

Jack He (miHoyo)

• The shadow only moves
horizontally.

• When the light hits from the left
side, flip the texture horizontally.

Since only the horizontal component is considered, the shadow can only be
moved in the horizontal direction.
However, this was enough for Hi-Fi RUSH.

In this video, the light is shining on the right side of the face, but when it is on
the left side, the texture is reversed horizontally.

How to use this threshold map is a reproduction of the method introduced in
the session by miHoYo at Unity Seoul 2018.

How To Author A Threshold Map

1. Do a 180 degrees light bake of the vertex normal shadows
into a textures on the DCC tool.

・・・

I will now explain how to author a threshold map.

First, use a DCC tool to bake the shadows of the face into textures by moving
a directional light at fixed angles 180 degrees around the character, as shown
in the image.
We moved the light every 5 degrees, so we baked 36 textures.
At this point, shadows are shaded using the vertex normals, so the shape may
not be smooth or shadows may appear in unnecessary areas.

How To Author A Threshold Map

2. Artists can manually retouch the baked textures.

These textures are then retouched to the artist's satisfaction.
This process creates a clean shape, so aritsts don’t have to create perfect
vertex normals.

As you can see, retouching textures is much more intuitive to adjust than
vertex normals.

Artists can also preview the final look of shadows in our DCC tool.

How To Author A Threshold Map

3. Merge into one sheet using distance field-like interpolation
using in-house tools.

・・・

Finally, using a dedicated in-house tool, all textures are interpolated like a
distance field interpolation and merged into a single texture.
The threshold map is now complete.

Why Threshold Maps Solve The Problems

Problem 1: It’s difficult to generate a
smooth curve.

→Smooth curves are always
guaranteed with artist retouching
and distance field interpolation.

I’ll now review how threshold maps solved our original vertex normal
problems.

Regarding problem 1, the shape does not become a smooth curve with the
vertex normal, but with a threshold map, it is always smooth as shown in the
video.

This is thanks to the artist adjusting the shadow shape through retouching.

Also, since the textures are connected smoothly using distance field-like
interpolation, the shape changes smoothly when the direction of the light
changes.

As an aside, threshold maps have similar characteristics to distance field
textures, and are less prone to artifacts even when the resolution is lowered.

However, in order to maintain a sharp shape even when zoomed in, we used
2K textures.

Why Threshold Maps Solve The Problems

Problem 2: Facial motion breaks
the shadow shape.

→The shadow area is mapped
using UVs and unaffected by bone
movements.

Problem 2, where the shape is broken due to facial motion, does not occur
with the threshold map.

Because in the case of threshold map, the shape is mapped with UV so is not
affected by bones.

Why Threshold Maps Solve The Problems
When using vertex normals.

When using threshold maps.

As an example, let's change the direction of the light and compare.
When shading with a threshold map, shadow shapes are clean in all light
directions.

Why Threshold Maps Solve The Problems

Problem 3: It is difficult for
artists to solve problems 1
and 2 by adjusting the
model.

→Retouching each texture
is much more intuitive.

・・・

Problem 3 is that shading using vertex normals is difficult for artists to adjust.
Again, in the case of a threshold map, artists can intuitively modify the shape
by retouching the baked textures.

When shading using vertex normals, the vertex normals were directly used for
shading.

When shading using a threshold map, in between light baking and texture
merging, there is a step where artists can make intuitive quality adjustments.

This concludes the explanation of face shadows in our game.

Agenda
Game Introduction

Deferred Toon Rendering

Comic Shader

Toon Light

Shadows

Static Shadow Map

Global Illumination

Toon Face Shadow

Final Words

I’d like to end our talk with some final words.

Final Words
・Unique toon art style with unique rendering challenges.

・Deferred rendering adapted for stylized toon rendering.

・Provide the team with the best tech for our goals.

Chai
Rock Star

Bonus slides at the end on
・GBuffer Stencil
・Volumetric Fog
・Toon Lensflare
・GPU Physics Simulation

Our game wanted to do a stylized cel-shaded look for both characters and the
environment and this presented unique rendering challenges.

Unique problems call for unique solutions and we developed an original
deferred post process volume approach for our attempt at toon rendering.

We’re using UE4 and we adapted many 3D graphics features for toon
rendering. We use well established graphics techniques and build on the great
works of others.

We talked about tech today, but its toon rendering and as you can imagine
there was a lot crafting and optimizations by our artists not covered today
that ultimately determined the quality of the toon graphics. We had goals of a
rock solid 60fps, high resolution and great looking toon and the tech we
talked about today helped the Hi-Fi RUSH team achieve these goals.

We had more tech we wanted to share info about but didn’t want to tire
people with too much information so there are unpresented bonus slides.
They’ll be available for download with our slides.

Special Thanks
Our Art Director & Artists
System Programming Team
Environment Programming Team
Our QA & Bethesda QA
Intel, AMD, Nvidia Tech Support
Microsoft ATG
Epic Games Japan

Everyone on the Hi-Fi RUSH team

I want everything
in the world to look
toon. Characters,
environment,
everything.

GDC Special Thanks
Liz from Bethesda
Our GDC Advisor Chris

We get to present this stuff, but our toon rendering was made possible by the
hard work of everyone on the Hi-Fi RUSH team.

Our final slide is a special thanks page to give a shout out to all the people
who made today’s talk possible.

*Chris, our advisor, gave great feedback to help us revise, came to our talk
and was just overall awesome. Thanks Chris!

Stuff We Couldn’t Fit In Our Talk

Chai
Rock Star

So apparently, we made too
many slides...

Agenda (For Stuff We Couldn’t Fit In The Talk)

GBuffer Stencil

Volumetric Fog

Toon Lensflare

GPU Physics Simulation

Deferred Toon Renderer GBuffer

・We keep a standard UE4 GBuffer setup.
・RGBA8 x 3 GBufferA, B, C.

