
High-Performance UE5 Mobile Rendering
and Next-Gen Character Creation Pipeline
Powered by Machine Learning

SPEAKERS

Principal Software Engineer
Lead
LIGHTSPEED STUDIOS

JING GONG
Principal Software Engineer
LIGHTSPEED STUDIOS

BO LI

Senior Software Engineer
LIGHTSPEED STUDIOS

QUAN WEN
Senior Software Engineer
LIGHTSPEED STUDIOS

XIN QIAO

Innovation Unleashed (1)

Practical Mobile Rendering in UE5

PART.01 Gong Jing - Practical Mobile Deferred Shading

PART.02 Bo Li - Practical Mobile GPU-driven Pipeline

PART.01

Introduction Improvements to Mobile Deferred Renderer

INTRODUCTION

UE5 - Mobile Deferred Shading

Multi-Pass Deferred Shading(PC) Single-Pass Deferred Shading(Mobile)

INTRODUCTION

UE5 - Mobile Deferred Shading

G-Buffer on tiled memory
Metal

FrameBufferFetch
Vulkan

SubpassFetch
GLES

Mali
PixelLocalStroage

Adreno
FrameBufferFetch

Device compatibility
128 bits pixel local storage on Mali GLES
The limit for Vulkan 4 input attachments
limit(16.3%)

INTRODUCTION

UE5 - Mobile Deferred Shading

Other Features
Multiple shading models

Compress G-Buffer for different
shading models

Clustered deferred shading
Deferred Decal
SSAO/GTAO/FXAA/TAA
IES Profile
Light Function
etc

INTRODUCTION

UE5 - Mobile Deferred Shading

Issues
Multiple shading models are not supported
when static lighting is enabled

Due to the limitation of G-buffer
Multiple lighting channels are not supported
Many-Lights shadows are not supported

INTRODUCTION

Performance issues caused by multiple shading models
Branch divergence
More VGPRs

Improvements to Mobile Deferred Renderer
Improved G-Buffer Layout
Performance Optimizations
Many-Lights Shadows

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Improved G-Buffer Layout

Support multiple shading models when static lighting is enabled
More aggressive compression for G-Buffer

Support multiple lighting channels
Store lighting channel mask in G-buffer

Support anisotropy shading model
Store tangent and anisotropy in G-buffer

Optimize performance issues arising from multiple shading models
Store ShadingModelID in stencil buffer

Name Format R G B A

SceneColorMobile R11G11B11_Float Emissive/Lightmap R Emissive/Lightmap G Emissive/Lightmap B

GBufferA R10G10B10A2_Unorm OctahedronNormal.X OctahedronNormal.Y IndirectIrradiance * AO PerObjectGBufferData

GBufferB R8G8B8A8_Unorm Metallic Specular Roughness LightingChannelMask

GBufferC R8G8B8A8_Unorm Sqrt(BaseColor.R) Sqrt(BaseColor.G) Sqrt(BaseColor.B) PrecomputedShadowFactor

Improved G-Buffer Layout
DefaultLit

Encode base color as approximate sRGB to give more precision to the darks
FBF/PLS doesn’t always work with sRGB

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Name Format R G B A

SceneColorMobile R11G11B11_Float Emissive/Lightmap R Emissive/Lightmap G Emissive/Lightmap B

GBufferA R10G10B10A2_Unorm OctahedronNormal.X OctahedronNormal.Y Opacity_Specular(6:4） Metallic

GBufferB R8G8B8A8_Unorm SubsurfaceColor.R&Lig
htingChannelMask0

SubsurfaceColor.G&Lighti
ngChannelMask1 Roughness SubsurfaceColor.B&Lighting

ChannelMask2

GBufferC R8G8B8A8_Unorm Sqrt(BaseColor.R) Sqrt(BaseColor.G) Sqrt(BaseColor.B) IndirectIrradiance*AO

Improved G-Buffer Layout
Shading Model - Subsurface

No space for precomputed shadow factors

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Improved G-Buffer Layout
Shading Model – Anisotropy

