Numerical Robustness (for Geometric Calculations)

Christer Ericson Sony Computer Entertainment

Slides @ http://realtimecollisiondetection.net/pubs/

Christer Ericson Sony Computer Entertainment

Slides @ http://realtimecollisiondetection.net/pubs/

Takeaway

- An appreciation of the pitfalls inherent in working with floating-point arithmetic.
- Tools for addressing the robustness of floating-point based code.
- Probably something else too.

THE PROBLEM

Floating-point arithmetic

- Real numbers must be approximated
 - Floating-point numbers
 - Fixed-point numbers (integers)
 - Rational numbers
 - 4 Homogeneous representation
- If we could work in real arithmetic, I wouldn't be having this talk!

- IEEE-754 single precision
 - 4 1 bit sign
 - 8 bit exponent (biased)
 - ② 23 bits fraction (24 bits mantissa w/ hidden bit)

$$V = (-1)^s \times (1.f) \times 2^{e-127}$$

This is a normalized format

IEEE-754 representable numbers:

Exponent	Fraction	Sign	Value
0 <e<255< td=""><td></td><td></td><td>$V = (-1)^s \times (1.f) \times 2^{e-127}$</td></e<255<>			$V = (-1)^s \times (1.f) \times 2^{e-127}$
e=0	f=0	s=0	V = 0
e=0	f=0	s=1	V = -0
e=0	f≠0		$V = (-1)^{s} \times (0.f) \times 2^{e-126}$
e=255	f=0	s=0	V = +Inf
e=255	f=0	s=1	V = -Inf
e=255	f≠0		V = NaN

- In IEEE-754, domain extended with:
 - ♣ -Inf, +Inf, NaN
- Some examples:
 - a/0 = +Inf, if a > 0
- & Known as Infinity Arithmetic (IA)

- IA is a potential source of robustness errors!
 - +Inf and -Inf compare as normal
 - But NaN compares as unordered
 - NaN!= NaN is true
 - All other comparisons involving NaNs are false
- These expressions are not equivalent:

```
if (a > b) X(); else Y();
```

```
if (a <= b) Y(); else X();</pre>
```

- But IA provides a nice feature too
- Allows not having to test for div-byzero
 - Removes test branch from inner loop
 - Useful for SIMD code
- (Although same approach usually works for non-IEEE CPUs too.)

- Irregular number line
 - Spacing increases the farther away from zero a number is located
 - Number range for exponent k+1 has twice the spacing of the one for exponent k
 - Equally many representable numbers from one exponent to another

Consequence of irregular spacing:

$$-10^{20} + (10^{20} + 1) = 0$$

$$(-10^{20} + 10^{20}) + 1 = 1$$

Thus, not associative (in general):

Source of endless errors!

All discrete representations have nonrepresentable points

The floating-point grid

In floating-point, behavior changes based on position, due to the irregular spacing!

EXAMPLE

Polygon splitting

Sutherland-Hodgman clipping algorithm

Enter floating-point errors!

ABCD split against a plane

Thick planes to the rescue!

Thick planes also help bound the error

ABCD split against a thick plane

Cracks introduced by inconsistent ordering

EXAMPLE

BSP-tree robustness

- Robustness problems for:
 - Insertion of primitives
 - Querying (collision detection)
- Same problems apply to:
 - All spatial partitioning schemes!
 - (k-d trees, grids, octrees, quadtrees, ...)

Query robustness

Insertion robustness

- ... How to achieve robustness?
 - Insert primitives conservatively
 - Accounting for errors in querying and insertion
 - Can then ignore problem for queries

EXAMPLE

Ray-triangle test

- Common approach:
 - © Compute intersection point P of ray R with plane of triangle T
 - Test if P lies inside boundaries of T
- Alas, this is not robust!

A problem configuration

Intersecting R against one plane

Intersecting R against the other plane

- Robust test must share calculations for shared edge AB
- Perform test directly in 3D!
 - Let ray be $R(t) = O + t\mathbf{d}$
 - ∴ Then, sign of $\mathbf{d} \cdot (OA \times OB)$ says whether \mathbf{d} is left or right of AB
 - If R left of all edges, R intersects CCW triangle
 - Only then compute P
- Still errors, but managable

"Fat" tests are also robust!

EXAMPLES SUMMARY

- Achieve robustness through...
 - (Correct) use of tolerances
 - Sharing of calculations
 - Use of fat primitives

TOLERANCES

Tolerance comparisons

- Absolute tolerance
- Relative tolerance
- Combined tolerance
- (Integer test)

Absolute tolerance

Comparing two floats for equality:

```
if (Abs(x - y) <= EPSILON) ...
```

- Almost never used correctly!
- What should EPSILON be?
 - Typically arbitrary small number used! OMFG!!

