
CSharpify Your Game Engine
A GUIDE TO EMBEDDING C#

👋 Andreia “shana” Gaita

Hacker of Games, Ports, Tools,
Runtimes, Libraries, Engines,
Language bindings

shana@mastodon.gamedev.place

https://github.com/spoiledcat/csharpify/blob/main/GDC2024.pdf

spoiledcat.com

C#

The Glossary
Can’t have a conversation without words

In the beginning, there was…

Java?

In the beginning, there was…

Java!

Write Once
Run Anywhere(tm)

Java

Write Once
Run Anywhere(tm)

Virtual Machine

Java

OS Virtual Machine

OS

Java

Virtual
Machine

OS

Java

Bytecode

Virtual
Machine

A Challenger Appears...

A Challenger Appears...

Microsoft

A Challenger Appears...

Microsoft
Native Call Performance

Native Call Performance
• Win32 API

• Must go fast!

Native Call Performance
• Win32 API

• Must go fast!

• Java’s native call performance was... poor
• Every call assumed to be managed by the GC

Bytecode

Machine Code

Compiler

Native Calls

Pinning

Garbage Collector
Virtual Machine

Native Call Performance

Visual J++

/** @dll.import("USER32", entrypoint="GetSysColor") */
static native int GetSysColor(int nIndex);

J++ J/Direct native call (1996-2004)

[DllImport("user32.dll", CharSet=CharSet.Auto)]
static extern int GetSysColor(int nIndex);

C# P/Invoke native call

“Sun has responded to Microsoft's release of Internet Explorer (IE) 4.0,
and its 2.0 release of the SDK for Java (SDKJ) with a lawsuit in U.S.
District Court.
[...]
Microsoft made the choice [...] to ship products it claims are fully Java 1.1
compliant, but which failed to pass the Java 1.1 compatibility tests”

What does Sun's lawsuit against Microsoft mean for Java developers?
JavaWorld, October 1 1997

“Microsoft does not support the Java Native Interfaces (JNI) or the
Remote Method Invocation (RMI), and it has altered the Core Java Class
Libraries with about 50 methods and 50 fields that are not part of the
public Java Application Programming Interfaces (APIs) published by
Sun.”

What does Sun's lawsuit against Microsoft mean for Java developers?
JavaWorld, October 1 1997

Bytecode

Machine Code

Compiler

Native Calls

Pinning

Garbage Collector
Virtual Machine

Class

Libraries

Gotta Go Fast?

Visual J++

Gotta Go Fast!

Visual J++
C#

OS

C#

Bytecode

Virtual Machine

The compiler
generates...

The user
writes... C#

Bytecode

Virtual Machine

OS Native
Calls

The Common Language
Runtime runs...

The compiler
generates...

The user writes... C#

Bytecode

Interpreter
Just In
Time

Compiler

Machine
Code

OS Native
Calls

Garbage
Collector

Thread
Management

Exception
Handling

Type Safety

Bytecode

C# Interpreter

Machine Code

Compiler

Native Calls

Common
Language
Runtime

Garbage Collector

Just In
 Time

Compiler

Virtual Machine

Class

Libraries

Pinning

IL

C# Interpreter

Machine Code

Compiler

P/Invoke

CLR
VM

JIT

GC
Class

Libraries

Pinning

IL

C# Interpreter

Class

Libraries

Compiler

P/Invoke

CLR
(the VM)

Tools

JIT

.NET
Framework GC

.NET
OR HOW TO BE JUST SOOOO BAD AT NAMING THINGS

.NET, The Naming Saga
• .NET - The ecosystem, the brand

• .NET Framework - The language, tools, class libraries, CLR

• First release in 2002
• Last update in 2022
• Versions 1.0 to 4.8.1

Based on public standards
• Standard ECMA-334

• C# Language Specification
• 1st edition December 2001, 7th edition December 2023

• Standard ECMA-335
• Common Language Infrastructure
• 1st edition December 2001, 6th edition June 2012

• Patent Promises

C# Version 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.3

.NET Framework Version 1.0 2.0 and 3.0 3.5 4 4.5 4.6 4.7 4.8

C# and .NET Framework

.NET, The Naming Saga
• We’re .NET Core now!
• First release in 2016
• Let’s reset the version!

• ...But not the language version, don’t be silly!
• Versions 1.0 to 3.1

C# Version 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.1 7.3 8.0

.NET Framework
Version 1.0 2.0

3.0 3.5 4 4.5 4.6 4.7 4.8

.NET Core Version 1.0 2.0 2.1
2.2 3.x

C# and .NET Framework and .NET Core

.NET, The Naming Saga
• Let’s get ready for .NET Core 4!
• Wait what, people use embedded .NET Framework/Core

version metadata in compiled DLLs for feature detection?
• Wait what, our tooling does that too??