Name Format R G B A
SceneColorMobil
e R11G11B11_Float Emissive/Lightmap R Emissive/Lightmap G Emissive/Lightmap B

GBufferA R10G10B10A2_Unorm OctahedronNormal.X OctahedronNormal.Y Specular_Metallic(6:4） PrecomputedShadowFac
tor

GBufferB R8G8B8A8_Unorm OctahedronTangent.X OctahedronTangent.Y Roughness Anisotropy_LightingChan
nelMask(5:3)

GBufferC R8G8B8A8_Unorm Sqrt(BaseColor.R) Sqrt(BaseColor.G) Sqrt(BaseColor.B) IndirectIrradiance*AO

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

[1] [2, 5] [6] [7] [8]

sandbox bit shading model ID sky mask SSAO mask primitive receive
decal bit

Improved G-Buffer Layout
Stencil Buffer Layout
[1] sandbox bit, for light stencil culling
[2-5] shading model ID
[6] sky mask
[7] SSAO mask
[8] primitive receive decal bit

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Performance Optimization - Multiple Shading Models

UE5
Calculate lighting using 2 passes

for (light : lights)
{

// pass stencil test if ShadingModelID is MSM_DefaultLit
render_light(light);
// pass stencil test if ShadingModelID is not MSM_DefaultLit
render_light(light);

}
Our solution

Calculate lighting for each shading model separately
for (light : lights)

for (shading_model_id : light.shading_models)
{ // pass stencil test if ShadingModelID in stencil buffer is equal
render_light(light);

}

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Performance Optimization - Multiple Shading Models

Our Solution
Pros

Better shader performance
Avoid shader divergence
Higher GPU occupancy

Cons
Need more draw calls

Solution: Use clustered deferred shading for local lights

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Performance Optimization - Calculate direct lighting and indirect lighting separately

The indirect lighting shader statistics

Indirect Lighting
Sky lighting
Reflections（IBL）

Deferred Reflection Probe Blending
GI(Optional)

Direct Lighting
Directional Lights
Local Lights

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Performance Optimization - Clustered Deferred Shading

Basic steps for clustered deferred shading
Divide the view frustum into small
clusters
Perform light culling and assign lights to
clusters
Shading samples using light list

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Performance Optimization - Clustered Deferred Shading

Data structure
UE5

Culled LightGrid data in buffer
R32_UINT

Light index list in buffer
R16_UINT

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Performance Optimization - Clustered Deferred Shading

Data structure
Ours

Divide lights into chunks
Sort by the depth of light

Culled LightGrid data in buffer
R32_UINT

1 bit, last chunk flag
7 bit, light chunk index
24 bit, light visibility mask

Maximum number of lights
127 * 24 = 3048

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Performance Optimization - Clustered Deferred Shading

Memory

UE5 1024K

Ours 214K

Our approach
Better performance

In most cases, only 1 sampling is required

Less memory cost
The memory cost is only about 1/5 of UE5

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Performance Optimization - Clustered Deferred Shading

Light culling

Refine the bounds of cluster when HZB is valid

cluster_min_z = max(cluster_min_z, closest_hzb)

cluster_max_z = min(cluster_max_z, furthest_hzb)

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Performance Optimization - Clustered Deferred Shading

Light Culling(Normal/With Furthest HZB)

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Many-Lights Shadows

Map CubeMap into 2D texture
(Pros: HardwarePCF, Bindless）

UE5
UnSupported

Ours
Supported

Point Light
Spot Light

Shadow Maps
Standard Shadow Maps
Shadow Map Atlas
Bindless Shadow Maps

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Many-Lights Shadows

Standard Shadow Maps
Render shadow maps for each light

Pros
Good compatibility

Cons
Cannot be used with clustered deferred shading

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Many-Lights Shadows

Shadow map atlas
Render all shadow maps to an atlas texture
Pros

Can be used with Clustered Deferred Shading
Good compatibility

Cons
Lack of flexibility

Managing atlas texture is very difficult

Performance Issues
Additional shadow map copy costs

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Many-Lights Shadows

Additional shadow map copy overhead

Bindless shadow maps
Render shadow maps for each light and sample

from a shadow map array during shading
Pros

Can be used with Clustered Deferred
Shading
Better Performance

Cons
Device compatibility is not very good

Requires GPU to support bindless

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Performance Test
Scene - Epic ActionRPG

