Numerical Robustness
(for Geometric Calculations)

Christer Ericson
Sony Computer Entertainment

Slides @ http://realtimecollisiondetection.net/pubs/



Christer Ericson
Sony Computer Entertainment

Slides @ http://realtimecollisiondetection.net/pubs/



Takeaway

= An appreciation of the pitfalls inherent
in working with floating-point
arithmetic.

= Tools for addressing the robustness of
floating-point based code.

= Probably something else too.



THE PROBLEM

Floating-point arithmetic



Floating-point numbers

» Real numbers must be approximated

@

@

@

-loating-point numbers
-ixed-point numbers (integers)

Rational numbers
+» Homogeneous representation

» If we could work in real arithmetic, I
wouldn’t be having this talk!



Floating-point numbers

+» IEEE-754 single precision
= 1 bit sign
» 8 bit exponent (biased)
= 23 bits fraction (24 bits mantissa w/ hidden bit)

31 31 23 22 0]

S ‘ Exponent (e) ‘ Fraction (f)

V=(-1)°x1.f)x2¢"

= This is a normalized format



Floating-point numbers

+» IEEE-754 representable numbers:

0<e<255 V=1 x1.x2""
e=0 f=0 s=0 | V=0
e=0 f=0 s=1 | V=-0
e=0 f£0 V = (=1)° x(0.f)x2°7"°
e=255 f=0 s=0 | V =+Inf
e=255 f=0 s=1 | V=-Inf
e=255 f+0 V = NaN




Floating-point numbers

+» In IEEE-754, domain extended with:
» —=Inf, +Inf, NaN
» Some examples:
»af0 = +Inf, ifa >0
»af0 =-Inf,ifa<O
» 0/0 = Inf — Inf = £Inf * 0 = NaN
= Known as Infinity Arithmetic (1A)



Floating-point numbers

= IA is a potential source of robustness errors!
» +Inf and —Inf compare as normal

» But NaN compares as unordered
= NaN = NaN is true
= All other comparisons involving NaNs are false

+» These expressions are not equivalent:

if (a>Db) XO; else YO;

if (a <= b) YO; else XO;




Floating-point numbers

= Bu

t IA provides a nice feature too

= Allows not having to test for div-by-
Zero

@

@

Removes test branch from inner loop
Useful for SIMD code

= (A

though same approach usually

works for non-IEEE CPUs too0.)



Floating-point numbers

= Irregular number line

» Spacing increases the farther away
from zero a number is located

» Number range for exponent k+1 has
twice the spacing of the one for
exponent k

» Equally many representable numbers
from one exponent to another

IIIIIIIIIIIII
I I I I IIIIIIIIIIIII I I I
O



Floating-point numbers

= Consequence of irregular spacing:
»=1020+ (1092 + 1) =0
5 (100 + 1020) + 1 =1

= Thus, not associative (in general):
s(@+b)+cl=a+(b+cC)

= Source of endless errors!

i AR L LA R A

O




Floating-point numbers

= All discrete representations have non-
representable points

D

A




The floating-point grid

» In floating-point, behavior changes based
on position, due to the irregular spacing!

//'




EXAMPLE

Polygon splitting



Polygon splitting

= Sutherland-Hodgman clipping
algorithm



Polygon splitting

» Enter floating-point errors!




Polygon splitting

» ABCD split against a plane




Polygon splitting

= Thick planes to the rescue!

Desired invariant:
OnPlane(l, plane) = true

where:
| = IntersectionPoint(PQ, plane)




Polygon splitting

= Thick planes also help bound the error




Polygon splitting

» ABCD split against a thick plane




Polygon splitting

» Cracks introduced by inconsistent ordering




EXAMPLE

BSP-tree robustness



BSP-tree robustness

= Robustness problems for:
» Insertion of primitives
= Querying (collision detection)

= Same problems apply to:
= All spatial partitioning schemes!
» (k-d trees, grids, octrees, quadtrees, ...)



BSP-tree robustness

= Query robustness




BSP-tree robustness

= Insertion robustness




BSP-tree robustness

= How to achieve robustness?