For performance and wanting to minimize engine modifications, we didn’t
change the standard UE4 GBuffer setup of 3 RGBA8 render targets.

Our GBuffer Layout
GBufferC R8G8B8A8

R Base Color R

G Base Color G

B Base Color B

A GBufferAO (Customize)

GBufferB R8G8B8A8

R Metallic (Fix at 0)

G Specular (Customize)

B Roughness

A ShadingModelID+SelectiveOutputMask

GBufferA R8G8B8A8

R World Normal X

G World Normal Y

B World Normal Z

A PerObjectGBufferData

・We customized GBufferAO, Specular channels for toon
rendering.

How about we
customize unused
Gbuffer channel to be
used as bitmask
stencil values.

Chai
Rock Star

Though reluctant to add additional rendertargets, we needed a way to add
our own extra information.

Because we’re using not using PBR, a couple of the default UE4 PBR GBuffer
channels were unnecessary for us.

We ended up modifying the engine source code to use the specular and
GBufferAO channels for our own purposes.

To get the most information out of 2 8-bit channels, we converted the 2
channels to bitmask stencil values.

GBuffer Stencil

// SPECULAR GBUFFER STENCIL BITS (Partial Listing)

#define HBK_SPECULAR_STENCIL_SKIP_SHADOW_MAIN 1
#define HBK_SPECULAR_STENCIL_SKIP_SHADOW_2 2
#define HBK_SPECULAR_STENCIL_SKIP_SHADOW_3 4
#define HBK_SPECULAR_STENCIL_SKIP_SHADOW_4 8
#define HBK_SPECULAR_STENCIL_ENV_SKIP_AMBIENT_CUBEMAP 16
#define HBK_SPECULAR_STENCIL_ENV_SKIP_STATIC_SHADOWMAP 32
#define HBK_SPECULAR_STENCIL_ENV_SKIP_SSAO 64

// GBUFFERAO GBUFFER STENCIL BITS (Partial Listing)

#define HBK_AO_STENCIL_CHARACTER_MASK 4
#define HBK_AO_STENCIL_SKIP_NORMAL_OUTLINE 16
#define HBK_AO_STENCIL_SKIP_DEPTH_OUTLINE 32

Custom Stencil Use Case

Partial listings of our GBuffer stencil flags.
UE4 custom stencils are used for some
game-side post processes.

GBuffer stencil requires no additional render passes and is practically free.

I think packing stencil flags into a GBuffer channel is something a lot games do.
We internally called our modification the GBuffer stencil.

This is to distinguish it from UE4’s custom stencil functionality, which we also
used for special game-side post processes.

It doesn’t work for emissive or transparencies, but a great benefit of GBuffer
stencil over standard custom stencil is that we’re already rendering to the
GBuffer and we don’t incur additional render pass costs.

GBuffer Stencil (Character Stencil)

// GBUFFERAO GBUFFER STENCIL BITS (Partial Listing)

#define HBK_AO_STENCIL_CHARACTER_MASK 4
#define HBK_AO_STENCIL_SKIP_NORMAL_OUTLINE 16
#define HBK_AO_STENCIL_SKIP_DEPTH_OUTLINE 32

・Characters have their own GBuffer
stencil bitmask.

・Characters and environment have
different toon lighting system.

・Important performance win for us to be
able to distinguish character pixels without
using custom stencils.

Pixels With Character Stencil Mask Are Drawn In White

The character bitmask is an important bit in our GBuffer stencil.

*Play animation.

In Hi-Fi RUSH, characters and environment are both toon shaded, but have
their own toon lighting systems.

A lot of times, we want to skip the environmental lighting from affecting
characters.

During battle, the number of characters drawn on screen and the screen
space they occupy can become large. Being able to distinguish character
pixels without an additional render pass was an important performance win
for us.

GBuffer Stencil (Material Parameters)

GBuffer Stencil can be set through material
instance parameters.

Artists prepare unique material instances for
each GBuffer stencil combination.

// SPECULAR GBUFFER STENCIL BITS (Partial List)

#define HBK_SPECULAR_STENCIL_SKIP_SHADOW_MAIN 1
#define HBK_SPECULAR_STENCIL_SKIP_SHADOW_2 2
#define HBK_SPECULAR_STENCIL_SKIP_SHADOW_3 4
#define HBK_SPECULAR_STENCIL_SKIP_SHADOW_4 8
#define HBK_SPECULAR_STENCIL_ENV_SKIP_AMBIENT_CUBEMAP 16
#define HBK_SPECULAR_STENCIL_ENV_SKIP_STATIC_SHADOWMAP 32
#define HBK_SPECULAR_STENCIL_ENV_SKIP_SSAO 64

// GBUFFERAO GBUFFER STENCIL BITS (Partial List)

#define HBK_AO_STENCIL_CHARACTER_MASK 4
#define HBK_AO_STENCIL_SKIP_NORMAL_OUTLINE 16
#define HBK_AO_STENCIL_SKIP_DEPTH_OUTLINE 32

＊Character Mask is automatically
set depending on character
materials.

＊Some Gbuffer stencil values can be set per-actor as
well.

A lot of our GBuffer stencil values are parameters that artists use to skip the
application of certain lighting passes such as shadows, ssao, toon outlines, etc
to control the look of the toon shading.

We allow artists to set the GBuffer stencil values per-material and for some
parameters per-mesh actor as well.

GBuffer Stencil In Action

Only the sliding door’s material’s GBuffer
stencil flags have been changed.

No Change
to SSAO

SSAO
On/Off

Here’s an image showing our GBuffer stencil in action giving artists more
control over how lighting layers are applied to the scene.