1 Directional Light, 30 Point Lights, 10 SpotLights
5 Shading Models(DefaultLit, TwoSideFoliage, Subsurface, ClearCoat, Preintergrated Skin)

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Performance Test
Google Pixel5, Snapdragon 765G, Adreno 620, 1512x720
Frequency: 500 MHz

UE5（Standard） UE5（Clustered
Deferred Shading） Ours(Standard)

Ours（Optimized
Clustered Deferred

Shading）

FPS 13.8 13 14.5 17.8

GPU Times(ms） 72.9 77.0 68.9 56.7

DrawCall 403 283 455 283

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Performance Test
Snapdragon 8 Gen 1 QRD, Adreno 730, 1552x720,
Frequency: 500 MHz

UE5（Standard） UE5（Clustered
Deferred Shading） Ours(Standard)

Ours（Optimized
Clustered Deferred

Shading）

FPS 60 60 60 60

GPU Times(ms） 7.9 8.2 8.1 7.0

DrawCall 403 283 455 283

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Performance Test
IPhone12 Mini, 1624x750

UE5（Standard） UE5（Clustered
Deferred Shading） Ours(Standard)

Ours（Optimized
Clustered Deferred

Shading）

FPS 30 30 30 30

GPU Times(ms） 11.3 13.1 10.9 9.8

Power(mW) 2085 2465 2026 1838

DrawCall 403 283 455 283

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

Performance Test

UE5

DirectLighting + IndirectLighting
GPU Occupancy：~35%

OUR SOLUTION

DirectLighting
GPU Occupancy：~60%

IndirectLighting
GPU Occupancy：~48%

IMPROVEMENTS TO MOBILE DEFERRED RENDERER

PART.01 Gong Jing - Practical Mobile Deferred Shading

PART.02 Bo Li - Practical Mobile GPU-driven Pipeline

PART.02

Introduction Practical Mobile GPU-Driven Pipeline Performance Discussion

INTRODUCTION

Motivation : Scale efficiently

Increase geometry efficiency
~10000s of unique static meshes on screen
Not just instances of a handful of mesh types

Increase material efficiency
~1000s of materials with different texture settings
Not instanced ones with slight variations (vertex color, etc)

Efficiency matters
Not just push hardware to the limit on mobile

INTRODUCTION

Why choose a GPU-Driven pipeline?

Take advantage of exiting game engines without too many modifications
on low level APIs

Commercial engine can be less multi-threaded than specialized engines
Improve computational efficiency for parallel workloads
Scalability: Larger work chunks -> Better GPU utilization

Less context switches
Finer-grain culling

Less wasted vertex/pixel work
Efficient culling for shadow views

INTRODUCTION

Existing GPU-Driven pipeline solutions

Nanite for mobile?
Optimized for desktop and console

Compatibly with mobile specific: Binning/TBDR/HW Prefetches
Sub-pass concept restricts switching between computation
and render operations

Forces GMEM reload
Unusual depth buffer usage required for material sorting
High shader complexity

Will talk about performance later!

PRACTICAL MOBILE GPU-DRIVEN PIPELINE

Primitive Choices : Non-Native Types

PRACTICAL MOBILE GPU-DRIVEN PIPELINE

Software Indexed Primitive : Common properties
Use VertexID to fetch index buffer
Mixing multiple meshes without MDI
Compact index encoding (6~8bit possible)
Allow reuse vertices

1# Software Indexed Triangle Lists
Less-compact index memory usage(3 indices for 1 Triangle)
No vertex transform reuse

2# Software Indexed Triangle Strips
Better index memory usage(1 indices for 1 Triangle)
Moderate vertex transform reuse