Absolute tolerances

Delta step to next representable number:

Decimal	Hex	Next representable number
10.0	0x41200000	x + 0.000001
100.0	0x42C80000	x + 0.000008
1,000.0	0x447A0000	x + 0.000061
10,000.0	0x461C4000	x + 0.000977
100,000.0	0x47C35000	x + 0.007813
1,000,000.0	0x49742400	x + 0.0625
10,000,000.0	0x4B189680	x + 1.0

Absolute tolerances

Möller-Trumbore ray-triangle code:

```
#define EPSILON 0.000001
#define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
...
// if determinant is near zero, ray lies in plane of triangle
det = DOT(edge1, pvec);
...
if (det > -EPSILON && det < EPSILON) // Abs(det) < EPSILON
    return 0;</pre>
```

- Written using doubles.
 - Change to float without changing epsilon?
 - DOT({10,10,10},{10,10,10}) breaks test!

Relative tolerance

Comparing two floats for equality:

```
if (Abs(x - y) <= EPSILON * Max(Abs(x), Abs(y)) ...</pre>
```

- Epsilon scaled by magnitude of inputs
- But consider Abs(x)<1.0, Abs(y)<1.0</p>

Combined tolerance

Comparing two floats for equality:

```
if (Abs(x - y) <= EPSILON * Max(1.0f, Abs(x), Abs(y))
...</pre>
```

- Absolute test for Abs(x)≤1.0, Abs(y)≤1.0
- Relative test otherwise!

Floating-point numbers

- Caveat: Intel uses 80-bit format internally
 - Unless told otherwise.
 - Errors dependent on what code generated.
 - Gives different results in debug and release.

EXACT ARITHMETIC (and semi-exact ditto)

- ... Hey! Integer arithmetic is exact
 - As long as there is no overflow
 - Closed under +, -, and *
 - Not closed under / but can often remove divisions through cross multiplication

Example: Does C project onto AB?

Floats:

Integers:

Another example:

Tests

Boolean, can be evaluated exactly

Constructions

Non-Boolean, cannot be done exactly

Tests, often expressed as determinant predicates. E.g.

$$P(\mathbf{u}, \mathbf{v}, \mathbf{w}) \square \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix} \ge 0 \Leftrightarrow \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \ge 0$$

- Shewchuk's predicates well-known example
 - Evaluates using extended-precision arithmetic (EPA)
- EPA is expensive to evaluate
 - Limit EPA use through "floating-point filter"
 - Common filter is interval arithmetic

Interval arithmetic

$$x = [1,3] = \{ x \in R \mid 1 \le x \le 3 \}$$

Rules:

```
able [a,b] + [c,d] = [a+c,b+d]
```

$$able [a,b] - [c,d] = [a-d,b-c]$$

- ⑤ [a,b] * [c,d] = [min(ac,ad,bc,bd),
 max(ac,ad,bc,bd)]
- \odot E.g. [100,101] + [10,12] = [110,113]

- Interval arithmetic
 - Intervals must be rounded up/down to nearest machine-representable number
 - Is a reliable calculation

References

BOOKS

- Ericson, Christer. Real-Time Collision Detection. Morgan Kaufmann, 2005. http://realtimecollisiondetection.net/
- Hoffmann, Christoph. Geometric and Solid Modeling: An Introduction. Morgan Kaufmann, 1989.
 http://www.cs.purdue.edu/homes/cmh/distribution/books/geo.html
- Ratschek, Helmut. Jon Rokne. Geometric Computations with
 Interval and New Robust Methods. Horwood Publishing, 2003.

PAPERS

- Hoffmann, Christoph. "Robustness in Geometric Computations." JCISE 1, 2001, pp. 143-156.
 http://www.cs.purdue.edu/homes/cmh/distribution/papers/Robustness/robust4.pdf
- Santisteve, Francisco. "Robust Geometric Computation (RGC), State of the Art." Technical report, 1999. http://www.lsi.upc.es/dept/techreps/ps/R99-19.ps.qz
- Schirra, Stefan. "Robustness and precision issues in geometric computation." Research Report MPI-I-98-004, Max Planck Institute for Computer Science, 1998. http://domino.mpi-sb.mpg.de/internet/reports.nsf/NumberView/1998-1-004
- Shewchuk, Jonathan. "Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates." Discrete & Computational Geometry 18(3):305-363, October 1997. http://www.cs.cmu.edu/~quake-papers/robust-arithmetic.ps