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Takeaway

An appreciation of the pitfalls inherent 
in working with floating-point 
arithmetic.
Tools for addressing the robustness of 
floating-point based code.
Probably something else too.



THE PROBLEM
Floating-point arithmetic



Floating-point numbers

Real numbers must be approximated
Floating-point numbers
Fixed-point numbers (integers)
Rational numbers

Homogeneous representation

If we could work in real arithmetic, I 
wouldn’t be having this talk!



Floating-point numbers

IEEE-754 single precision
1 bit sign
8 bit exponent (biased)
23 bits fraction (24 bits mantissa w/ hidden bit)

s Exponent (e) Fraction (f)

This is a normalized format

31 31 23 22 0

127( 1) (1. ) 2s eV f −= − × ×



Floating-point numbers

IEEE-754 representable numbers:

Exponent Fraction Sign Value

0<e<255

e=0 f=0 s=0

e=0 f=0 s=1

e=0 f≠0

e=255 f=0 s=0

e=255 f=0 s=1

e=255 f≠0

127( 1) (1. ) 2s eV f −= − × ×
0V =

0V = −
126( 1) (0. ) 2s eV f −= − × ×

V Inf= +

V Inf= −

V NaN=



Floating-point numbers

In IEEE-754, domain extended with:
–Inf, +Inf, NaN

Some examples:
a/0 = +Inf, if a > 0
a/0 = –Inf, if a < 0
0/0 = Inf – Inf = ±Inf · 0 = NaN

Known as Infinity Arithmetic (IA)



Floating-point numbers

IA is a potential source of robustness errors!
+Inf and –Inf compare as normal
But NaN compares as unordered

NaN != NaN is true
All other comparisons involving NaNs are false

These expressions are not equivalent:

if (a > b) X(); else Y();

if (a <= b) Y(); else X();



Floating-point numbers

But IA provides a nice feature too
Allows not having to test for div-by-
zero

Removes test branch from inner loop
Useful for SIMD code

(Although same approach usually 
works for non-IEEE CPUs too.)



Floating-point numbers

Irregular number line
Spacing increases the farther away 
from zero a number is located
Number range for exponent k+1 has 
twice the spacing of the one for 
exponent k
Equally many representable numbers 
from one exponent to another

0



0

Floating-point numbers

Consequence of irregular spacing:
–1020 + (1020 + 1) = 0
(–1020 + 1020 ) + 1 = 1

Thus, not associative (in general):
(a + b) + c != a + (b + c)

Source of endless errors!



Floating-point numbers
All discrete representations have non-
representable points

A

BC

D

Q

P



The floating-point grid
In floating-point, behavior changes based 
on position, due to the irregular spacing! 



EXAMPLE
Polygon splitting



Polygon splitting

Sutherland-Hodgman clipping 
algorithm
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Polygon splitting

Enter floating-point errors!
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Polygon splitting

ABCD split against a plane
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Polygon splitting

Thick planes to the rescue!

P

Q

Desired invariant:
OnPlane(I, plane) = true

where:
I = IntersectionPoint(PQ, plane)



Polygon splitting

Thick planes also help bound the error

PQ P'Q'

PQ

e

e

P'Q'
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Polygon splitting

ABCD split against a thick plane
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Polygon splitting

Cracks introduced by inconsistent ordering
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EXAMPLE
BSP-tree robustness



BSP-tree robustness

Robustness problems for:
Insertion of primitives
Querying (collision detection)

Same problems apply to:
All spatial partitioning schemes!
(k-d trees, grids, octrees, quadtrees, …)



BSP-tree robustness

Query robustness

1

2
I

P

Q

IF

C
A

B



BSP-tree robustness

Insertion robustness
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BSP-tree robustness

How to achieve robustness?
Insert primitives conservatively

Accounting for errors in querying and 
insertion

Can then ignore problem for queries



EXAMPLE
Ray-triangle test



Ray-triangle test

Common approach:
Compute intersection point P of ray R
with plane of triangle T
Test if P lies inside boundaries of T

Alas, this is not robust!



Ray-triangle test

A problem configuration
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Ray-triangle test

Intersecting R against one plane

R

P



Ray-triangle test

Intersecting R against the other plane

R

P



Robust test must share calculations
for shared edge AB
Perform test directly in 3D!