Mesh Cluster VB/IB Construction

PRACTICAL MOBILE GPU-DRIVEN PIPELINE

Software Indexed Triangle Strips (64 indices clusters)
8-bit indices with a 256-entry vertex pool

Allowing share vertices across clusters
Simple encoding/decoding

40% vertex buffer size reduction compared to non-indexed strips
Primitive restart

Use NAN as position
No special indices like 0xffff or 0xffffffff

Avoids high penalty on some popular mobile GPUs
Compressed VB

Integer position avoiding seams
Quaternion tangent frame
Unified buffers with flexible vertex stride

Culling Cone construction

PRACTICAL MOBILE GPU-DRIVEN PIPELINE

Input Not Optimized Optimized

Before best center
search

After best center
search

Started with GeometryFX
Can generate sub-optimal axis

Anchored Cone Construction
Use a linear equation solver to find the best cone
center within the triangle normal hull
Hugues Hoppe Silhouette clipping

https://hhoppe.com/proj/silclip/

Mesh Cluster Culling: Main view occlusion

PRACTICAL MOBILE GPU-DRIVEN PIPELINE

Reprojected HZB from previous depth
3x3 dilation pass
Single pass 5 Mip chain

Flat hierarchical culling
Instance AABB -> Cluster AABB

Optional: Lossy occlusion culling for less important objects
Foliage
Small props

Mesh Cluster Culling: Shadow occlusion

PRACTICAL MOBILE GPU-DRIVEN PIPELINE

Hierarchical point cloud shadow culling
Scattered from view space to shadow space
Single-pass multi-mip projection

Efficient large object culling
Single-pass multi-cascade generation
Software Fast Clear

Inspired by hardware features
Only dirty regions(and its Mips) needs to be cleared

Mesh Cluster Culling: Shadow occlusion

PRACTICAL MOBILE GPU-DRIVEN PIPELINE

Mesh Cluster Culling: Multi-View culling

PRACTICAL MOBILE GPU-DRIVEN PIPELINE

Before After

Many views needs to be rendered in a typical game
Main viewport
CSM * (3 ~ 4)
Local light shadows

Single-pass culling for up to 8 views
Output non-zero visibility mask for each view
A Byte for each instance/cluster(8 views)
Each view only needs a fast scan and compact(0.05ms)
Reduced ~60% compute cost

GPU Driven Buffer Defragments

PRACTICAL MOBILE GPU-DRIVEN PIPELINE

ObjectInfo

Attributes

ObjectInfo

Attributes

ObjectInfo

Attributes

Event: Object Deleted

Phase 1: Defrag ObjectInfo

Phase 2: Defrag Vertex Attributes

Compute shader based
Allowing streaming in/out
Necessary to support scene management

Avoid CPU-GPU sync point
No need to delay frame or block GPU operations

Triggered by multiple events
Deleted instances above threshold
Add/Remove meshes / Free spaces running low

Multi-frame state machine
Amortize GPU cost per-frame
Can be flushed when update GPU objects are requested
5 States: Cluster/MaterialID/Position/Attributes etc

Material batching

PRACTICAL MOBILE GPU-DRIVEN PIPELINE

Based on UE’s MaterialInstance Override
Single draw call for multiple compatible MaterialInstances

Supports overriding most Texture/PreShader Parameters

Automatically replace Texture/PreShader access with

indexed version

Detecting compatible material instances

Material batching

PRACTICAL MOBILE GPU-DRIVEN PIPELINE

Virtual Textures(SVT)
Pros

Allowing fine-grained streaming
Already developed by UnrealEngine

Cons
Extra page texture access
More ALUs for manual mips/ddx/ddy
Fixed texture format
Border memory waste

Bindless Textures
Pros

Smaller impact to shaders
Flexible texture formats
Hardware Anisotropic filtering and mip-maps
Basic support on most Vulkan Devices

Cons
Extra texture descriptor access(T#)
Hardware support can vary

T# cache?
Scalar Registers only?(AMD)

