

The A to Z of DX10
Performance

Cem Cebenoyan, NVIDIA

Nick Thibieroz, AMD

Color Coding

ATI

NVIDIA

API Presentation
» DX10 is designed for performance

» No legacy code
» No support for fixed function pipeline

» Most validation moved from runtime
to creation time

» User mode drivers
» Less time spent in kernel transitions

» Memory manager now part of OS
» Vista handles memory operations

» DX10.1 update adds new features
» Requires Vista SP1

Presenter
Presentation Notes
“Leaner and thinner than previous APIs”

Benchmark Mode
» Benchmark mode in game essential

tool for performance profiling
» Application-side optimizations
» IHVs app and driver profiling

» Ideal benchmark:
» Can be run in automated environment

» Run from command line or config file

» Prints results to log or trace file

» Deterministic workload!
» Watch out for physics, AI, etc.

» Internet access not required!
» Benchmarks can be recorded in-game

Presenter
Presentation Notes
Run from command line or config file: benchmark should auto-quit too
No debugger check!

Constant Buffers
» Incorrect CB management major

cause of slow performance!
» When a CB is updated its whole

contents are uploaded to the GPU
» But multiple small CBs mean more API

overhead!

» Need a good balance between:
» Amount of data to upload
» Number of calls required to do it

» Solution: use a pool of constant
buffers sorted by frequency of
updates

Presenter
Presentation Notes
Examples of update frequency grouping:
PerFrameGlobal (time, per-light properties)
PerView (main camera xforms, shadowmap xforms)
PerObjectStatic (world matrix, static light indices)
PerObjectDynamic (skinning matrices, dynamic lightIDs)

Constant Buffers (2)
» Don’t bind too many CBs to shader stages

» No more than 5 is a good target
» Sharing CBs between different shader types

can be done when it makes sense
» E.g. same constants used in both VS and PS

» Group constants by access pattern
float4 PS_main(PSInput in)
{
float4 diffuse = tex2D0.Sample(mipmapSampler, in.Tex0);
float ndotl = dot(in.Normal, vLightVector.xyz);
return ndotl * vLightColor * diffuse;

}

cbuffer PerFrameConstants
{

float4 vLightVector;
float4 vLightColor;
float4 vOtherStuff[32];

};

GOOD

cbuffer PerFrameConstants
{

float4 vLightVector;
float4 vOtherStuff[32];
float4 vLightColor;

};

BAD

Presenter
Presentation Notes
SLIDE USES ANIMATION.
Referencing too many CBs in the same blocks of instructions can cause extra shader overhead.
Group constants by access pattern: to help cache reuse due to locality of access

Constant Buffers (3)
» When porting from DX9 make sure to port

your shaders too!
» By default all constants will go into a single CB

» $Globals CB often cause poor performance
» Wasted cycles transferring unused constants

» Check if used with
D3D10_SHADER_VARIABLE_DESC.uFlags

» Constant buffer contention

» Poor CB cache reuse due to suboptimal layout

» Use conditional compiling to declare CBs
when targeting multiple versions of DX
» e.g. #ifdef DX10 cbuffer{ #endif

Presenter
Presentation Notes
Although shader backward compatibility is supported no specific CBs will be created for you
Use conditional compiling to declare CBs when targeting multiple versions of DX: this allows the same shader/effect file to be used across DX9 and DX10 while keeping optimal arrangement of DX10 CBs
You will also need the D3D10_SHADER_ENABLE_BACKWARDS_COMPATIBILITY flag.

Dynamic Buffers Updates
» Created with D3D10_USAGE_DYNAMIC flag

» Used on geometry that cannot be prepared on
the GPU

» E.g. particles, translucent geometry etc.