• Oh [censored]...
• It’s fine, let’s just skip version 4

.NET, The Naming Saga
• Let’s get ready for .NET Core 4!
• Wait what, people use embedded .NET Framework/Core

version metadata in compiled DLLs for feature detection?
• Wait what, our tooling does that too??

• Oh [censored]...
• It’s fine, let’s just skip version 4
• *high fives all around*

.NET, The Naming Saga
• So wait, if we’re skipping version 4 of .NET Core... why not

rebrand?
• Great idea! What should we call it?
• How about... .COM?
• Nah, .COM is already taken.
• How about... .NET?
• Hey, that’s a great idea!

.NET, The Naming Saga
• So wait, if we’re skipping version 4 of .NET Core... why not

rebrand?
• Great idea! What should we call it?
• How about... .COM?
• Nah, .COM is already taken.
• How about... .NET?
• Hey, that’s a great idea!
• *high fives all around*

.NET, The Naming Saga
• What should we call our command line tool?
• How about...

 dotnet

.NET, The Naming Saga
• What should we call our command line tool?
• How about...
 dotnet

• *high fives all around*

.NET, The Naming Saga
• .NET is the ecosystem
• .NET is the tooling and CLR and class libraries
• dotnet is the command line tool

.NET, The Naming Saga
• .NET is the ecosystem
• .NET is the tooling and CLR and class libraries
• dotnet is the command line tool

C# Version 1.0 2.0 3.0 4.0 5.0 6.0 7.0 7.1 7.3 8.0 9.0 10.0 11.0 12.0

.NET
Framework

Version
1.0 2.0

3.0 3.5 4 4.5 4.6 4.7 4.8

.NET Core
Version 1.0 2.0 2.1

2.2 3.x

.NET Version 5.0 6.0 7.0 8.0

C# and .NET Framework and .NET Core and .NET

.NET, But Less Insane
• .NET - the ecosystem
• .NET Core - the tooling and CLR and class libraries
• the dotnet tool - the command line tool

IL

C# Interpreter

Class

Libraries

Compiler

P/Invoke

CLR
(the VM)

Tools

JIT

.NET
GC

dotnet tool

.NET Core

Managed

CLR

C#

IL

GCInterpreterJIT

Native
C/C++

etc

Managed

C#

Native

C/C++
CLR

GCInterpreterJIT etc

IL

Entry Point

Managed

C#

Native Game Engine

C/C++
CLR

GCInterpreterJIT etc

IL

Entry Point

PInvoke

C# as an embedded language
• The Mono Project
• First released in 2004
• Clean-room implementation of the ECMA standards
• Cross-platform
• Open source
• *and* Ahead Of Time

compiler - AOT

Managed

C#

Native Game Engine

C/C++ CLR

GCInterpreterJIT etc

IL
Entry Point

PInvoke

IL

C# Interpreter

Class

Libraries

Compiler

P/Invoke

CLR
(the VM)

Tools

JIT

Mono
GC

Managed

Native

AOT

Mono
• Used everywhere
• Ported to everything
• Developed by Ximian, acquired by Novell
• MIT-licensed...

• but the runtime was dual-licensed, either GPL or
commercial

Unity
• Popularizing C# in games
• Embedding Mono!
• With the runtime commercial

licensed from Novell
• And all was well with the world!

The Attachmate Problem
• Attachmate buys Novell
• Day of the merger, the entire Mono team is laid off
• Attachmate walks away with the whole Mono IP
• Support contracts?
• Mono commercial licensees like Unity?
• Mobile customers?

The Attachmate Problem
• Attachmate buys Novell
• Day of the merger, the entire Mono team is laid off
• Attachmate walks away with the whole Mono IP
• Support contracts?
• Mono commercial licensees like Unity?
• Mobile customers?

• Oh well, sucks to be you I guess

Xamarin is formed
• Perpetual license for all IP
• Stewardship of the Mono project
• Customers can relax, we got you!

Xamarin is formed
• Perpetual license for all IP
• Stewardship of the Mono project
• Customers can relax, we got you!

• ... except you Unity, you don’t get a
license.