Performance beats SVT by about 15%

Vulkan Bindless RHI Implementation

PRACTICAL MOBILE GPU-DRIVEN PIPELINE

Supported by MOST Vulkan Android devices (90%+)
Only requires shaderSampledImageArrayDynamicIndexing

Vulkan Bindless RHI Implementation

PRACTICAL MOBILE GPU-DRIVEN PIPELINE

Supported by MOST Vulkan Android devices (90%+)
Only requires shaderSampledImageArrayDynamicIndexing
Not to be confused with shaderSampledImageArrayNonUniformIndexing

Needed for NonUniformResourceIndex on some vendors (AMD)
Works fine without it in practice on Mobile
Doesn’t require VK_EXT_descriptor_indexing

Vulkan Bindless RHI Implementation

PRACTICAL MOBILE GPU-DRIVEN PIPELINE

Supported by MOST Vulkan Android devices (90%+)
Only requires shaderSampledImageArrayDynamicIndexing
Not to be confused with shaderSampledImageArrayNonUniformIndexing

Needed for NonUniformResourceIndex on some vendors (AMD)
Works fine without it in practice on Mobile
Doesn’t require VK_EXT_descriptor_indexing

Doesn’t require VkDescriptorIndexingFeatures.runtimeDescriptorArray
Fixed size array rather than unbounded array

Array size limited by maxDescriptorSetSampledImages
Mali G72: 256, Adreno 650: 512k
For max compatibility, use 224 Bindless texture slots

Metal Bindless RHI Implementation

PRACTICAL MOBILE GPU-DRIVEN PIPELINE

Implemented with Argument Buffer Tier 2
Tier 1 doesn’t support dynamic indexing
Natural concept mapping with UE uniform buffers

Mixing constants and resources
Also comes with performance benefits of Argument buffers

Less Driver managements
Less API binding costs

Shader front-end and API modifications
Resource index remapping with Argument Buffer pointers
Add Metal argument buffer support in RHI state cache

PERFORMANCE DISCUSSIONS

Nanite as mobile GPU-driven front-end?

PERFORMANCE DISCUSSIONS

Nanite is also a very capable GPU-Driven Mesh pipeline
Why not used it on Mobile platforms?

We experimented just that!
Nanite direct G-buffer output on Mobile

Remove Visibility buffer etc
Plug Nanite HWRasterize into BasePass shaders
Tangent stream was added to Nanite vertex buffer for G-buffer rendering

Many mobile platform adjustments to make it work
Enable Vulkan shader model 6.0 with DXC for subgroup
Reduce Nanite pre-allocated buffer size
Disable vertex compression (incorrect result)
Disable persistent cull (device lost)

Nanite as mobile GPU-driven front-end : Snapdragon 8Gen2 SDP capture

PERFORMANCE DISCUSSIONS

36ms per frame
NANITE PORT:

26.6ms per frame
OURS:

Nanite as mobile GPU-driven front-end : Snapdragon 8Gen2 Results

Performance lower compared to custom GPU-Driven Pipeline
47fps -> 30fps
Detailed performance analysis follows

PERFORMANCE DISCUSSIONS

Our MeshCluster Our Nanite Mobile port

DepthPass+Culling(ms) 3.22 4.11

BasePass + Binning(ms) 7.37 14.4

Shadow Culling(ms) 0.05 5.06

Shadow Rendering(ms) 3.18 N/A

Lighting(ms) 2.9 2.9

Postprocess(ms) 5.67 6.52

Conclusion:
A custom GPU-driven pipeline is more efficient on Mobile

PERFORMANCE DISCUSSIONS

Internal case study

Internal R&D project
Samsung S20 (SD865)

Represents actual game development
Heavier CPU load

Gameplay/Physics/Online

GPU Driven Static Mesh
Building

Props

Iconic Plants

Internal case study

PERFORMANCE DISCUSSIONS

GPU-only cost reduced by 7.1ms (17% improvement)
BasePass-only improvement: 33.7%