» Allocate as a large ring-buffer
» Write new data into buffer using:

» Map(D3D10_MAP_WRITE_NOOVERWRITE,…)

» Only write to uninitialized portions of the buffer

» Map(D3D10_MAP_WRITE_DISCARD,…)

» When buffer full

Presenter
Presentation Notes
This is for VBs and Ibs
SW skinning in some cases.
Avoid UpdateSubresource(), it has no concept of NOVERWRITE

Early Z Optimizations
» Hardware early Z optimizations essential

to reduce pixel shader workload
» Coarse Z culling impacted in some cases:

» Pixel shader writes to output depth register

» High-frequency data in depth buffer

» Depth buffer not Clear()ed

» Fine-grain Z culling impacted in some cases:
» Pixel shader writes to output depth register
» clip()/discard() shader with Z/stencil writes

» Alpha to coverage with Z/stencil writes

» PS writes to coverage mask with Z/stencil writes

» Z prepass is usually an efficient way to take
advantage of early Z optimizations

Presenter
Presentation Notes
Coarse Z-culling: HiZ (ATI) / Z-Cull (NV)
Fine-grain Z culling: early Z
Do we really need to mention “high-frequency data in depth buffer”? Not much the dev can do there.
Z prepass solves a lot of these problems: btw remember to turn Z writes off during the color pass!

Formats (1) Textures
» Lower rate texture read formats:

» DXGI_FORMAT_R16G16B16A16_* and
up

» DXGI_FORMAT_R32_*
» ATI: Unless point sampling is used
» Consider packing to avoid those formats

» DX10.1 supports resource copies to
BC
» From RGBA formats with the same bit

depth
» Useful for real-time compression to BC in

PS

Presenter
Presentation Notes
DX10.1 resource copies: can generate BC data from e.g. DXGI_FORMAT_R32G32_UINT into BC1. Red channel stores opaque block while green channel stores transparent block. Then copy to BC1 resource with CopyResource().
ATI: R32G32B32 format is the slowest format regardless of filtering mode; to be avoided.

Formats (2) Render Targets
» Slower rate render target formats:

» DXGI_FORMAT_R32G32B32A32_*

» ATI: DXGI_FORMAT_R16G16B16A16 and up int
format

» ATI: Any 32-bit per channel formats

» Performance cost increase for every
additional RT

» Blending increases output rate cost on
higher bit depth formats

» DX10.1’s MRT independent blend mode
can be used to avoid multipass
» E.g. Deferred Shading decals

» May increase output cost depending on what
formats are used

Presenter
Presentation Notes
Mention ShaderX7 article:” Packing Data into 16 bit floating-point render targets”

Geometry Shader
» GS not designed for large-scale expansion

» DX11 tessellation is a better match for this

» See DX11 presentation this afternoon

» “Less is better” concept works well here
» Reduce [maxvertexcount]

» Reduce size of output/input vertex structure

» Move some computation from GS to VS
» NVIDIA: Keep GS shaders short
» ATI: Free ALUs in GS because of export

rate
» Can be used to cull geometry (backface, frustum)

Presenter
Presentation Notes
Packing Uvs, compression etc.

High Batch Counts
» “Naïve” porting job will not result in better

batch performance in DX10
» Need to use API features to bring gains
» Geometry Instancing!

» Most important feature to improve batch perf.

» Really powerful in DX10

» System values are here to help

» E.g. SV_InstanceID, SV_PrimitiveID

» Instance data:
» ATI: Ideally should come from additional streams

(up to 32 with DX10.1)

» NVIDIA: Ideally should come from CB indexing

Presenter
Presentation Notes

Input Assembly
» Remember to optimize geometry!

» Non-optimized geometry can cause BW issues

» Optimize IB locality first, then VB access
» D3DXOptimize[Faces][Vertices]()

» Input packing/compression is your friend
» E.g. 2 pairs of texcoords into one float4

» E.g. 2D normals, binormal calculation, etc.

» Depth-only rendering
» Only use the minimum input streams!