SSAO and static shadow maps are toggled on/off on the front door using
GBuffer stencil flags. Notice that the ground uses a separate material from
the door and is unaffected.

Agenda (For Stuff We Couldn’t Fit In The Talk)

GBuffer Stencil

Volumetric Fog

Toon Lensflare

GPU Physics Simulation

What Is Analytic Fog?

Point Light Analytic Fog

Spot Light Analytic Fog

Light Shaft Mesh

Analytic fog is Hi-Fi RUSH’s volumetric fog technique.

We called our volumetric fog technique analytic fog. The technique name
might sound unfamiliar, but the algorithm we use is nothing new

Volumetric Fog Types

Point Light Analytic Fog Spot Light Analytic Fog Light Shaft Mesh

Pre-modeled light shaft
meshes.Shape & fog in-scattering is calculated inside the shader.

There are two types of volumetric fog in Hi-Fi RUSH.

In one type we calculate the light shape and scattering inside the shader for a
richer look. This is our analytic fog.

The other type we display a pre-modeled light shaft mesh. Both types are part
of our single volumetric fog actor, the analytic fog actor, so that artists can
place a single volumetric fog actor in the scene.

The first type looks better, but the second type is more performant, and
artists have more freedom with the light shaft shape. Each are used
accordingly and work well for our toon look.

Analytic Fog Actor Level Placement

Environment artists place analytic fog actors locally to light the scene with
volumetric fog. Easy artist control in our toon environment was a big reason
we choose our volumetric fog solution.

Analytic Fog Implementation Details

I approve of
solutions not
requiring engine
modification.

Kale
CEO

・Possible to implement without engine
modifications.

・Combination of standard meshes +
transparent material.

・Shader requires only depth buffer for world
position reconstruction which UE4 transparent
materials can access.

Our analytic fog shader requires only the scene depth texture meaning
analytic fog can be implemented inside standard UE4 transparent materials.

UE4 has a froxel-based volumetric fog implementation with local control
through vfx materials. Besides needing engine modifications, we noticed
lowering the froxel resolutions could result in block artifacts which goes
against our goals for a sharp clean look.

Fog Scatter Calculations
Inscattering Demo Blog Article
Inspired by Miles Macklin’s blog article.

“As far as I know, Unreal 1 had the first real-time implementation of
volumetric dog. I used a formula table in an 1800's math book(!) to
calculate a line integral on a 1/r^2 light falloff function using an
arctan. ~200 cycles on Pentium, but fast enough on a 16x16 grid.”
Tim Sweeny's tweet

Apparently Unreal Engine 1’s volumetric fog used similar calculations.

Env

Use raymarching to solve scattering.
Analytically solve the scattering integral.

An equation that can be implemented in a
UE4 custom node.

The rich look of our analytic fog shader comes from the fog in-scatter
calculation.

We calculate fog scattering by analytically solving the line integral for how
much a point light source scatters through a fog medium before it reaches the
camera.

Our method can be ALU intensive; the more expensive spot light analytic fog
actor drawn at full-screen can cost around 1ms at 1440p on XSS, but it is
performant enough to be used where effective.

We decided against raymarched approaches, because we thought our
solution would provide a cleaner look without any sampling artifacts.

http://blog.mmacklin.com/2010/05/29/in-scattering-demo/
https://twitter.com/TimSweeneyEpic/status/1042165089766449159?s=20

Point Light Analytic Fog

Env

Point Light Analytic Fog

Render a sphere shaped mesh.

Place a point light in the
middle of sphere.

Draw mesh back face, so the camera can enter the
sphere volume.

＊DepthWrite is on in the above screenshot to make it more obvious that the
mesh backface is drawn. DepthWrite is off during the actual rendering.

For point light analytic fogs, we use a sphere mesh geometry.

A point light source is placed in the center of the mesh, and in-scattering
without raymarching is calculated inside a UE4 transparent material custom
node.

In order to handle fog meshes entering the camera, we cull the mesh’s front
face and draw the back face.

Point Light Analytic Fog Depth Calc

No Depth Check With Depth Check

Depth write is disabled, so the fog pierces
through backgrounds.

Scene Depth < Fog Volume Mesh Depth

If this
happens.

Use the scene’s world position in
the fog calculations.

Because depth write is disabled, we do a depth check inside the shader, so
that objects behind walls don’t bleed through.

When the scene’s depth is drawn in front of the fog mesh, we calculate the
scene’s world coordinates from depth and use that position instead of the fog
mesh’s in our fog scattering calculations.

Artists are careful with overdraw but point light analytic fogs have good
performance and our artists use them widely across maps.

Spot Light Analytic Fog

Spot light analytic fog also render using a
sphere mesh.

We place a point light source inside the center of
the sphere.
The cone shape is generated inside our shader.
Cone-ray intersection is calculated inside the
shader.

Env

Our spot light analytic fog has a similar setup to our point light type.

We use a sphere mesh as the fog mesh and the spot light’s cone shape is
generated by calculating a cone-ray intersection inside the shader.

Spot Light Analytic Fog Aperture

Env
Env

Side View Front View

We use a sphere mesh to be able to more dramatically render spot light
analytic fogs with a wide aperture. Procedurally generating meshes such as a
sphere-tipped cone may have been more efficient and our spot light mesh is
something that could have been improved on.

Viewing Spot Light Analytic Fog From Different Angles

This is what our spot light analytic fog looks like with camera movement.

The scattering shape correctly widens to reflect the true width of the
spotlight cone and looks pretty cool with camera movement.

Like mentioned before, spot light analytic fog can be costly when looked at
head on. 1 ms is a big cost for a 60FPS game, so they are selectively used in
spots where they are effective.

