
Numerical Robustness
(for Geometric Calculations)

Christer Ericson
Sony Computer Entertainment

Slides @ http://realtimecollisiondetection.net/pubs/

Numerical Robustness
(for Geometric Calculations)

Christer Ericson
Sony Computer Entertainment

Slides @ http://realtimecollisiondetection.net/pubs/

Takeaway

An appreciation of the pitfalls inherent
in working with floating-point
arithmetic.
Tools for addressing the robustness of
floating-point based code.
Probably something else too.

THE PROBLEM
Floating-point arithmetic

Floating-point numbers

Real numbers must be approximated
Floating-point numbers
Fixed-point numbers (integers)
Rational numbers

Homogeneous representation

If we could work in real arithmetic, I
wouldn’t be having this talk!

Floating-point numbers

IEEE-754 single precision
1 bit sign
8 bit exponent (biased)
23 bits fraction (24 bits mantissa w/ hidden bit)

s Exponent (e) Fraction (f)

This is a normalized format

31 31 23 22 0

127(1) (1.) 2s eV f −= − × ×

Floating-point numbers

IEEE-754 representable numbers:

Exponent Fraction Sign Value

0<e<255

e=0 f=0 s=0

e=0 f=0 s=1

e=0 f≠0

e=255 f=0 s=0

e=255 f=0 s=1

e=255 f≠0

127(1) (1.) 2s eV f −= − × ×
0V =

0V = −
126(1) (0.) 2s eV f −= − × ×

V Inf= +

V Inf= −

V NaN=

Floating-point numbers

In IEEE-754, domain extended with:
–Inf, +Inf, NaN

Some examples:
a/0 = +Inf, if a > 0
a/0 = –Inf, if a < 0
0/0 = Inf – Inf = ±Inf · 0 = NaN

Known as Infinity Arithmetic (IA)

Floating-point numbers

IA is a potential source of robustness errors!
+Inf and –Inf compare as normal
But NaN compares as unordered

NaN != NaN is true
All other comparisons involving NaNs are false

These expressions are not equivalent:

if (a > b) X(); else Y();

if (a <= b) Y(); else X();

Floating-point numbers

But IA provides a nice feature too
Allows not having to test for div-by-
zero

Removes test branch from inner loop
Useful for SIMD code

(Although same approach usually
works for non-IEEE CPUs too.)

Floating-point numbers

Irregular number line
Spacing increases the farther away
from zero a number is located
Number range for exponent k+1 has
twice the spacing of the one for
exponent k
Equally many representable numbers
from one exponent to another

0

0

Floating-point numbers

Consequence of irregular spacing:
–1020 + (1020 + 1) = 0
(–1020 + 1020) + 1 = 1

Thus, not associative (in general):
(a + b) + c != a + (b + c)

Source of endless errors!

Floating-point numbers
All discrete representations have non-
representable points

A

BC

D

Q

P

The floating-point grid
In floating-point, behavior changes based
on position, due to the irregular spacing!

EXAMPLE
Polygon splitting

Polygon splitting

Sutherland-Hodgman clipping
algorithm

A

B B
CI

D

C

A DJ

Polygon splitting

Enter floating-point errors!

I

P

Q

P

Q

IF

Polygon splitting

ABCD split against a plane

A

B
D

C

A

B
D

J

I

C

Polygon splitting

Thick planes to the rescue!

P

Q

Desired invariant:
OnPlane(I, plane) = true

where:
I = IntersectionPoint(PQ, plane)

Polygon splitting

Thick planes also help bound the error

PQ P'Q'

PQ

e

e

P'Q'

A

B
D

C

Polygon splitting

ABCD split against a thick plane

A

B
D

C

I

Polygon splitting

Cracks introduced by inconsistent ordering

A

B

C

D

A

B

C

D

EXAMPLE
BSP-tree robustness

BSP-tree robustness

Robustness problems for:
Insertion of primitives
Querying (collision detection)

Same problems apply to:
All spatial partitioning schemes!
(k-d trees, grids, octrees, quadtrees, …)

BSP-tree robustness

Query robustness

1

2
I

P

Q

IF

C
A

B

BSP-tree robustness

Insertion robustness

1

2

C
A

B

1

2

C
A

B

I

IF

BSP-tree robustness

How to achieve robustness?
Insert primitives conservatively

Accounting for errors in querying and
insertion

Can then ignore problem for queries

EXAMPLE
Ray-triangle test

Ray-triangle test

Common approach:
Compute intersection point P of ray R
with plane of triangle T
Test if P lies inside boundaries of T

Alas, this is not robust!