System performance
Framerate 12fps -> 25fps
CPU cost can play a big role here

Performance scalability

PERFORMANCE DISCUSSIONS

0

20

40

60

80

100

120

140

160

180

200

UE Standard GPU Driven With Bindless With Shadow Culling With all features and 5x
Map Size

Performance scale with map size
Performance increase 12% with single Amazon Bistro
Performance increase 75% with 5x Amazon Bistro

Expected scales better with future mobile platforms
Wider GPUs, More efficient parallel computing

Amazon Bistro Demo %Performance

Innovation Unleashed (2)

CyberHuman: Next-Gen Character
Creation Pipeline Powered by Machine

Learning

PART.01 Introduction

PART.02 Character modeling, rigging, and animation pipeline

PART.03 Summary and future works

PART.01

BACKGROUND

Character customization technology

Modeling Rigging Animation

MetaHuman creator & mesh to MetaHuman

CyberHuman

MetaHuman: a game-changer in character creation
technology

Incredibly realistic characters creation
User-friendly interfaces and streamlined workflows
Seamlessly integrated with Unreal Engine

MetaHuman powers come with limitations
Limited gameplay creation
Intuitive modals (image or text) not supported
Inconsistent mesh shapes
No simple edit of rig poses accessible
No official Lipsync solution

CyberHuman
Character creation solution powered by machine
learning
Rich toolset for both DCC and gameplay
MetaHuman assets compatibility

CYBERHUMAN PIPELINE

Mesh
Registration

Topology &
UV

normalization

LODs & maps
baking

Raw Face Scan/
Handcrafted
Face Mesh

Image/Text to
Face Mesh

Modeling

DNA Solver

DNA Editor

DNA-based
Face

Customizer

DNA Blender

Rigging

Lipsync
animation

Facial motion
capture

Audio/TTS

Video Pro devices

Animation

PART.02

CYBERHUMAN PIPELINE

MODELING RIGGING ANIMATION

CYBERHUMAN PIPELINE

MODELING FROM A RAW MESH

Fully automatic registration

Multiview
render

Facial
landmarks
detection

Local-PCA
based fitting

3D landmarks
projection

Coarse-to-fine
NRICP

One of the basic techniques in face related tasks
Template topology to represent target geometry
Applied to topology conversion of scan, auto
rigging, lip sync, etc.

Problems in Wrap4D
Artifacts caused by large face count differences
Manual work needed and not applicable to
automatic tools

Our advantages
Facial landmark based fully-automatic registration
Patch-PCA based fitting and 2D-3D landmarks
detection
Point-to-surface ICP and coarse-to-fine iterative
optimization

MODELING FROM RAW MESH

Two-pass registration

𝐸𝐶 =

𝑖=1

𝑛

𝐯𝑖 − 𝑃 ഥ𝐯𝑖
2

≈

𝑖=1

𝑛

𝐯𝑖 − 𝐜𝑖 ∙ 𝐧𝑖
2

Point-to-surface ICP

Coarse-to-fine

Landmarks
Fully automatic 2D-3D landmarks detection and
projection

Patch-PCA fitting
Fast PCA parameters optimization
Very close to but not exactly the same as input shape

NRICP
Time-consuming iterations and slow convergence
Combined with PCA fitting
Coarse-to-fine strategy

Constraints
Point-to-surface ICP, 3D landmarks, patch smoothness,
local smoothness, regularizations

MODELING FROM RAW MESH

Ours vs. Wrap4D

0mm

>1mm

Template Target Ours Wrap4D

Mean error Extension DCC & UE
integration

Automatic batch
processing

Ours ≈0.07mm

Wrap4D ≈0.09mm

MODELING FROM IMAGES OR TEXTS

MULTI-MODAL FACE CREATION MODULES

A lovely girl
with big

eyes

Image Diffusion
& Normalization

Face
Reconstruction

UV Texture
Completion

PBR Texture
Diffusion

UV Texture
Delighting

Texture Super-
Resolution

Image Diffusion & Normalization Model
Prepares input images for subsequent processing by ensuring
consistent formats and normalization.
Improves the overall stability and robustness of the reconstruction
process.

