
EFFICIENT XR DEV
IN UE5

Alexander Silkin
Co-Founder & CTO at Survios

SPEAKER BIO

ALEXANDER SILKIN

Alex is a software engineer with an extensive background in consumer hardware,
motion controls and software development. His professional experience includes stints
at NASA, Microsoft, and the Information Sciences Institute at the University of Southern
California (USC).

In 2012, Alex began working on VR at USC as a lead engineer on a student project -
Project Holodeck. In 2013, the project gave birth to the creation of the Survios
company.

CO-FOUNDER & CTO SURVIOS

XR

UE5 TECHNICAL

TARGET
AUDIENCE

Best practices for XR tech stack in UE51

2 Tools and processes for optimal development

KEY TAKEAWAYS

We work in our own branch of

Unreal Engine (5.3.2)

↳ We TRY to avoid unnecessary

modifications

We try to do things the "Unreal

Way"

↳ Sometimes we PURPOSEFULLY

stray off the beaten path

PREFACE

7 VR Games released since 2015 across genres: fighting, shooting, surviving, racing, naval battling and puzzling.

Shipped on all the major VR stores and hardware platforms: Oculus PC + Quest, PS VR 1+2, SteamVR, Viveport.

VR GAMES SHIPPED WITH UE4

Remastered in UE5 for PS VR2 and Quest 2+
(Check out Sylvie Sherman’s talk on Wednesday @ 3:30!)

Next Gen VR development in UE5

MIGRATION TO UE5

© 2024 Survios, Inc. All Rights Reserved. Creed © 2015 & Creed II © 2018 MGM & WBEI. Creed III © 2024 MGM. Creed TM MGM. Rocky © 1976, Rocky II © 1979,
Rocky III © 1982 & Rocky IV © 1985 MGM. Rocky TM MGM. Creed: Rise To Glory - Championship Edition © 2018-2024 & TM MGM. All Rights Reserved.

Infrastructure & Workflows1
2 Core Tech

TOPICS

New Unreal Frameworks3
4 Scripting & Saving

5 Performance

INFRASTRUCTURE
& WORKFLOWS

P4V + Epic's robomerge + in house tools to simplify dependency merges.

14 "tech depots" - contain Unreal Engine forks, plugins, and example projects.

Tech depots have standardized stream structure:
↳ Dev
↳ Release-5.X
↳ Upgrade

 Game depots merge dependencies from tech-depots and have similar structure.

MODULAR REPOSITORY

37 "third party" plugins in NEW GAME depot

Plugins are maintained within tech-marketplace depot to manage:

↳ Modifications

↳ Upgrades
↳ Merges into game depots

MARKETPLACE (VENDOR) DEPOT

Meta and Sony UE forks are within
their own vendor depots.

NEW GAME platform stream strategy:

↳ Dev stream avoids specific platform
modifications

↳ Separate Meta and Sony streams
merge from each fork

PARTNER FORK DEPOTS

Minimize dependencies across

modules:

↳ [Plugin]Core – contains

interfaces and core structs

↳ [Plugin]X/Y/Z -

implementations for X/Y/Z

subsystems

All plugins are stored in their "depot

folder" in Engine/Plugins/Survios

↳ eg. all plugins from tech-xr

depot are in

Engine/Plugins/Survios/tech-xr

↳ Makes it easy to merge

between game and tech depots

No code in "game" module – game

specific plugins are in

Engine/Plugins/Survios/[GAME]

↳ Convenient to have ALL the code

under one directory

↳ Makes it easy to create separate

project to target any specific

plugins for challenging bug hunts

185 Plugins consisting of 310 Modules in NEW GAME depot

MODULAR CODEBASE

if (Target.Configuration == UnrealTargetConfiguration.DebugGame)
{
 OptimizeCode = CodeOptimization.Never;
}

DebugGame Editor – Recommended Daily Build Configuration

Engine Plugin modules build.cs need to be tagged one of these ways:

Alternative Solutions:

↳ Add modules to "DisableOptimizeCode" list in BuildConfiguration.xml

↳ PRAGMA_DISABLE_OPTIMIZATION

bTreatAsEngineModule = false;

DEBUGGING > COMPILER OPTIMIZATION

Emulation tools aid rapid iteration outside of VR

Create and test your content outside of VR

USING MOUSE TO SIMULATE
CONTROLLER IN-GAME

USING MOUSE TO SIMULATE
INTERACTION IN EDITOR

VR EMULATION TOOLS

CORE TECH

Remove concept of a standalone hand Actor

Encapsulate systems in components on player Pawn

↳ Each component manages both hands, usually through 2 instances of a UObject subclass
↳ Additional components attached to interactable actors for system specific data and logic

↳ Dependencies between systems minimized with the use of interfaces

NEW PAWN CENTRIC STRUCTURE

Broke apart systems across multiple components

Only 1 SceneComponent – the visual root component

SIMPLIFIED INTERACTABLE HIERARCHY

We do not use UMotionControllerComponent

Our system polls data with UHeadMountedDisplayFunctionLibrary::GetMotionControllerData

FOpenXRHMD::GetMotionControllerData has caveats out of the box (UE 5.3):

↳ Tracker transforms are in world space

↳ Sets DeviceVisualType = EXRVisualType::Hand even when no valid hand tracking data but valid controller
data

Taking control of the tracking code allows us to emulate VR with debug mouse and keyboard
controls

TRACKING POLLING SYSTEM

Movement modes' logic encapsulated in standalone classes

↳ Configuration stored in individual DataAssets
↳ Modes are responsible for handling artificial locomotion and tracked head

motion

MovementCollisionComponent - custom PrimitiveComponent

↳ Pivot on the "floor"