Unity
• Mono runtime license up to 2011

• Apple doesn’t want GPL blobs in iOS

• ... and this is how we end up with IL2CPP

Managed

CLR

C#

IL

GCJIT

Native
C/C++

etcThreading

Managed C#

IL

GC

C++

Native
C/C++

etcThreading
VM

Another .NET goes Open Source
• .NET Core
• Released in 2014
• CoreCLR, MIT Licensed

• (and then renamed .NET, as we’ve already covered)

• Lives in https://github.com/dotnet/runtime

• ...not very useful for embedding

https://github.com/dotnet/runtime

Microsoft acquires Xamarin
• 2016
• Remaining Mono bits now fully MIT-relicensed
• Both .NET Core and Mono are moved to the .NET

Foundation

.NET Core and Mono, side by side
• Mono team contributes to both
• Mono included in the dotnet/runtime source
• .NET Core slowly gains proper cross-platform and

embedding capabilities
• Mono slowly incorporates .NET Core improvements
• Unified tooling – it’s all dotnet

IL

C# Interpreter

Class

Libraries

Compiler

P/Invoke

CLR
(the VM)

Tools

JIT

.NET

GC

dotnet tool

.NET Core

Managed

Native

AOT

Mono

Embedding modes

Mono

JIT Interpreter AOT
(MonoAOT)

CoreCLR

JIT AOT
(NativeAOT)

JIT?

CoreCLR?

Mono?

Interpreter?

AOT?

But which one
do I use?!?

JIT?

CoreCLR?

Mono?

Interpreter?

AOT?

All of them!

All of them!
• Depends on the platform and available tooling
• win/mac/linux – All are available
• iOS – Interpreter or AOT
• Android – All are available – but Interpreter or AOT
• web – AOT, JIterpreter...
• Consoles – AOT or Interpreter (ping me for details)

C# and C/C++ together
LET’S GET TECHNICAL

Embedding steps
• Initialize the runtime
• Call C# methods from C/C++
• Call C methods from C#
• Pass data around as arguments and return values

Setup
• 2 runtimes and 3 modes, but

• Interpreter only on Mono
• AOT has its own setup

• So, we have three broad setup types
• Mono (JIT/Interpreter)
• CoreCLR (JIT)
• AOT

Setup
• Runtimes expose C APIs

• Mono – extensive C API
• CoreCLR – the bare minimum C API

• Mono is a separate project, but a copy is in dotnet/runtime
• Slowly adding additional APIs matching CoreCLR

Setup
• Official packages for

CoreCLR/Mono/AOT per
platform all come from
dotnet/runtime

CoreCLR Initialization
• It’s convoluted and complicated and annoying
• locate the hostfxr library
• call it to find the runtime
• pass a bunch of random strings
• or call...

coreclr_initialize

• but not on windows for some reason?

Mono Initialization
• More fine-grained, but still somewhat envolved

monovm_initialize_preparsed
mono_install_assembly_preload_hook
mono_jit_init
mono_assembly_open

• ...and this is where we talk about csharpify

github.com/spoiledcat/csharpify
• Example embedding C# in a “game engine”

• Using Dear ImGUI + SDL2 + Vulkan

• Produces a header+source+cmake library that can be
dropped into a project

From C/C++ to C#

coreclr_create_delegate(coreclr_handle, coreclr_domainId,
"assembly", "MyType", "MyMethod", &delegate);

CoreCLR delegate creation

IL

C# Interpreter

Class

Libraries

Compiler

P/Invoke

JIT

.NET

GC

dotnet tool

.NET Core

Managed

Native

AOT

Mono

delegate
runtime

VM

CLR

coreclr_create_delegate(nullptr, 0,
"assembly", "MyType", "MyMethod", &delegate);

Mono delegate creation

[UnmanagedCallersOnly()]
static bool IsOk() { return false; }

C#

static bool (* IsOk_fnptr)(void);

IsOk_fnptr = (bool(*)(void)) coreclr_create_delegate(...);

C/C++

IL

C#

Interpreter

Class

Libraries

Compiler

P/Invoke

JIT

.NET

GC

dotnet tool

.NET Core

Managed

Native

AOT

Mono

delegate
runtime

VM

CLR

Unmana
gedCalle

rsOnly

blittable

trimming

From C# to C/C++

[DllImport(“MyLibrary”)]
static extern bool IsOk();

C#

bool IsOk() { return false; }

C/C++

[DllImport(“MyLibrary”)]
• Platform Invocation

• P/Invoke for short

• Information about what to call and where to find it

• C functions only
• because in C++, per-compiler name mangling is a thing

IL

C#

Interpreter

Class

Libraries

Compiler

P/Invoke

JIT

.NET

GC

dotnet tool

.NET Core

Managed

Native

AOT

Mono

delegate
runtime

VM

CLR

Unmana
gedCalle

rsOnly

blittable

trimming

DllImport

extern

[DllImport(“MyLibrary”)]
static extern bool IsOk();

 ... or ...