Ray-triangle test

A problem configuration

R

P

A

B
C

D

Ray-triangle test

Intersecting R against one plane

R

P

Ray-triangle test

Intersecting R against the other plane

R

P

Robust test must share calculations
for shared edge AB
Perform test directly in 3D!

Let ray be
Then, sign of says whether
is left or right of AB
If R left of all edges, R intersects CCW
triangle
Only then compute P

Still errors, but managable

()R t O t= + d
()OA OB⋅ ×d d

Ray-triangle test

Ray-triangle test

“Fat” tests are also robust!

P

EXAMPLES SUMMARY

Achieve robustness through…
(Correct) use of tolerances
Sharing of calculations
Use of fat primitives

TOLERANCES

Tolerance comparisons

Absolute tolerance
Relative tolerance
Combined tolerance
(Integer test)

Absolute tolerance

Almost never used correctly!
What should EPSILON be?

Typically arbitrary small number used! OMFG!!

if (Abs(x – y) <= EPSILON) …

Comparing two floats for equality:

Absolute tolerances

Delta step to next representable number:

Decimal Hex Next representable number

10.0 0x41200000 x + 0.000001

100.0 0x42C80000 x + 0.000008

1,000.0 0x447A0000 x + 0.000061

10,000.0 0x461C4000 x + 0.000977

100,000.0 0x47C35000 x + 0.007813

1,000,000.0 0x49742400 x + 0.0625

10,000,000.0 0x4B189680 x + 1.0

Absolute tolerances

Möller-Trumbore ray-triangle code:
#define EPSILON 0.000001
#define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
...
// if determinant is near zero, ray lies in plane of triangle
det = DOT(edge1, pvec);
...
if (det > -EPSILON && det < EPSILON) // Abs(det) < EPSILON

return 0;

Written using doubles.
Change to float without changing epsilon?
DOT({10,10,10},{10,10,10}) breaks test!

Relative tolerance

Comparing two floats for equality:

Epsilon scaled by magnitude of inputs
But consider Abs(x)<1.0, Abs(y)<1.0

if (Abs(x – y) <= EPSILON * Max(Abs(x), Abs(y)) …

Combined tolerance

Comparing two floats for equality:

Absolute test for Abs(x)≤1.0, Abs(y)≤1.0
Relative test otherwise!

if (Abs(x – y) <= EPSILON * Max(1.0f, Abs(x), Abs(y))
…

Floating-point numbers

Caveat: Intel uses 80-bit format
internally

Unless told otherwise.
Errors dependent on what code
generated.
Gives different results in debug and
release.

EXACT
ARITHMETIC
(and semi-exact ditto)

Exact arithmetic

Hey! Integer arithmetic is exact
As long as there is no overflow
Closed under +, –, and *
Not closed under / but can often remove
divisions through cross multiplication

Exact arithmetic

Example: Does C project onto AB ?

A B

C

D

float t = Dot(AC, AB) / Dot(AB, AB);
if (t >= 0.0f && t <= 1.0f)

... /* do something */

int tnum = Dot(AC, AB), tdenom = Dot(AB, AB);
if (tnum >= 0 && tnum <= tdenom)

... /* do something */

, AC ABD A tAB t
AB AB

⋅
= + =

⋅

Floats:

Integers:

Exact arithmetic

Another example:

A

B

C

D

Exact arithmetic

Tests
Boolean, can be evaluated exactly

Constructions
Non-Boolean, cannot be done exactly

Exact arithmetic

Tests, often expressed as determinant
predicates. E.g.