= Insert primitives conservatively

= Accounting for errors in querying and
insertion

+» Can then ignore problem for queries



EXAMPLE

Ray-triangle test



Ray-triangle test

+» Common approach:

» Compute intersection point Pof ray R
with plane of triangle 7

«» Test if Plies inside boundaries of 7
= Alas, this is not robust!



Ray-triangle test

= A problem configuration



Ray-triangle test

= Intersecting R against one plane

R

:



Ray-triangle test

» Intersecting R against the other plane

R

/



Ray-triangle test

= Robust test must share calculations
for shared edge AB

» Perform test directly in 3D!
= Let ray be R(t)=0+td

= Then, sign of d-(OAxOB) says whetherd
is left or right of AB

= If R left of all edges, R intersects CCW
triangle
» Only then compute P

+ Still errors, but managable




Ray-triangle test

= “Fat” tests are also robust!




EXAMPLES SUMMARY

= Achieve robustness through...
» (Correct) use of tolerances
» Sharing of calculations
» Use of fat primitives



TOLERANCES



Tolerance comparisons

= Absolute tolerance
» Relative tolerance

+» Combined tolerance
» (Integer test)



Absolute tolerance

Comparing two floats for equality:

if (Abs(x — y) <= EPSILON) ..

= Almost never used correctly!

= What should EPSILON be?
= Typically arbitrary small number used! OMFG!!



Absolute tolerances

Delta step to next representable number:

10.0

0x41200000

X + 0.000001

100.0

0x42C80000

X + 0.000008

1,000.0

0x447A0000

X + 0.000061

10,000.0

0x461C4000

X + 0.000977

100,000.0

0x47C35000

X + 0.007813

1,000,000.0

0x49742400

X + 0.0625

10,000,000.0

0x4B189680

X+ 1.0




Absolute tolerances

Moller-Trumbore ray-triangle code:

#define EPSILON 0.000001
#define DOT(v1i,v2) (Vv1[O]*v2[O]+vi[1]*v2[1]+vi[2]*Vv2[2]))

// 1f determinant i1s near zero, ray lies in plane of triangle
det = DOT(edgel, pvec);

iIT (det > -EPSILON && det < EPSILON) // Abs(det) < EPSILON
return O;

= Written using doubles.

+» Change to float without changing epsilon?
» DOT({10,10,10},{10,10,10}) breaks test!



Relative tolerance

Comparing two floats for equality:

if (Abs(x — y) <= EPSILON * Max(Abs(x), Abs(y)) ..

= Epsilon scaled by magnitude of inputs
+ But consider Abs(x)<1.0, Abs(y)<1.0



Combined tolerance

Comparing two floats for equality:

1T (Abs(x — y) <= EPSILON * Max(1.0Ff, Abs(x), Abs(y))

= Absolute test for Abs(x)<1.0, Abs(y)<1.0
+» Relative test otherwise!



Floating-point numbers

=~ Caveat: Intel uses 80-bit format
internally
= Unless told otherwise.

= Errors dependent on what code
generated.

= Gives different results in debug and
release.



EXACT
ARITHMETIC

(and semi-exact ditto)



Exact arithmetic

+» Hey! Integer arithmetic is exact
= As long as there is no overflow
» Closed under +, —, and *

= Not closed under / but can often remove
divisions through cross multiplication



Exact arithmetic

= Example: Does C project onto AB?

»C
i §D D:A+m3,t=j§j§
A : B '

+» Floats:
float t = Dot(AC, AB) / Dot(AB, AB);
iIT (t >= 0.0F && t <= 1.07)

. /* do something */

= Integers:
int thum = Dot(AC, AB), tdenom = Dot(AB, AB);
It (thum >= 0 && tnhum <= tdenom)

. /* do something */



Exact arithmetic

= Another example:




Exact arithmetic

= Tests
= Boolean, can be evaluated exactly

= Constructions
=+ Non-Boolean, cannot be done exactly



Exact arithmetic

» Tests, often expressed as determinant
predicates. E.g.

u u u

x y z

Pu,v,w)l|v, v, v, |20 u-(vxw)>0

x y z

w, w, w,

= Shewchuk's predicates well-known example

» Evaluates using extended-precision arithmetic
(EPA)