Agenda (For Stuff We Couldn’t Fit In The Talk)

GBuffer Stencil

Volumetric Fog

Toon Lensflare

GPU Physics Simulation

Implementing Game-Side Render Passes In UE4

We want to add original render passes without UE4 engine modifications.

What to do?

Use engine-side render thread delegates to call game-side render passes.

Use render commands to sync rendering data between threads.

For our post process lensflare, we added render passes to our game-side code
without engine modification.

We used standard UE4 render commands to sync rendering data between the
game thread and the render thread.

We utilized render thread delegate callbacks to execute from the engine-side
render thread, render passes implemented in our game module.

Render Thread Delegate Render Passes

Post Process Lensflare

Solo Lighting Analytic Fog

UI Copy Backbuffer

We implemented various render passes game-side using render thread
delegates.

Post Process Lensflare

Post Process Lensflare

UE4 has a post process lensflare implementation. However, for Hi-Fi RUSH,
art requested a lensflare implementation where the lensflare ghosts could be
drawn with artist prepared textures.

Taking A Look At Our Post Process Lensflare

The goal of our post process lensflare is to show camera lens ghosting that
can occur from strong light sources.

The ghost sizes, intensity, and screen space position changes depending on
where the light source is relative to the camera.

Post Process Lensflare Render Passes

Ghost are rendered in multiple render passes

1x1 Occlusion Ratio RT

The slide shows a gpu capture of post process lensflare render
passes.

A post process pass calculating the lensflare occlusion ratio run
first then each individual ghosts are rendered as individual quads.

Post Process Lensflare Final Results

The slide shows the final rendering result. All lensflare ghosts have been
rendered into a single render target.

Ghost Quad Rendering

Our reference:
Yossarian King. 2000. “2D Lens Flare”. Game Programming Gems 1.

Ghosts are drawn along a line between
the screen center and the light source.

Light source in screen center. Light source closer to the edge.

Ghosts are drawn smaller and dimmer, the further away
the light source is from the screen center.

The rendering algorithm for our lensflare ghost is a classic technique. We
used Game Programming Gems 1 as a reference for our implementation.

Lensflare Occlusion

When the lensflare light source is occluded, we want the lensflare to fade
depending on how occluded the light source is.

Calculating Lensflare Occlusion

Sample the depth buffer to
calculate the occlusion quad’s
occlusion ratio.

It’s possible to use gpu hardware occlusion querys to calculate the light
source’s occlusion ratio. However, for our game, we wrote a shader to
calculate an occlusion quad’s occlusion ratio using the depth buffer. Using a
shader has lower UE4 implementation costs and it also avoid hardware GPU
query’s 1 frame lag due to CPU/GPU query result handoff.

Calculating Lensflare Occlusion Ratio

1x1 RT

The occlusion quad’s depth buffer
area is sampled 32 times to calculate
the occlusion ratio.

The more occluded the occlusion quad, the more the ghost’s intensity is lowered.

The occlusion quad’s depth buffer is sampled with a poisson distribution in 32
locations. The depth buffer values are compared to the occlusion quad’s
center depth value and the occlusion quad’s occlusion ratio is calculated. The
occlusion ratio result is written out to a 1x1 render target.

The subsequent ghost quad render passes sample the 1x1 occlusion ratio
rendertarget and adjust each ghost’s intensity accordingly.

This is not an original technique and though I can’t find my original reference,
it’s a technique that I’ve seen discussed in various places.

Merging the Lensflare Results
The lensflare is merged
with the scene color in a
post process material.

The lensflare rendertarget is merged with the scene color inside a UE4 post
process material rendered after tonemapping to complete the lensflare
rendering.

Agenda (For Stuff We Couldn’t Fit in The Talk)

GBuffer Stencil

Volumetric Fog

Toon Lensflare

GPU Physics Simulation VFX

GPU Physics Simulation VFX

From here we will move on to the GPU physics simulation section, thank you.

Later Stage Battle Spoiler Alert

If you don't like spoilers, cover your eyes and ears!

In this section, we will talk about the technology used in a battle in one of
the final stages.
Spoiler warning!

If you want to avoid spoilers, I think it's best to close your eyes and cover
your ears.

movie

Let’s watch a video first.

In the boss battle at the end of the game, there is a scene where you fight in a
room full of coins.

We needed a coin effect that would react to the movements of the characters
and gimmicks, but it would be difficult to create effects manually for every
movement, so we considered implementing it in as a physics simulation.

Coin Effect Requirements

• Scattering in response to the movement of
characters or gimmicks

• Want simulation scale and volume

• Can't let performance become a problem

• Natural but dramatic movements like that of a
hand-made effect

The coin effect required:

First, coins needed to scatter and move in response to the
movements of characters and gimmicks.

The scene called for a large number of coins.

Couldn’t let performance issues become a problem.

At the same time, wanted natural movements that could match
the quality of hand-animated effects.

GPU Rigid Body Simulation

Our coin effect ended up as a simple rigid body physics simulation
implemented by Niagara and running on the GPU.
Niagara is the runtime VFX module of Unreal Engine.

In the following slides, we will explain our implementation.

This is a still image taken in photo mode.

It's hard to see because of the glitter, but I think you can see that there are a
lot of coins flying around.

Physics Simulation Scene Setup
• Set a box to cover the area where you will fight the boss.

• Set 64,000 coins in the box.

• Collisions with characters and gimmicks to create scattering effects.

This section explains the scene setup for the physics simulation.

First, I’m setting up a box to cover the area where you'll fight the boss.

64,000 coins are spawned and simulated inside the box.

The coins collide with characters and gimmicks inside the box and scatter
creating the coin simulation effect.

(The coins you see in this image are static mesh foliage coins covering the
surface and are not the simulation coins.)

Physics Simulation Scene Setup
Initial placement of coins is random.