» Typically one position and one texcoord

» This improves re-use in pre-VS cache

Presenter
Presentation Notes
BW = BandWidth
D3DXOptimize[Faces][Vertices] is a good tool because it optimizes based on the vertex cache size of the 3D device.
Remember to optimize geometry!: often overlooked for geometry mathematically generated, e.g. spheres for deferred shading engines.
Remember to optimize geometry!: especially important if PS is small (more likely to highlight a vertex throughput bottleneck)
Input packing/compression is your friend: remember that modern GPUs are very good at maths
Depth-only rendering: shadow mapping, early Z rejection for main scene

Juggling with States
» DX10 uses immutable state objects

» Input Layout Object

» Rasterizer Object

» DepthStencil Object

» Sampler Object

» Blend Object

» Always create states at load time
» Do not duplicate state objects:

» More state switches

» More memory used

» Implement “dirty states” mechanism
» Sort draw calls by states

Presenter
Presentation Notes
Enemy of the states: Why setting too many states is a bad thing
Always create states at load time: or at least the first time they will be used (will be allocated during pre-caching phase)
Sort draw calls by states: as with DX9 and previous APIs
DX API should avoid duplication of state objects.

Klears (C was already taken)
» Always clear Z buffer to allow Z culling opt.

» Stencil clears are additional cost over depth so
only clear if required

» Different recommendations for NV/ATI HW
» Requires conditional coding for best performance

» ATI: Color Clear() is not free
» Only Clear() color RTs when actually required

» Exception: MSAA RTs always need clearing

» NVIDIA: Prefer Clear() to fullscreen quad
clears

Presenter
Presentation Notes
Only clear color RTs when actually required: just follow the rule about minimum work.
MSAA RTs always need clearing: because of compression

Level of Detail
» Lack of LOD causes poor quad occupancy

» This happens more often than you think!

» Check wireframe with PIX/other tools

» Remember to use MIPMapping
» Especially for volume textures!

» Those are quick to trash the TEX cache

» GenerateMips() can improve performance
on RT textures
» E.g. reflection maps

!

Presenter
Presentation Notes
Insert picture example of poor quad occupancy (wireframe of high poly model)
Lack of model LOD causes poor quad occupancy: DX11 tessellation will be able to help with this

Multi GPU
» Multi-GPU configuration are common

» Especially single-card solutions
» GeForce 9800X2, Radeon 4870X2, etc.

» This is not a niche market!

» Must systematically test on MGPU systems
before release

» Golden rule of efficient MGPU performance:
avoid inter-frame dependencies
» This means no reading of a resource that was last

written to in the previous frame

» If dependencies must exist then ensure those
resources are unique to each GPU

» Talk to your IHV for more complex cases

No Way Jose
» Things you really shouldn’t do!
» Members of the “render the skybox first”

club
» Less and less members in this club – good!

» Still a few resisting arrest

» Lack of or inefficient frustum culling
» This results in transformed models not

contributing at all to the viewport

» Waste of Vertex Shading processing

» Passing constant values as VS outputs
» Should be stored in Constant Buffers instead

» Interpolators can cost performance!

Presenter
Presentation Notes
Use Z tricks to render skybox last: projection matrix, VS, viewport mapping

Output Streaming
» Stream output allows the writing of GS

output to a video memory buffer
» Useful for multi-pass when VS/GS are complex

» Store transformed data and re-circulate it

» E.g. complex skinning, multi-pass displacement
mapped triangles, non-NULL GS etc.

» GS not required if just processing vertices
» Use ConstructGSWithSO() on VS in FX file

» Rasterization can be used at the same time
» Try to minimize output structure size

» Similar recommendations as GS

Parallelism
» Good parallelism between CPU and GPU

essential to best performance

» Direct access to DEFAULT resources
» This will stall the CPU

» If required, use CopyResource() to STAGING

» Then Map() STAGING resource with
D3D10_MAP_FLAG_DO_NOT_WAIT flag and only
retrieve contents when available

» Use PIX to check CPU/GPU overlap

Queries
» Occlusion queries used for some effects

» Light halos

» Occlusion culling

» Conditional rendering

» 2D collision detection

» Ideally only retrieve results when available
» Or at least after a set number of frames

» Especially important for MGPU!

» Otherwise stalling will occur

» GetData() returns S_FALSE if no results yet
» Occlusion culling: make bounding boxes

larger to account for delayed results

Presenter
Presentation Notes
With MSAA remember that occlusion query results return the number of SAMPLES passing the depth test (not pixels)
Conditional rendering: only render a model if query results are e.g. non NULL
Mention other queries? Predicate rendering? If using predicate rendering make sure to render some geometry between bounding box and the model they correspond to; this is better for performance.