Let ray be
Then, sign of                   says whether    
is left or right of AB
If R left of all edges, R intersects CCW 
triangle
Only then compute P

Still errors, but managable

( )R t O t= + d
( )OA OB⋅ ×d d

Ray-triangle test



Ray-triangle test

“Fat” tests are also robust!

P



EXAMPLES SUMMARY

Achieve robustness through…
(Correct) use of tolerances
Sharing of calculations
Use of fat primitives



TOLERANCES



Tolerance comparisons

Absolute tolerance
Relative tolerance
Combined tolerance
(Integer test)



Absolute tolerance

Almost never used correctly!
What should EPSILON be?

Typically arbitrary small number used! OMFG!!

if (Abs(x – y) <= EPSILON) …

Comparing two floats for equality:



Absolute tolerances

Delta step to next representable number:

Decimal Hex Next representable number

10.0 0x41200000 x + 0.000001

100.0 0x42C80000 x + 0.000008

1,000.0 0x447A0000 x + 0.000061

10,000.0 0x461C4000 x + 0.000977

100,000.0 0x47C35000 x + 0.007813

1,000,000.0 0x49742400 x + 0.0625

10,000,000.0 0x4B189680 x + 1.0



Absolute tolerances

Möller-Trumbore ray-triangle code:
#define EPSILON 0.000001
#define DOT(v1,v2) (v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2])
...
// if determinant is near zero, ray lies in plane of triangle
det = DOT(edge1, pvec);
...
if (det > -EPSILON && det < EPSILON) // Abs(det) < EPSILON

return 0;

Written using doubles.
Change to float without changing epsilon?
DOT({10,10,10},{10,10,10}) breaks test!



Relative tolerance

Comparing two floats for equality:

Epsilon scaled by magnitude of inputs
But consider Abs(x)<1.0, Abs(y)<1.0

if (Abs(x – y) <= EPSILON * Max(Abs(x), Abs(y)) …



Combined tolerance

Comparing two floats for equality:

Absolute test for Abs(x)≤1.0, Abs(y)≤1.0
Relative test otherwise!

if (Abs(x – y) <= EPSILON * Max(1.0f, Abs(x), Abs(y)) 
…



Floating-point numbers

Caveat: Intel uses 80-bit format 
internally

Unless told otherwise.
Errors dependent on what code 
generated.
Gives different results in debug and 
release.



EXACT
ARITHMETIC
(and semi-exact ditto)



Exact arithmetic

Hey! Integer arithmetic is exact
As long as there is no overflow
Closed under +, –, and *
Not closed under / but can often remove 
divisions through cross multiplication



Exact arithmetic

Example: Does C project onto AB ?

A B

C

D

float t = Dot(AC, AB) / Dot(AB, AB);
if (t >= 0.0f && t <= 1.0f)

... /* do something */

int tnum = Dot(AC, AB), tdenom = Dot(AB, AB);
if (tnum >= 0 && tnum <= tdenom)

... /* do something */

, AC ABD A tAB t
AB AB

⋅
= + =

⋅

Floats:

Integers:



Exact arithmetic

Another example:

A

B

C

D



Exact arithmetic

Tests
Boolean, can be evaluated exactly

Constructions
Non-Boolean, cannot be done exactly



Exact arithmetic

Tests, often expressed as determinant 
predicates. E.g.

Shewchuk's predicates well-known example
Evaluates using extended-precision arithmetic 
(EPA)

EPA is expensive to evaluate
Limit EPA use through “floating-point filter”
Common filter is interval arithmetic

( , , ) 0 ( ) 0
x y z

x y z

x y z

u u u
P v v v

w w w
≥ ⇔ ⋅ × ≥u v w u v w



Exact arithmetic

Interval arithmetic
x = [1,3] = { x ∈ R | 1 ≤ x ≤ 3 }
Rules:

[a,b] + [c,d] = [a+c,b+d]
[a,b] – [c,d] = [a–d,b–c]
[a,b] * [c,d] = [min(ac,ad,bc,bd), 
max(ac,ad,bc,bd)]
[a,b] / [c,d] = [a,b] * [1/d,1/c] for 0∉[c,d]

E.g. [100,101] + [10,12] = [110,113]



Exact arithmetic

Interval arithmetic
Intervals must be rounded up/down to 
nearest machine-representable number
Is a reliable calculation
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