If the placement is in a grid pattern, the scattering trajectory of the coins

will be too symmetrical and unnatural.

The initial placement of coins is not in a grid pattern, but rather in a slightly
random placement as shown in the image.

This is done to add noise to the trajectory because if it were in a grid pattern,
a strong symmetry would appear in the trajectory of the coins scattering and
it would feel unnatural.

Physics Simulation Scene Setup
• The simulation box floor is sandwiched between the static mesh coin floor and the

platform floor.

• Coins being simulated are not visible to the user when sleeping on the floor.

→ By not showing the coins that fell on the box floor, you can prevent coins from falling
into each other and hide the lack of quantity.

→ By raising the collision box floor, scattering from collision with the player collider sphere
will bounce upwards and look better.

platform floor.
box floor.

static mesh coin floor

mesh covering the

surface.

is coin.

The simulation box is placed between the scaffold floor and the coin floor
mesh covering the surface.

The only time the simulated coins are visible to the user is when they pop out
of the static mesh coin floor.

The reason for this setting is to avoid ruining the appearance.
Even though there are 64,000 coins, this number is not enough quantity to
cover the entire surface.

Also, since collisions between coins are not calculated, coins may penetrate
through each other.

These problems are hidden by the static mesh coin floor.

The reason why the box floor is higher than the platform floor is because this
creates a better effect as the coins scatter upwards.

The Setup For Physics Simulation

• Since it uses rigid body physics, it also simulates

the rotation of a coin.
Use a moment of inertia that matches the shape of the coin.

• Coins collide with the following:

✓ Box

✓ Dedicated collider added to characters and gimmicks.

Spheres and capsules are supported as collider shapes.

The objects in the scene are setup as following:

Since coins are treated as rigid bodies, rotational forces are also simulated.

I am using the moment of inertia that matches the shape of the coin.

Coins collide with boxes and dedicated colliders added to characters and
gimmicks.

The collider shape supported are spheres and capsules.

For example, the player character has a capsule and sphere collider set up like
in the picture.

PBD References

• Used Position Based Dynamics for physics simulation.
(hereinafter referred to as PBD)

Used due to robustness of behavior.

• Referenced paper.

Matthias Müller, Miles Macklin et al.

Detailed Rigid Body Simulation with Extended Position Based Dynamics.

ACM SIGGRAPH / Eurographics Symposium on Computer Animation 2020

For physics simulation we used Position Based Dynamics.

I used PBD because of its robust behavior.

In my implementation, I mainly referenced the paper in the slide.

This is a relatively new paper which is about extending PBD to rigid body
simulation.

In this session, we will omit a detailed explanation of PBD.

Physics Simulation Implementation

We do the following every frame:

• Colliders update

• Sleep states update

• Integrations

• Collision constraints solving

This is an overview of our physics simulation implementation.

We do the following every frame:

Colliders update

Sleep states update

Integrations

Collision constraints solving

I will explain each step in the following slides.

Colliders Update

• the box is immovable

• Colliders of characters and gimmicks can move and
enter/leave.

✓ Colliders inside the box with specific collision channels are detected
every frame.

✓ Pass information about the shape, position, orientation, and size of
the colliders to the simulation.

First, our colliders update.

The box that covers the entire scene does not move.

On the other hand, the collider attached to characters and gimmicks can
move around and enter and leave the simulation.

Therefore, every frame, the CPU side implementation detects colliders with a
specific collision channel and passes the information about the shape,
position, orientation and size of colliders to the simulation.

Sleep state update

movie

Next is the sleep state update.

Please watch this video first.

Out of the 64,000 coins, many coins do not need to be moved, so I
implemented a sleep state.

If speed drops below a certain level, coins will go to sleep.

Coin speed is naturally attenuated by the dynamic friction of the floor.

Once coins go to sleep, I return them to their initial placement position.

The reason for this is because if you leave the coins scattered, coin density
will become uneven within the box, creating areas where the coin effect will
not be produced.

Sleeping coins will wake up when a collider such as a character or gimmick
approaches with a certain distance.

Sleep States Update

• 64,000 coins, many coins are not moving.

Cull rendering and stop simulations of sleeping coins.

Reduce load. Rendering is culled by Particles.MeshIndex of Niagara.

• Goes to sleep when speed drops below a certain level

The speed is attenuated by the dynamic friction of the floor.

• Return to initial placement position after sleep

If you don’t return, there will be unevenness in areas with many coins and
areas with few coins.

• When character and gimmick colliders get within a certain
distance of sleeping coins, they wake up.

Cull the sleeping coins from the simulation.
In the video, sleeping coins were being rendered, but in reality, they are

actually culled from rendering.
You can cull meshes from the Niagara Mesh Renderer by altering the

value of Particles.MeshIndex.

Integrations

Normal PBD integration.

Since it is a rigid body, it also handles direction and angular
velocity.

Next are the integrations.

Basically the same as normal PBD integration, but since it is a rigid body, it
also handles orientation and angular velocity.

(In our implementation, there is no external force that would result in
torque.)

Collision Constraint Solving

Collision judgment
Normal rigid body simulation: Handled with cylindrical mesh shape

→ Calculating collision for this shape can be too costly for our
performance targets.

Our solution: Use disk shapes without thickness. The collision
impact point is the deepest point in the disk.

Finally, collision constraint solving.

I think that in normal rigid body simulation implementations, coins are often
treated as cylindrical meshes, as shown in the image on the right.

However, this would require calculations for multiple vertices and edges,
which would increase the load.

Therefore, we included two approximations in our implementation.

The first is that coins are treated as disk shapes without considering the
thickness.

Second, only the deepest point in the disk is treated as a impact point.

