

DirectX 10/11
Visual Effects
Simon Green, NVIDIA

Introduction

» Graphics hardware feature set is starting
to stabilize and mature

» New general-purpose compute
functionality (DX11 CS)

- enables new graphical effects
- and allows more of game computation to
move to the GPU
- Physics, AI, image processing

» Fast hardware graphics combined with
compute is a powerful combination!

» Next generation consoles will likely
follow this path

Overview

» Volumetric Particle Shadowing
» Horizon Based Ambient Occlusion

(HBAO)
» DirectX 11 Compute Shader

Effects

Volumetric Particle
Shadowing

Particle Systems in
Today’s Games
» Commonly used for smoke, explosions,

spark effects
» Typically use relatively small number of

large particles (10,000s)
» Rendered using point sprites with artist

painted textures
Use animation / movies to hide large particles

» Sometimes include some lighting effects
normal mapping

» Don’t interact much with scene

Particle Systems in
Today’s Games

» Can get some great effects with
current technology

» Game screen shot here (pending
approval)

» World in Conflict?

Tomorrow’s Particle
Systems
» Will likely be more similar to particle

effects used in film
» Millions of particles
» Physically simulated

With artist control

» Interaction (collisions) with scene and
characters

» Simulation using custom compute
shaders or physics middleware

» High quality shading and shadowing

Tomorrow’s Particle
Systems - Example

Low Viscosity Flow Simulations for Animation, Molemaker et al., 2008

Volume Shadowing

» Shadows are very important for
diffuse volumes like smoke

- show density and shape

» Not much diffuse reflection from a
cloud of smoke

- traditional lighting doesn’t help
much

» Usually achieved in off-line
rendering using deep shadow
maps

- still too expensive for real time

Volume Shadowing

Before After

Half-Angle Slice
Rendering
» Very simple idea
» Based on old volume rendering

technique by Joe Kniss et. Al [1]
» Only requires sorting particles

along a given axis
- you’re probably already doing this

» Plus a single 2D shadow texture
- no 3D textures required

» Works well with simulation and
sorting done on GPU (compute)

Half-Angle Slice
Rendering

» Calculate vector half way between
light and view direction

» Render particles in slices
perpendicular to this half-angle
vector

Half-Angle Slice
Rendering

» Same slices are visible to both
camera and light

» Lets us accumulate shadowing to
shadow buffer at the same time as
we are rendering to the screen

Half-Angle Slice
Rendering
» Need to change rendering direction (and

blend mode) based on dot(l, v)
» if (dot(l, v) > 0) - render front-to-back
» if (dot(l,v) < 0) – render back-to-front
» Always render from front-to-back w.r.t.

light

Presenter
Presentation Notes
Alternative would be to store render volume from point of view of light and store shadowing to a 3D texture – expensive.

Half-Angle Slice
Rendering
» Sort particles along half-angle axis

- based on dot(p, h)
- can be done very quickly using compute
shader

» Choose a number of slices
- more slices improves quality
- but causes more draw calls and render
target switches

» batchSize = numParticles / numSlices
» Render slices as batches of particles

starting at i*batchSize
» Render particles as billboards using GS

Pseudo-Code
If (dot(v, l) > 0) {

h = normalize(v + l)
draw front-to-back

} else {
h = normalize(-v + l)
draw back-to-front

}
sort particles along h
batchSize = numParticles / numSlices
for(i=0; i<numSlices; i++) {

draw particles to screen
looking up in shadow buffer

draw particles to shadow buffer
}

Tricks

» Shadow buffer can be quite low
resolution (e.g. 256 x 256)

» Can also use final shadow buffer to
shadow scene

» Screen image can also be rendered
at reduced resolution (2 or 4x) to
reduce fill rate requirements

» Can blur shadow buffer at each
iteration to simulate scattering:

Without Scattering

With Scattering

Demo

Volume Shadowing -
Conclusion

» Very simple to add to existing
particle system renderer

» Only requires depth-sorting along
a different axis

- Can be done using CPU radix sort or
Compute

» Plus a single shadow map
» Simulating particle systems on the

GPU can enable millions of
particles in real-time

Horizon Based
Ambient Occlusion

Ambient Occlusion

» Simulates lighting
from hemi-spherical
sky light

» Occlusion amount is
% of rays that hit
something within a
given radius R

» Usually solved offline
using ray-tracing

scene

P

N

R

Ambient Occlusion

» Gives perceptual clues to depth,
curvature and spatial proximity

Without AO With AO

Presenter
Presentation Notes
Change picture here!