Shewchuk's predicates well-known example
Evaluates using extended-precision arithmetic
(EPA)

EPA is expensive to evaluate
Limit EPA use through “floating-point filter”
Common filter is interval arithmetic

(, ,) 0 () 0
x y z

x y z

x y z

u u u
P v v v

w w w
≥ ⇔ ⋅ × ≥u v w u v w

Exact arithmetic

Interval arithmetic
x = [1,3] = { x ∈ R | 1 ≤ x ≤ 3 }
Rules:

[a,b] + [c,d] = [a+c,b+d]
[a,b] – [c,d] = [a–d,b–c]
[a,b] * [c,d] = [min(ac,ad,bc,bd),
max(ac,ad,bc,bd)]
[a,b] / [c,d] = [a,b] * [1/d,1/c] for 0∉[c,d]

E.g. [100,101] + [10,12] = [110,113]

Exact arithmetic

Interval arithmetic
Intervals must be rounded up/down to
nearest machine-representable number
Is a reliable calculation

References
Ericson, Christer. Real-Time Collision Detection. Morgan
Kaufmann, 2005. http://realtimecollisiondetection.net/
Hoffmann, Christoph. Geometric and Solid Modeling: An
Introduction. Morgan Kaufmann, 1989.
http://www.cs.purdue.edu/homes/cmh/distribution/books/geo.html
Ratschek, Helmut. Jon Rokne. Geometric Computations with
Interval and New Robust Methods. Horwood Publishing, 2003.

Hoffmann, Christoph. “Robustness in Geometric Computations.” JCISE 1, 2001, pp.
143-156.
http://www.cs.purdue.edu/homes/cmh/distribution/papers/Robustness/robust4.pdf
Santisteve, Francisco. “Robust Geometric Computation (RGC), State of the Art.”
Technical report, 1999. http://www.lsi.upc.es/dept/techreps/ps/R99-19.ps.gz
Schirra, Stefan. “Robustness and precision issues in geometric computation.”
Research Report MPI-I-98-004, Max Planck Institute for Computer Science, 1998.
http://domino.mpi-sb.mpg.de/internet/reports.nsf/NumberView/1998-1-004
Shewchuk, Jonathan. “Adaptive Precision Floating-Point Arithmetic and Fast
Robust Geometric Predicates.” Discrete & Computational Geometry 18(3):305-363,
October 1997. http://www.cs.cmu.edu/~quake-papers/robust-arithmetic.ps

BOOKS

PAPERS

http://realtimecollisiondetection.net/
http://www.cs.purdue.edu/homes/cmh/distribution/books/geo.html
http://www.cs.purdue.edu/homes/cmh/distribution/papers/Robustness/robust4.pdf
http://www.lsi.upc.es/dept/techreps/ps/R99-19.ps.gz
http://domino.mpi-sb.mpg.de/internet/reports.nsf/NumberView/1998-1-004
http://www.cs.cmu.edu/~quake-papers/robust-arithmetic.ps

	Numerical Robustness�(for Geometric Calculations)
	Numerical Robustness�(for Geometric Calculations)
	Takeaway
	Slide Number 4
	Floating-point numbers
	Floating-point numbers
	Floating-point numbers
	Floating-point numbers
	Floating-point numbers
	Floating-point numbers
	Floating-point numbers
	Floating-point numbers
	Floating-point numbers
	The floating-point grid
	Slide Number 15
	Polygon splitting
	Polygon splitting
	Polygon splitting
	Polygon splitting
	Polygon splitting
	Polygon splitting
	Polygon splitting
	Slide Number 23
	BSP-tree robustness
	BSP-tree robustness
	BSP-tree robustness
	BSP-tree robustness
	Slide Number 28
	Ray-triangle test
	Ray-triangle test
	Ray-triangle test
	Ray-triangle test
	Ray-triangle test
	Ray-triangle test
	EXAMPLES SUMMARY
	Slide Number 36
	Tolerance comparisons
	Absolute tolerance
	Absolute tolerances
	Absolute tolerances
	Relative tolerance
	Combined tolerance
	Floating-point numbers
	Slide Number 44
	Exact arithmetic
	Exact arithmetic
	Exact arithmetic
	Exact arithmetic
	Exact arithmetic
	Exact arithmetic
	Exact arithmetic
	References