As shown in the figure, when the coin is penetrating into the capsule, the
impact point, the penetration depth, and the normal of the collider at the
closest point are calculated from the red point that is the deepest penetration
point in the disk.

Collision Constraint Solving

Apply the following to collided coins:

Extrusion of penetration

Repulsion, dynamic friction (box only)

Repulsion and dynamic friction were not used in the characters and gimmicks because
there was no problem with the expression even if they were not included.

* The box and collider do not move even if they collide. Treated as infinite mass.

If the coin collides with the box, apply an extrusion of penetration, dynamic
friction, and repulsion.

If the coin collides with a character or gimmick collider, only the extrusion will
be applied.

For characters and gimmicks, simulation results lacking repulsion and dynamic
friction were acceptable, so are omitted as a performance optimization.

Boxes and colliders do not move when they collide. Only coins are move.

As a result of the above implementation, the behavior is like what is shown in
the slide video.

By including two approximations, the physical accuracy of the behavior has
decreased, but since there are a large amount of coins, it’s not noticeable.

This concludes the explanation of the implementation of the physics
simulation.

Static Friction And Coin Deposition

• Dynamic friction was sufficient, so I did
not include it.

• Essential for pile expression

Pile cannot be maintained without static friction to
collision constraints between coins.

• Initially, I tested coin piling, but gave up
due to our strict performance limitations.

If we calculate collisions between coins, even with spatial
division structure optimizations, the calculations were too
costly for a large scale coin simulation.

Static friction was also removed because dynamic friction alone was sufficient
to express friction.

Collision and static friction between coins are essential for convincing coin
piling.

In the early stages of our implementation, I actually tested collisions between
coins.

The video shows what happened at that time.

However, even using spatial division structures, the performance cost was
quite large, and we had to conclude that coin piling wasn’t doable for our
simulation scale with our strict performance limitations.

Other Optimizations

• MeshRenderer frustum culling

• The size of the coin is unrealistically large.
✓ We want to reduce the number of simulations.

✓ We also want to reduce the rendering load on the coin floor.

✓ It’s difficult to see in real size.

→ Taking the above 3 points into consideration, a larger but not
unnatural looking size was settled on.

I‘m using frustum culling for the MeshRenderer.

Also, the fact that our coins are unrealistically large is an optimization.

If the coins were of real size, the number of simulations would increase,
making it difficult.

In addition to simulations, there are also issues such as the rendering load of
the coin floor, and the fact that realistic sizes were actually hard to see.

The size was decided so that it would not look too unnatural.

Performance

• Measurement condition

Xbox Series S Test build 1440p 64000 pieces

Measured at the timing when many coins are scattered.

• Measurement result

✓ Simulation

Simulation by Niagara : 0.40ms

✓ Rendering (increased processing time due to rendering of coins. coins do not have shadows.)

PrePass : 1.10ms → 1.27ms

Velocity : 0.40ms → 0.64ms

BasePass : 2.08ms → 2.27ms

Total processing time for coin effect is 1.0ms.

Performance measurement results.

The measurement conditions are XboxSeries S, test build, resolution 1440p,
using 64000 coins.

During the boss battle, I selected a scene where a lot of coins were scattered
and measured it.

Measurement results were the following:

The simulation by Niagara takes 0.40 milli-seconds.

The rendering load is mainly from PrePass, Velocity and BasePass.

This is a comparison of the processing time when there is no coin rendering
and when there is.

In total, the coin effect processing time is 1.0 milli-seconds.

I think I have achieved my goal of not letting performance hold me back.

Lies To Look Good

• We want to rotate more.

→ Scale parameter of moment of inertia

• Symmetry is still visible in the scattering trajectory.

Collision shapes are box, sphere, capsule, and disc, have symmetry.

So the scattering trajectory has symmetry.

→ Set the maximum speed value and vary the value for each coin.

(Only in height direction, there is no limit to the speed at which the coin falls.)

• There are action instances where the effect quality is insufficient
with simulation alone.

→ Supplement with additional artist VFX.

If you just do a straightforward physics simulation, the movement will be too
symmetrical and feel unnatural.

In the first place, although the purpose is to reduce the processing load of
collision itself, since we only have primitive shapes such as spheres and
capsules, it can make movements unnaturally symmetrical.

Here I will introduce what I did to get as close to the quality of hand-made
effects as possible.

・Moment of inertia scale parameter

I created a parameter to scale the moment of inertia, increasing the speed of
the coin's rotation and emphasizing its movement.

・Maximum speed

By setting a maximum speed value and varying the value slightly for each
coin, I tried to break the symmetry of movement.

However, it felt strange if the coin fell slowly in the height direction, so I
decided not to limit the falling speed.

・Supplement with hand-made effects
VFX artists thought that the quality was insufficient with simulation alone

in some action scenes, and hand-made effects were added these
scenes.

Recommendations For Implementing

GPU Physics Simulation

• Implement CPU side first.

Shader debugging for physics simulation tends to be more difficult than rendering.

Do sufficient test and implementation on CPU side where it is easy to do stepping execution.

Port them to GPU when you removed all bugs.

• Perform the simulation in local coordinates, not world coordinates.

float have precision of 7 or 8 digits as a decimal number.

If you move 100km away from the origin, there will be an error of several millimeters due to
the accumulation of calculations.

On a coin scale, even an error of a few millimeters causes unstable behavior.

Do simulation in the local coordinate system, and only rendering in the world coordinate
system.

Based on my experience, I recommend the following two points for those
who want to implement GPU physics simulation in the future.

The first is to implement things that run on the CPU side first.
We recommend implementing it on the CPU side first and porting it to the
shader once it has been tested and bug-free.

This is because debugging shaders is difficult.

When using a shader for drawing, I think it is common practice to debug it by
writing the progress to a buffer and displaying it on the screen.