[LibraryImport("MyLibrary")]
internal static partial bool IsOk();

C# P/Invoke, since .NET 7

IL

C#

Interpreter

Class

Libraries

Compiler

P/Invoke

JIT

.NET

GC

dotnet tool

.NET Core

Managed

Native

AOT

Mono

delegate
runtime

VM

CLR

Unmana
gedCalle

rsOnly

blittable

trimming

partial

extern

DllImport

LibraryImport

PInvoke, what happens?
1. The runtime allocates a chunk of unmanaged memory.

https://www.mono-project.com/docs/advanced/pinvoke/#memory-boundaries

2. The managed class data is copied into the unmanaged
memory.*

3. The unmanaged function is invoked, passing it the
unmanaged memory information instead of the managed
memory information.*

4. The unmanaged memory is copied back into managed
memory.**

https://www.mono-project.com/docs/advanced/pinvoke/

PInvoke, what happens?
2. The managed class data is copied into the unmanaged
memory.*

https://www.mono-project.com/docs/advanced/pinvoke/#memory-boundaries

3. The unmanaged function is invoked, passing it the
unmanaged memory information instead of the managed
memory information.*

* If it’s a struct, it’s on the stack, contains only blittable types,
and is passed by reference, these steps are skipped.

https://www.mono-project.com/docs/advanced/pinvoke/

PInvoke, what happens?
1. The runtime allocates a chunk of unmanaged memory.

https://www.mono-project.com/docs/advanced/pinvoke/#memory-boundaries

2. The managed class data is copied into the unmanaged
memory.*

3. The unmanaged function is invoked, passing it the
unmanaged memory information instead of the managed
memory information.*

4. The unmanaged memory is copied back into managed
memory.**

https://www.mono-project.com/docs/advanced/pinvoke/

PInvoke, what happens?

https://www.mono-project.com/docs/advanced/pinvoke/#memory-boundaries

** Skipped for class (reference) types by default (can be
modified by DllImport [Out] parameter

4. The unmanaged memory is copied back into managed
memory.**

https://www.mono-project.com/docs/advanced/pinvoke/

Marshalling Data
Managed

byte

short

int

long

Native

uint8_t

int16_t

int32_t

int64_t

https://www.mono-project.com/docs/advanced/pinvoke/#marshaling

https://www.mono-project.com/docs/advanced/pinvoke/

Value Types
• An instance of data
• Not tracked by the GC
• Passed around and returned by value (by default)

• This means the contents of the thing are copied
• If you pass a value type into a method, and change it,

the change happens to the copy, not to the original

Reference Types
• A pointer to an instance of data
• Tracked by the GC
• Passed around and returned by reference

• This means there’s only one copy of the contents, and
things that point to that content are passed around

• If you pass a reference type into a method, and change
the contents of it, that change is seen everywhere

C# Struct
• A value type
• Allocated on the (stack or register or non-GC heap*)
• LayoutKind.Sequential by default

• The layout of the fields of the struct matches the order in
which they’re declared

• If it contains non-blittable types (any field with a reference
type, for eg), that triggers a copy during marshalling.

C# Class
• A reference type
• Allocated on the GC heap – the GC managed memory pool
• LayoutKind.Auto

• The order of the fields of the class is unknown – the
runtime can rearrange it to optimize for access or space
or whatever

• A pointer to a managed class passed to a native function is
only valid until that function returns (i.e. don’t store it for
later use)

Memory and Reference Types
• Great for long lived objects
• Avoid fragmenting memory by allocating up front and

reusing objects
• Keep pressure low on the GC, so it doesn’t have to

constantly track new objects
• References are tiny, negligible to copy around
• Access the same memory from anywhere

Memory and Value Types
• Great for short-lived objects
• Great for marshalling
• Copied by value, so be careful with struct sizes

Marshalling Data
Managed

byte

short

int

long

bool

Native

uint8_t

int16_t

int32_t

int64_t

int32_t

[DllImport(“MyLibrary”)]
static extern bool IsOk();

void CheckIfOk() {
 if (!IsOk()) {
 Fail(); ß does this run?
 }
}

C#

bool IsOk() {
 return false;
}

C/C++

[DllImport(“MyLibrary”)]
static extern bool IsOk();

void CheckIfOk() {
 if (!IsOk()) {
 Fail(); ß maybe, maybe not!
 }
}

C#

bool IsOk() {
 return false;
}

C/C++

Native execution
1111 1111 0000 0000 1100 1111 1001 1110 ß initial value of return location
1111 1111 0000 0000 1100 1111 0000 0000 ß “return false” sets 8 bits to zero

C#
bool = 1111 1111 0000 0000 1100 1111 0000 0000

if the return value is not all zeros, then it’s true.