Face Reconstruction Model (BFM, FFHQ-UV)
Leverages existing 3D face models (BFM, FFHQ-UV) to provide a
foundation for reconstruction.
Ensures realistic and anatomically accurate facial structures.

UV Texture Completion Model
Fills in missing or incomplete regions of the UV map, ensuring texture
coverage.
Improves the overall completeness and consistency of the
reconstructed face.

PBR Texture Diffusion Model
Generates physically-based rendered (PBR) textures for the
reconstructed face.
Enhances realism by incorporating material properties and lighting
effects.

UV Texture Delighting Model
Refines the generated textures by adjusting lighting and color balance.
Optimizes the visual appeal and consistency of the final facial texture.

UV Texture Super-Resolution Model
Enhances the resolution and detail of the UV textures.

FACE SHAPE AND TEXTURE RECONSTRUCTION

Denoising U-Net

ZNZ0

D
n

D
r

D
d

LLMText
prompt Facial attr. ControlNet Denoising

U-Net

ReconstructionRef image DelightingNormalization

Photometric Guidance

SD Encoder

Large language models are used to understand the
textual intentions and extract facial attributes like
face shape, hair style, etc. A control network then
guides the generation of a reference portrait image

Image attributes in w+ latent space of StyleGAN2
are edited to normalize lighting, eyeglasses, facial
expression, etc

Sampling is guided by photometric gradients to
improve texture-mesh alignment and retain fine
facial details

High-quality physically based rendering (PBR)
textures like diffuse, normal, roughness maps are
generated by decoders

4x upscaling are applied to textures at the end of
the pipeline

FACE TEXTURE DELIGHTING

Synthetic lighting in UVs Albedo GT

UV lighting ground truth data generation
Utilizes high-definition light stage scanned mesh geometry and
associated texture maps for shading
Employs random environment maps and camera positions for
efficient rendering

UV textures translation networks
Modified version of pix2pixHD with shape geometry as
additional features
Predictions are further enhanced by photorealistic
differentiable rendering

Scalp area inpainting by Poisson blending

PIPELINE OVERVIEW

METAHUMAN DNA

Rig logic and DNA

Data flow from rig logic to final expression

Rig logic UI

Rig logic
Runtime facial rig evaluation solver system developed by 3Lateral
Relying on a universal set of rules for defining the muscular system
of a human face
Runtime evaluation, reduction of parameters, lossless animation
compression, reusability, non-linear animation mixing, etc.

DNA
Storage format of the complete description of a 3D object's rig
and geometry
CRS matrix, joint groups, corrective expressions

DNA STUDIO

DNA studio MetaHuman creator &
Mesh to MetaHuman

Platform UE and Maya plugin UE and Web service

Rig quality High High, but sometimes with
artifacts

DNA creation
efficiency About 10~15s About 30~60s

DNA blend Regional blend, texture
supported

Regional blend, texture
unsupported

Face customization Supported & user-
defined Supported & predefined

Pose edit Supported Unsupported

DNA studio vs MetaHuman tools

DNA studio
Efficient and flexible construction and manipulation of MetaHuman DNA
Toolset: DNA creation, DNA blend, face customization, pose edit

DNA STUDIO

DNA solver

Efficient and high-fidelity DNA generation
Neutral face mesh or ROM sequence (MetaHuman
topology) as input

Iterative coarse DNA solve by 100+ DNA presets
Shape: landmark and ICP based regional blend
parameters fitting according to neutral mesh
Rig logic: DNA controls and joint-group blend
parameters optimization according to ROM meshes

Fine DNA correction by auto-rigging
Shape, face parts and bind poses refinement by RBF-
based deform
Expressions and correctives refinement based on
SSDR

Coarse solve

Shape fitting Rig logic fitting

DNA presetsNeutral Mesh ROM
sequence

Input data

Solved DNA

Shape and bind
pose

Fine correction
Expressions &
correctives

DNA STUDIO

DNA blender

DNA blend in UEVertex blend weights

Fast generation of various high-quality characters
Flexible and intuitive regional blend for both artist and game players
Maya & UE supported