However, in physical simulations, debugging is often difficult unless you can
step-execute and check the physical quantities.

The amount of implementation will be doubled, but I think the time to
develop will actually decrease in the long run.

Second, to avoid numerical error problems, it is better to run simulations in
local coordinates rather than world coordinates.
When calculating using float, the precision is 7 or 8 decimal digits, and errors
may occur if calculations are repeated in world coordinates at a location

about 100 km away from the origin.

On a scale the size of a coin, even an error of a few millimeters can cause the
behavior to become unstable.

It is safe to proceed with calculations in the local coordinate system as much as
possible, and only make the final output passed to the rendering in world
coordinates.

GPU Physics Simulation PC Settings

• The default low is 64,000 coins. Medium is 128,000 coins.
High is 256,000 coins.

• I haven't seen any reviews that understand the effects of this
option.

• If it is high, there will be too many coins scattered, making it
difficult to see the player character, so you can also adjust
the difficulty of boss battles by this option.

There is a setting to increase the number of coins in the coin simulation.

The default low setting is 64,000, but the medium setting is twice as many at
128,000, and the high setting is 256,000.

If you play on high, there will be too many coins and it will be difficult to see
the player character, so you can not only adjust the flashiness of the effects
but also the difficulty of the boss battle.

←Chai here

Like this.
I've seen many reviews and impressions of Hi-Fi RUSH, but I've never seen

any mention of this setting, so it still remain a mysterious one for Hi-Fi
Rush users.

This concludes the GPU physics simulation section.