Native execution
1111 1111 0000 0000 1100 1111 1001 1110 ß initial value of return location
1111 1111 0000 0000 1100 1111 0000 0000 ß “return false” sets 8 bits to zero

C#
bool = 1111 1111 0000 0000 1100 1111 0000 0000

if the return value is not all zeros, then it’s true.

Native execution
1111 1111 0000 0000 1100 1111 1001 1110 ß initial value of return location
1111 1111 0000 0000 1100 1111 0000 0000 ß “return false” sets 8 bits to zero

C#
bool = 1111 1111 0000 0000 1100 1111 0000 0000

if the return value is not all zeros, then it’s true.

Marshalling Data
• Know how managed types are converted to native types

and vice-versa
• Search online for “Type Marshalling”[1]

• bool is a trap, avoid it

[1] https://learn.microsoft.com/en-us/dotnet/standard/native-interop/type-marshalling

DllImport – Function name
C#
[DllImport(“MyLibrary”, EntryPoint=“IsOk_Fixed”]
static extern bool IsOk();

C++
int32_t IsOk_Fixed() { return (int32_t)false; }

Putting it all together
• Create managed-native and native-managed C# signatures
• Source generation with DNNE
• Implement extern “C” native functions
• Load runtime ahead of time or on first C# call

IL

C#
Interpreter

Class

Libraries

Compiler

P/Invoke

runtimetrimming

JIT

.NET
GC

dotnet tool

.NET Core

Managed

Native

AOT

Mono

delegate

UnmanagedCallersOnly

reference

type
Blittable

value type

DllImport

Marshalling

LibraryImport

Pinning

Bytecode

VM

CLR

partial

extern

THANK YOU!

Andreia “shana” Gaita

Que
stion

s?

https://github.com/spoiledcat/csharpify/blob/main/GDC2024.pdf
https://github.com/shana

mastodon: @shana@mastodon.gamedev.place
bluesky: @shana.spoiledcat.com
hellsite: @sh4na

shana@spoiledcat.com

github.com/spoiledcat/csharpify

https://spoiledcat.com

References
https://github.com/ocornut/imgui

https://github.com/shana/DNNE

https://aka.ms/dotnet-discord

https://github.com/ocornut/imgui
https://github.com/shana/DNNE
https://aka.ms/dotnet-discord

References
https://ericlippert.com/2010/10/11/debunking-another-myth-about-value-types/

https://jonskeet.uk/csharp/memory.html

https://learn.microsoft.com/en-us/dotnet/csharp/advanced-topics/performance/ref-tutorial

https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-
unboxing?source=recommendations

https://github.com/mono/CppSharp/issues/1687 (Use LibraryImportAttribute instead of DllImportAttribute)

https://github.com/dotnet/runtime/issues/7267 (Support for Mono's DllImport(@"__Internal")?

https://www.mono-project.com/docs/advanced/pinvoke/

https://learn.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke

https://github.com/dotnet/samples/blob/main/core/interop/source-generation/custom-
marshalling/src/custommarshalling/ErrorData.cs

https://learn.microsoft.com/en-us/dotnet/standard/native-interop/tutorial-custom-
marshaller?source=recommendations

https://ericlippert.com/2010/10/11/debunking-another-myth-about-value-types/
https://jonskeet.uk/csharp/memory.html
https://learn.microsoft.com/en-us/dotnet/csharp/advanced-topics/performance/ref-tutorial
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing?source=recommendations
https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/types/boxing-and-unboxing?source=recommendations
https://github.com/mono/CppSharp/issues/1687
https://github.com/dotnet/runtime/issues/7267
https://www.mono-project.com/docs/advanced/pinvoke/
https://learn.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
https://github.com/dotnet/samples/blob/main/core/interop/source-generation/custom-marshalling/src/custommarshalling/ErrorData.cs
https://github.com/dotnet/samples/blob/main/core/interop/source-generation/custom-marshalling/src/custommarshalling/ErrorData.cs
https://learn.microsoft.com/en-us/dotnet/standard/native-interop/tutorial-custom-marshaller?source=recommendations
https://learn.microsoft.com/en-us/dotnet/standard/native-interop/tutorial-custom-marshaller?source=recommendations

References
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.libraryimportattribute?view=net-
8.0

https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.libraryimportattribute?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.libraryimportattribute?view=net-8.0