Resolving MSAA Buffers
» Resolve operations are not free
» Need good planning of post-process chain

in order to reduce MSAA resolves
» If no depth buffer is required then apply post-

process effects on resolved buffer

» Do not create the back buffer with MSAA
» All rendering occurs on external MSAA RTs

MSAA
Render
Target

Resolve
Operation

Non-MSAA
Back
Buffer

Presenter
Presentation Notes
Resolve: the process of converting a multi-sampled buffer to a single-sample one
If no depth buffer is required then apply post-process effects on resolved buffer: this avoids multiple calls to ResolveSubresource() required to bind the previous MSAA RT as an input texture to the next post-process effect.
If DB is required then a DX10.1 custom resolve from MSAA DB to non-MSAA DB is possible too using oDepth output (mentioned on Z slide).

Shadow Mapping
» Shadow mapping DST formats

» ATI: DXGI_FORMAT_D16_UNORM

» NVIDIA: DXGI_FORMAT_D24_UNORM_S8_UINT

» DXGI_FORMAT_D32_FLOAT (NVIDIA: lower Zcull eff.)

» Remember to disable color writes
» Depth-only rendering is much faster

» Shadow map filtering
» High number of taps can be a bottleneck
» Probably don’t need aniso
» Optimizations:

» DX10.1’s Gather()

» Dynamic branching

Presenter
Presentation Notes
DST = DepthStencil Texture
D16_UNORM is often enough precision (contrary to popular beliefs) once the projection matrix has been set optimally (front clip plane pushed as far as possible).
D16 will not save memory or increase performance on nVidia HW
D24 not recommended for ATI HW!
Depth-only rendering is much faster: on both ATI and NV HW
High number of taps can be a bottleneck: see Holger’s presentation about this topic

Transparency
» Alpha test deprecated in DX10

» Use discard() or clip() in PS

» This requires two versions of your shaders!
» One with clip()/discard() for transparency

» One without clip()/discard() for opacity

» Resist the urge of using a single shader
with clip()/discard() for all object types
» This will impact early Z optimizations!

» Put clip()/discard() as early as possible
in pixel shaders
» Compiler may be able to skip remaining code

Presenter
Presentation Notes
Resist the urge of using a single shader with clip()/discard() for all object types: use conditional compiling (#ifdef) to deal with this. Do not use dynamic branching (whole shader is still considered to deal with transparency thus Z optimizations are disabled). Even static branching not as good as #ifdef. Yes, it means more shaders have to be managed but overall this is the best solution to preserve GPU performance.

Updating Textures
» Avoid creating/destroying textures at run-

time
» Significant overhead in these operations!

» Will often lead to stuttering

» Create all resources up-front if possible
» Level load, cut-scenes or other non-performance

critical situations

» Perform updates by replacing contents of
existing textures
» Can be a problem if textures vary a lot in size

» Texture atlases are a good way to avoid this

Presenter
Presentation Notes
Significant overhead in these operations: Memory allocation, validation, driver checks. DX10 was designed to move a lot of validation from run-time to load-time so starting to create new textures at run-time defeats this purpose.

Updating Textures (2)
» Avoid UpdateSubresource() path for

updating textures
» Slow path in DX10

» Especially bad with large textures

» Use ring buffer of intermediate
D3D10_USAGE_STAGING textures
» Call Map(D3D10_MAP_WRITE,…) with

D3D10_MAP_FLAG_DO_NOT_WAIT to avoid stalls

» If Map fails in all buffers: either stall waiting for
Map or allocate another resource (cache warmup)

» Copy to textures in video memory
» CopyResource() or CopySubresourceRegion()

Presenter
Presentation Notes
Especially bad with larger textures: E.g. texture atlas, imposter pages, streaming data...
Show diagram of ring of staging textures?

Verifying Performance
» Remember to use IHV tools to help

with performance analysis!
» NVPerfHUD / FXComposer /

ShaderPerf

» GPUPerfStudio / GPUShaderAnalyzer

Presenter
Presentation Notes
[Add a few words per tool]
Need screenshot of GPS

Writing Fast Shaders
» Shader code has a direct impact on perf.