	スライド 1: Toon Rendering in Hi-Fi RUSH
	スライド 2: Kosuke Tanaka
	スライド 3: Takashi Komada
	スライド 4: Agenda
	スライド 5: Agenda
	スライド 6: Pop-Up Character Introductions
	スライド 7: Hi-Fi RUSH Features (Toon Rendering)
	スライド 8: Hi-Fi RUSH Features (60FPS)
	スライド 9: Rock Solid 60 FPS & High Resolution
	スライド 10: Balancing Visual Quality & Performance
	スライド 11: Agenda
	スライド 12: Deferred Rendering
	スライド 13: Deferred Toon Rendering
	スライド 14: Deferred Toon Renderer 3D Features
	スライド 15: Toon Rendering (No Engine Modification)
	スライド 16: Toon Rendering (Engine Modification)
	スライド 17: Toon Rendering (Lighting Layer Toon Stylization)
	スライド 18: Toon Rendering (Per-Volume Rendering)
	スライド 19: Deferred Toon Rendering (Engine Customization)
	スライド 20: Regular Deferred Rendering
	スライド 21: Deferred Toon Rendering
	スライド 22: Deferred Toon Rendering (Box Volume Rendering)
	スライド 23: Lighting With Toon Post Process Volumes
	スライド 24: Deferred Toon Rendering Timeline
	スライド 25: Deferred Toon Rendering Input Buffer
	スライド 26: The Toon Post Process Pass
	スライド 27: What We Do With Our Numerous Input Render Targets (Toon Stylization)
	スライド 28: What We Do With Our Numerous Input Render Targets (Shadow Overlap)
	スライド 29: Making Our Toon World Look Good With A 3D Engine
	スライド 30: Agenda
	スライド 31: Environmental Shadow Color
	スライド 32: Shadow Color Volume Applied
	スライド 33: Shadow Color Volume Rendering
	スライド 34: 3D Texture Mapped to World Positions
	スライド 35: Shadow Color Volume Applied
	スライド 36: Ambient Cubemap Volume
	スライド 37: Ambient Cubemap Volume
	スライド 38: Ambient Cubemap Volume
	スライド 39: Ambient Cubemap Volume On/Off Difference
	スライド 40: Agenda
	スライド 41: Comic Shader
	スライド 42: Halftone Dots
	スライド 43: Hatching Lines
	スライド 44: Why Apply A Comic Shader
	スライド 45: Comic Shader Off
	スライド 46: Comic Shader On
	スライド 47: Comic Shader On/Off
	スライド 48: Signed Distance Function
	スライド 49: Implementing Halftone (First Step)
	スライド 50: Implementing Halftone (Aspect Ratio)
	スライド 51: Implementing Halftone (Repeating Grid)
	スライド 52: Implement Halftone (45 Degree Rotation)
	スライド 53: Implementing Halftone (Aliasing)
	スライド 54: Implementing Halftone (Anti-Aliasing)
	スライド 55: Implementing Halftone (Smoothstep Width)
	スライド 56: Bloom Halftone AA On/Off In-Game (Zoomed)
	スライド 57: Implementing Hatching Lines
	スライド 58: SDF UV Grid Generation (Screen Space)
	スライド 59: SDF UV Grid Generation (World Space)
	スライド 60: SDF UV Grid Generation (World Space)
	スライド 61: SDF UV Grid Generation (World Space)
	スライド 62: In-Game Comic Shader (Gradation)
	スライド 63: Agenda
	スライド 64: Key Light (Lit/Shade)
	スライド 65: Why Forward Render Key Lights?
	スライド 66: The Case for Deferred Rendering Key Lights
	スライド 67: Placeable Toon Lights
	スライド 68: Toon Light (Forward Light)
	スライド 69: 3D Light (With Gradation)
	スライド 70: Toon Light (Cutouts)
	スライド 71: Toon Light (Decal Light)
	スライド 72: Decal Light Rendered Simply As Lights
	スライド 73: Decal Lights Rendered Using Decal Volumes
	スライド 74: Decal Light Decal Volume Optimization
	スライド 75: Adding A Decal Light For The Wall
	スライド 76: Preventing Light Leaks
	スライド 77: What About Characters?
	スライド 78: Agenda
	スライド 79: Shadows
	スライド 80: Toon Lights Cannot Cast Shadows
	スライド 81: Cascaded Shadow Map (Dynamic Shadows)
	スライド 82: Shadow-Only Lights (Dynamic Shadows)
	スライド 83: Player Shadow-Only Light
	スライド 84: Character Shadow-Only Light
	スライド 85: Shadow/Light Transition Stylizations
	スライド 86: Capsule Shadows
	スライド 87: Capsule Shadows Cast Shadows Anywhere
	スライド 88: AO Volume Decal Shadows
	スライド 89: Environment Shadow-Only Light
	スライド 90: Agenda
	スライド 91: Static Shadow Map
	スライド 92: What Gets Offline Baked?
	スライド 93: Static Shadow Map On/Off
	スライド 94: Static Shadow Map Actor
	スライド 95: Maximizing Depth Map Coverage
	スライド 96: Calculating The Screen Space Shadow Map
	スライド 97: Screen Space Shadow Map AA
	スライド 98: Screen Space Shadow Map AA
	スライド 99: Static Shadow Map Camera Placement
	スライド 100: A Single Static Shadow Map Camera
	スライド 101: A Different Static Shadow Map Camera
	スライド 102: Static Shadow Map Streaming
	スライド 103: Agenda
	スライド 104: Toon with Global Illumination
	スライド 105: Global Illumination What To Use?
	スライド 106: Let’s Customize UE4 Volumetric Lightmap
	スライド 107: Local Volume GI Lighting
	スライド 108: GI Baking Limited To Necessary Areas
	スライド 109: World Volume Lighting Volume
	スライド 110: Optimizing Volumetric Lightmap Data
	スライド 111: World Volume Lighting Baking Workflow
	スライド 112: World Volume Lighting Baking Workflow
	スライド 113: World Volume Lighting Volume Parameters
	スライド 114: Rendering A World Volume Lighting Volume
	スライド 115: My References
	スライド 116: Agenda
	スライド 117: Toon Face Shadow
	スライド 118: Hi-Fi RUSH Character Self Shadow
	スライド 119: Hi-Fi RUSH Character Self Shadow
	スライド 120: Problems With Vertex Normals
	スライド 121: Problems With Vertex Normals
	スライド 122: Problems With Vertex Normals
	スライド 123: Shading With A Threshold Map
	スライド 124: Shading With A Threshold Map
	スライド 125: How To Author A Threshold Map
	スライド 126: How To Author A Threshold Map
	スライド 127: How To Author A Threshold Map
	スライド 128: Why Threshold Maps Solve The Problems
	スライド 129: Why Threshold Maps Solve The Problems
	スライド 130: Why Threshold Maps Solve The Problems
	スライド 131: Why Threshold Maps Solve The Problems
	スライド 132: Agenda
	スライド 133: Final Words
	スライド 134: Special Thanks
	スライド 135: Stuff We Couldn’t Fit In Our Talk
	スライド 136: Agenda (For Stuff We Couldn’t Fit In The Talk)
	スライド 137: Deferred Toon Renderer GBuffer
	スライド 138: Our GBuffer Layout
	スライド 139: GBuffer Stencil
	スライド 140: GBuffer Stencil (Character Stencil)
	スライド 141: GBuffer Stencil (Material Parameters)
	スライド 142: GBuffer Stencil In Action
	スライド 143: Agenda (For Stuff We Couldn’t Fit In The Talk)
	スライド 144: What Is Analytic Fog?
	スライド 145: Volumetric Fog Types
	スライド 146: Analytic Fog Actor Level Placement
	スライド 147: Analytic Fog Implementation Details
	スライド 148: Fog Scatter Calculations
	スライド 149: Point Light Analytic Fog
	スライド 150: Point Light Analytic Fog Depth Calc
	スライド 151: Spot Light Analytic Fog
	スライド 152: Spot Light Analytic Fog Aperture
	スライド 153: Viewing Spot Light Analytic Fog From Different Angles
	スライド 154: Agenda (For Stuff We Couldn’t Fit In The Talk)
	スライド 155: Implementing Game-Side Render Passes In UE4
	スライド 156: Render Thread Delegate Render Passes
	スライド 157: Post Process Lensflare
	スライド 158: Taking A Look At Our Post Process Lensflare
	スライド 159: Post Process Lensflare Render Passes
	スライド 160: Post Process Lensflare Final Results
	スライド 161: Ghost Quad Rendering
	スライド 162: Lensflare Occlusion
	スライド 163: Calculating Lensflare Occlusion
	スライド 164: Calculating Lensflare Occlusion Ratio
	スライド 165: Merging the Lensflare Results
	スライド 166: Agenda (For Stuff We Couldn’t Fit in The Talk)
	スライド 167: GPU Physics Simulation VFX
	スライド 168: Later Stage Battle Spoiler Alert
	スライド 169: movie
	スライド 170: Coin Effect Requirements
	スライド 171: GPU Rigid Body Simulation
	スライド 172: Physics Simulation Scene Setup
	スライド 173: Physics Simulation Scene Setup
	スライド 174: Physics Simulation Scene Setup
	スライド 175: The Setup For Physics Simulation
	スライド 176: PBD References
	スライド 177: Physics Simulation Implementation
	スライド 178: Colliders Update
	スライド 179: Sleep state update
	スライド 180: Sleep States Update
	スライド 181: Integrations
	スライド 182: Collision Constraint Solving
	スライド 183: Collision Constraint Solving
	スライド 184: Static Friction And Coin Deposition
	スライド 185: Other Optimizations
	スライド 186: Performance
	スライド 187: Lies To Look Good
	スライド 188: Recommendations For Implementing GPU Physics Simulation
	スライド 189: GPU Physics Simulation PC Settings
	スライド 190