= EPA is expensive to evaluate
= Limit EPA use through “floating-point filter”
= Common filter is interval arithmetic



Exact arithmetic

» Interval arithmetic
»>X=[1,3]={xeR|1<x<3}
= Rules:

»[a,b] + [c,d] = [a+c,b+d]

»[a,b] —[c,d] = [a—d,b—C]

= [a,b] * [c,d] = [min(ac,ad,bc,bd),
max(ac ad,bc,bd)]

=[a,b] / [c,d] = [a,b] * [1/d,1/c] for O¢[c,d]
+»E.g.[100,101] + [10,12] =[110,113]




Exact arithmetic

= Interval arithmetic

» Intervals must be rounded up/down to
nearest machine-representable number

= Is a reliable calculation



References

BOOKS

Ericson, Christer. Real-Time Collision Detection. Morgan
Kaufmann, 2005. http://realtimecollisiondetection.net/

Hoffmann, Christoph. Geometric and Solid Modeling: An
Introduction. Morgan Kaufmann, 1989.
http://www.cs.purdue.edu/homes/cmh/distribution/books/geo.html

Ratschek, Helmut. Jon Rokne. Geometric Computations with
Interval and New Robust Methods. Horwood Publishing, 2003.

PAPERS

Hoffmann, Christoph. "Robustness in Geometric Computations.” JCISE 1, 2001, pp.
143-156.

http://www.cs.purdue.edu/homes/cmh/distribution/papers/Robustness/robust4. pdf
Santisteve, Francisco. "Robust Geometric Computation (RGC), State of the Art.”
Technical report, 1999. http://www.lsi.upc.es/dept/techreps/ps/R99-19.ps.qz

Schirra, Stefan. "Robustness and precision issues in geometric computation.”
Research Report MPI-I-98-004, Max Planck Institute for Computer Science, 1998.
http://domino.mpi-sb.mpg.de/internet/reports.nsf/NumberView/1998-1-004

Shewchuk, Jonathan. “Adaptive Precision Floating-Point Arithmetic and Fast
Robust Geometric Predicates.” Discrete & Computational Geometry 18(3):305-363,
October 1997. http://www.cs.cmu.edu/~quake-papers/robust-arithmetic.ps



http://realtimecollisiondetection.net/
http://www.cs.purdue.edu/homes/cmh/distribution/books/geo.html
http://www.cs.purdue.edu/homes/cmh/distribution/papers/Robustness/robust4.pdf
http://www.lsi.upc.es/dept/techreps/ps/R99-19.ps.gz
http://domino.mpi-sb.mpg.de/internet/reports.nsf/NumberView/1998-1-004
http://www.cs.cmu.edu/~quake-papers/robust-arithmetic.ps

	Numerical Robustness�(for Geometric Calculations)
	Numerical Robustness�(for Geometric Calculations)
	Takeaway
	Slide Number 4
	Floating-point numbers
	Floating-point numbers
	Floating-point numbers
	Floating-point numbers
	Floating-point numbers
	Floating-point numbers
	Floating-point numbers
	Floating-point numbers
	Floating-point numbers
	The floating-point grid
	Slide Number 15
	Polygon splitting
	Polygon splitting
	Polygon splitting
	Polygon splitting
	Polygon splitting
	Polygon splitting
	Polygon splitting
	Slide Number 23
	BSP-tree robustness
	BSP-tree robustness
	BSP-tree robustness
	BSP-tree robustness
	Slide Number 28
	Ray-triangle test
	Ray-triangle test
	Ray-triangle test
	Ray-triangle test
	Ray-triangle test
	Ray-triangle test
	EXAMPLES SUMMARY
	Slide Number 36
	Tolerance comparisons
	Absolute tolerance
	Absolute tolerances
	Absolute tolerances
	Relative tolerance
	Combined tolerance
	Floating-point numbers
	Slide Number 44
	Exact arithmetic
	Exact arithmetic
	Exact arithmetic
	Exact arithmetic
	Exact arithmetic
	Exact arithmetic
	Exact arithmetic
	References