Blend weights
Vertices: skinning weights of joint group sets
Joints: weighted sum of influencing vertices

DNA STUDIO

DNA-based face customization

Customization in UE

Face length Eye tilt Eye scale Ear size & turn Lip thickness

Traditional joint-based techniques
Artifacts caused by multiple activated controllers
Hard-coded pose combination logic and not
artist-friendly

Our advantages
Generalized DNA structure to control both face
shape and expression
Face customization DNA poses generated by
blendshapes and joint poses
Compact DNA data storage and runtime SIMD
optimization
Maya & UE supported

DNA STUDIO

DNA edit

Efficient and direct edit of DNA poses
Unified edit for both shape (face customization) and expression
User-defined exaggerated and characterized poses

Pose modified for face customization Neutral Predefined pose Edited pose

PIPELINE OVERVIEW

LIP SYNC ANIMATION

Speech animation from text or audio

Single mesh to audio-driven talking head
High performance for interactive application, e.g. GPT-driven
dialogs
Lip vertices prediction with rich facial details
Emotional speech animation supported
High-quality neural solver of MetaHuman control rig
parameters
Neural correctives as supplementary facial expressiveness
Maya and UE plugins for asset creation and runtime animation

Audio/TTS

Networks
[FaceXHubert]

Vertices/PCA

Conformer
NNSolver

Rig animation Neural
correctives

15 min
finetuning

Pose/style editing

4D scan
& audio

LIP SYNC ANIMATION

Full-fledged runtime and editor

Lip sync UI in UE

Main window emotion & Gen emotion
Emotion applied, AI-generated or animation preset

Sub window emotion
Emotion applied in sub-viewport

Lip sync mode
Text inputs or chats (Google Gemini by default)

Lip sync intensity
Neutral, strong or mild

TTS timbres
Azure TTS timbres

Audio selection
Selected audio to lip animation

Animation export
Generated animation and audio exported to animation
sequence

FACIAL MOTION CAPTURE

RGB video stream to facial expression parameters

DCC
Convenient asset capture and curve export for artist
MetaHuman control rig and ARKit blendshapes
supported

UE runtime
Realtime capture for PC, IOS, Android
Lightweight network performance, e.g. Huawei
Mate30 5-8ms CPU
Dynamic model loading based on mobile
configuration

Facial capture in Maya

Facial capture in Undawn
(developed by Lightspeed studio)

PART.03

CYBERHUMAN PIPELINE

Mesh
Registration

Topology &
UV

normalization

LODs & maps
baking

Raw Face Scan/
Handcrafted
Face Mesh

Image/Text to
Face Mesh

Modeling

DNA Solver

DNA Editor

DNA-based
Face

Customizer

DNA Blender

Rigging

Lipsync
animation

Facial motion
capture

Audio/TTS

Video Pro devices

Animation

FUTURE WORKS

Hair generation
Body shape customization
Cloth generation

GDC 2024 | SAN FRANCISCO

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55
	幻灯片 56
	幻灯片 57
	幻灯片 58
	幻灯片 59
	幻灯片 60
	幻灯片 61
	幻灯片 62
	幻灯片 63
	幻灯片 64
	幻灯片 65
	幻灯片 66
	幻灯片 67
	幻灯片 68
	幻灯片 69
	幻灯片 70
	幻灯片 71
	幻灯片 72
	幻灯片 73
	幻灯片 74
	幻灯片 75
	幻灯片 76
	幻灯片 77
	幻灯片 78
	幻灯片 79
	幻灯片 80
	幻灯片 81
	幻灯片 82
	幻灯片 83
	幻灯片 84
	幻灯片 85
	幻灯片 86
	幻灯片 87
	幻灯片 88
	幻灯片 89
	幻灯片 90
	幻灯片 91
	幻灯片 92
	幻灯片 93
	幻灯片 94
	幻灯片 95