↳ Capsule center and dimensions are modified by tracked head motion and
movement mode logic

Minimal overhead on Game Thread

↳ Logic is run on worker thread

↳ MovementCollisionComponent transform update and event broadcasts are
on game thread

AVATAR MOVEMENT COMPONENT

NEW UNREAL FRAMEWORKS
Enhanced Input and Gameplay Ability System

Enhanced Input cannot mirror right to left hand:

↳ Have to duplicate all the data in the InputMappingContext and InputAction

↳ Duplicate code to bind to right vs left InputAction

Our workflow avoids duplication:

↳ Use legacy action bindings instead of MappableInputConfig - DefaultInput.ini maps every FKey to dummy action

↳ Input assets are authored for right hand

↳ System generates new InputMappingContexts and InputActions by duplicating the authored assets and binding to
left keys

↳ Gameplay code binds to the mirrored InputActions when left hand is involved

ENHANCED INPUT

Grants abilities and binds input

Added to the pawn for default abilities

Dynamically grants abilities while a gun is in hand

Set to request right vs left hand bindings

AbilityGrantComponent

Triggers an ability when user
presses grab button within
range

Can set InputAction to trigger
ability for dev purposes

Used for body slot interactions

GrabSlot

Engine modification to allow blueprint subclasses of AttributeSet

↳ Modified FGameplayAttribute::GetAllAttributeProperties and SAttributeListWidget::UpdatePropertyOptions

↳ We can add new attributes in BP instead of C++

FSVRGameplayAttributeData – subclass to expose "InitialBaseValue"

Adding Attributes in Blueprint

AttributeSetConfigurations – blueprintable object

↳ Collection of AttributeSet instances that expose "InitialBaseValue" for each attribute
↳ Subclassed to provide variants, for example for different weapons

Setting & Overriding InitialBaseValue

AttributeSetGrantComponent – grants and initializes attribute sets

↳ Editable list of AttributeSetConfigurations to be granted

↳ Primary use case – when gun is held, grant the attributes and initialize them with the defaults for that gun

AttributeSetGrantComponent

AActor::TakeDamage - deprecated in UE5

Request damage and healing with GameplayEffects (GE) that modify attributes in
DamageAttributeSet:

↳ Damage – amount of hitpoints to decrement

↳ DamageScratchPad - temporary variable for GE modifiers to override before updating Damage
↳ Heal – amount of hitpoints to add

Override DamageAttributeSet::PostGameplayEffectExecute

↳ Handle changes in attributes to broadcast to the DamageableComponent

DAMAGE WITH GAS ATTRIBUTES

Damage GEs calculate damage based off attributes and GameplayEffectExecutionCalculations

1. Initialize DamageScratchPad with modifier backing attribute

2. Add a chain of GameplayEffectExecutionCalculation to modify DamageScratchPad

3. ApplyDamageFromScratchPad – final execution set Damage to DamageScratchPad value

DamageScratchPad CHAIN

SCRIPTING & SAVING

Built "quest" system on top of Logic Driver Pro

Added custom functionality:
↳ Setting start node to launch PIE

↳ Cheats for skipping active state

SCRIPTING SYSTEM

SAVE SYSTEM
Modular Save Components

↳ GameInstanceSubsystems implement ISaveComponent

↳ Each save component generates USaveGame

↳ USaveGames are combined into 1 master save file

Functionality to view and edit saves in Editor

↳ Import .sav file to create SaveGameDataAsset

Use "debug" saves to test different parts of game

↳ Designers configure debug saves to be generated at
various points using scripting system

↳ Saves are packaged with the game as
SaveGameDataAssets

SCRIPT SKIPPING vs DEBUG SAVES
Script skipping gives full flexibility to play at any location

↳ The behavior is not always correct as it requires manually configuring the game state

↳ Great for development iteration

Debug saves give an accurate snapshot for replay

↳ Active development quickly invalidates saves

↳ Great for hardened builds at the end of milestone

PERFORMANCE

ACTOR ACTIVATION
Engine modification introduces concept of Actor "activation"

↳ Similar to GameObject.SetActive in Unity

↳ State automatically propagates to child attached actors

Toggles core systems:

↳ Actor and ActorComponent ticking – registers & unregisters tick functions

↳ Primitive visibility and collision – adds & removes from render and physics scene

OnActivateActor & OnDeactivateActor – virtual callbacks on Actor and ActorComponent

ACTOR POOLING
Spawning actors still too expensive - enemy ACharacter spawn times:

↳ PS5 - ~5ms

↳ Quest 3 - ~8.5ms

PoolManager spawns a preset number of actors on BeginPlay

Pooling system uses the "Actor Activation" system

↳ OnActivateActor(bool bResetGameState) - bool parameter used to notify actors and components to reset state
when leaving pooled state

Engine modified to call into PoolManager:

↳ UWorld::SpawnActor – takes out actor from a pool by activating actor and resetting state

↳ UWorld::DestroyActor - put actor back into pool by deactivating actor

GPU LIGHT BAKES
Static lighting is a must for visual quality and performance in VR

↳ Precomputed Visibility is necessary to lower culling costs

Lumen is great for real time preview in Editor

GPU light bakes are much faster than CPU Lightmass!

Automating GPU light bakes is tricky

↳ Cannot do a GPU bake from a headless client since GPU is needed

↳ We are launching an Editor from Jenkins and have a plugin that responds to launch parameters

SOFTWARE OCCLUSION ON QUEST

Epic removed Software Occlusion from UE5

Fast Travel Games has graciously open sourced "Snow Occlusion" plugin for UE5

QUESTIONS?
Reach out to keep the discussion going!

Alexander Silkin
Discord: alex.silkin

alex.silkin@survios.com