» Writing quality code is essential

» Be aware of ALU:TEX HW ratios
» ATI: 4 5D ALU per TEX on ATI HW

» NVIDIA: 12 scalar ALUs per TEX on NV HW

» Can also be interpolators-limited!
» Reduce total number of floats interpolated

» ATI: Use packing to reduce PS inputs

» Write parallel code to maximize efficiency
» Check for excessive register usage

» NVIDIA: >10 GPRs is high on GeForce

» Use dynamic branching to skip instructions
» Make sure branching has high coherency though

Presenter
Presentation Notes
IHV tools are here to help: FX Composer, GSA
4 5D ALU per TEX on AMD HW: 2x00, 3x00 and 4x00 high-end parts.
GPR = Generic Purpose Register

Writing Fast Shaders (2)
» Not all ALU instructions are equal

» Integer multiplication and division

» Type conversion (float to int, int to float)

» Check with your IHV for list of slower instructions

» Same goes for TEX instructions
» Sample>>SampleLevel>>SampleGrad

» Texture type and filter mode impacts cost too!
» E.g. Volume textures, 128 bits formats, aniso

» Temp registers indexing likely to be slow
» Dynamic CB indexing in PS can be costly too

» Too many static branches may limit the
scope for optimizations
» Implement conditional compilation from the app

Presenter
Presentation Notes
Type conversion: make sure to declare constants in the same format as the other operands they’ll be used with.

Xtra Performance
» Fullscreen Quad vs Fullscreen Triangle

» Triangle = maximal quad occupancy!

» No BC2/BC3 for fully opaque textures!
» Efficient triangulation

» Max area is best

Credit: Emil Persson

Presenter
Presentation Notes
SLIDE USES ANIMATION
What to do if you want to go the extra mile and “do the right thing”
No BC2/BC3 for fully opaque textures!: still happen regularly, blame artists? 
Especially useful for generated models: E.g. spheres, cones, terrain, etc.
Long and thin triangles are usually inefficient.
In these 3 examples the max area triangulation method for the disc is by far the fastest, especially with MSAA enabled.

Z-Buffer Access
» Accessing the depth buffer as a texture
» Useful for a number of effects requiring Z

» No need to write Z separately in RT or extra pass

» DX10.1 vs DX10.0 differences
» DX10.0: SRV only allowed for single-sample DB

» DX10.1: SRV allowed for multi-sampled DB too

» Accessing multisampled DB:
» No need to fetch all samples and average them

» Just use the first sample and output to RT
» No visual issue will ensue on low-freq operations

» E.g. DOF, SSAO, soft particles, etc.

» Can also be done to produce a single-sample DB
» Disable color writes and writes 1st sample to oDepth

Your Call To Action

» Proper managing of resources is key
to good DX10/DX10.1 performance
» Constant Buffers
» Texture/Buffers updates

» Geometry instancing to improve
batch performance

» Shader balancing
» Use the right tools for the job

» Keep multi-GPU in mind when testing
and developing

Presenter
Presentation Notes
Did anyone notice that Y was shown after Z?  (required for “wrap-up” slide)
Listing the main recommendations to remember.
DX11 just around the corner
See afternoon presentation from Sarah and Nick

Questions?

cem@nvidia.com nicolas.thibieroz@amd.com

	Slide Number 1
	The A to Z of DX10 Performance
	Color Coding
	API Presentation
	Benchmark Mode
	Constant Buffers
	Constant Buffers (2)
	Constant Buffers (3)
	Dynamic Buffers Updates
	Early Z Optimizations
	Formats (1) Textures
	Formats (2) Render Targets
	Geometry Shader
	High Batch Counts
	Input Assembly
	Juggling with States
	Klears (C was already taken)
	Level of Detail
	Multi GPU
	No Way Jose
	Output Streaming
	Parallelism
	Queries
	Resolving MSAA Buffers
	Shadow Mapping
	Transparency
	Updating Textures
	Updating Textures (2)
	Verifying Performance
	Writing Fast Shaders
	Writing Fast Shaders (2)
	Xtra Performance
	Z-Buffer Access
	Your Call To Action
	Questions?