Screen Space Ambient
Occlusion
» Approach introduced by

[Shanmugam and Orikan 07]
[Mittring 07]
[Fox and Compton 08]

» Input - Z-Buffer + normals
Render approximate AO for
dynamic scenes with no
precomputations

» Z-Buffer = Height field
z = f(x,y)

eye

image plane

Z-Buffer

Horizon Based
Ambient Occlusion

» Screen Space Ambient Occlusion
(SSAO) technique presented at
SIGGRAPH'08 and in ShaderX7 [2]

» HBAO Approach
Goal = approximate the result of ray
tracing the depth buffer in 2.5D
Based on ideas from horizon mapping
[Max 1986]

Integration in Games

» Implemented in DirectX 9 and
DirectX 10

» Has been used successfully in
several shipping games

Ray Traced AO

Several minutes with Gelato and 64 rays per pixel

HBAO with large radius

HBAO with 16x64 depth samples per pixel

HBAO with large radius

HBAO with 16x16 depth samples per pixel

“Crease shading” look
with 6x6 depth samples per pixel

HBAO with small radius

“Crease shading” look
with 4x8 depth samples per pixel

HBAO with small radius

HBAO Game
Screenshots

» Screenshots pending approval

Horizon Mapping

• Given a 1D height field

P

-Z

sampling direction

horizon angle

+X

Finding the Horizon

» March along the height field

P

-Z

sampling direction

horizon angle
+X

S0

Finding the Horizon

» Keeping track of maximum angle

P

-Z

sampling direction

horizon angle
+X

S0

S1

Finding the Horizon

P

-Z

sampling direction

horizon angle

+X

S0

S1

S2

Finding the Horizon

P

-Z

sampling direction

horizon angle

+X

S0

S1

S2

S3

Sampling the Depth
Image
» Estimate occlusion by

sampling depth image
» Use uniform

distribution of
directions per pixel

Fixed number of
samples / dir

» Per-pixel randomization
Rotate directions by
random per-pixel angle
Jitter samples along ray
by a random offset

P

u

v

Noise

» Per-pixel randomization generates
visible noise

AO with 6 directions x 6 steps/dir

Cross Bilateral Filter

» Blur the ambient occlusion to
remove noise

» Depth-dependent Gaussian blur
[Petschnigg et al. 04]
[Eisemann and Durand 04]
- Reduces blurring across edges

» Although it is a non-separable
filter, we apply it separately in the
X and Y directions

No significant artifacts visible

Cross Bilateral Filter

Without Blur With 15x15 Blur

Half-Resolution AO

» AO is mostly low frequency
- Can render the AO in half resolution
- Source half-resolution depth image

» Still do the blur passes in full
resolution

- To avoid bleeding across edges
- Source full resolution eye-space
depths [Kopf et al. 07]

Rendering Pipeline
Render opaque

geometry

Render AO
(Half or Full Res)

Blur AO in X

Blur AO in Y

Modulate Color

(eye-space
normals)

eye-space
depths

colors

Unprojection parameters
(fovy and aspect ratio)

Eye-space radius R
Number of directions
Number of steps / direction

Kernel radius
Spatial sigma
Range sigma

Half-Resolution AO
6x6 (36) samples / AO pixel
No Blur

Half-Resolution AO
6x6 (36) samples / AO pixel
15x15 Blur

Full-Resolution AO
6x6 (36) samples / AO pixel
15x15 Blur

Full-Resolution AO
16x16 (256) samples / pixel
No Blur

Full-Resolution AO
16x32 (512) samples / pixel
No Blur

Demo

Presenter
Presentation Notes
Fallback: Show Medusa Video?

HBAO - Conclusion

» DirectX10 SDK sample
Now available on developer.nvidia.com

Including video and whitepaper

» DirectX9 and OpenGL samples to be
released soon

» Easy to integrate into a game engine
Rendered as a post-processing pass
Only requires eye-space depths (normals can
be derived from depth)

» More details in ShaderX7 (to appear)

Acknowledgments

NVIDIA
Miguel Sainz, Louis Bavoil, Rouslan Dimitrov,
Samuel Gateau, Jon Jansen

Models
Dragon - Stanford 3D Scanning Repository
Science-Fiction scene - Juan Carlos Silva
http://www.3drender.com/challenges/index.htm

Sibenik Cathedral - Marko Dabrovic

Presenter
Presentation Notes
Michael Thompson,�Ignacio Castano, NVIDIA demo team

http://www.3drender.com/challenges/index.htm

References

1. Volume Rendering Techniques, Milan Ikits, Joe
Kniss, Aaron Lefohn, Charles Hansen. Chapter
39, section 39.5.1, GPU Gems: Programming
Techniques, Tips, and Tricks for Real-Time
Graphics (2004).

2. BAVOIL, L., AND SAINZ, M. 2009. Image-space
horizon-based ambient occlusion. In ShaderX7
- Advanced Rendering Techniques.

http://http.developer.nvidia.com/GPUGems/gpugems_ch39.html

	Slide Number 1
	DirectX 10/11�Visual Effects
	Introduction
	Overview
	Volumetric Particle Shadowing
	Particle Systems in Today’s Games
	Particle Systems in Today’s Games
	Tomorrow’s Particle Systems
	Tomorrow’s Particle Systems - Example
	Volume Shadowing
	Volume Shadowing
	Half-Angle Slice Rendering
	Half-Angle Slice Rendering
	Half-Angle Slice Rendering
	Half-Angle Slice Rendering
	Half-Angle Slice Rendering
	Pseudo-Code
	Tricks
	Without Scattering
	With Scattering
	Demo
	Volume Shadowing - Conclusion
	Horizon Based Ambient Occlusion
	Ambient Occlusion
	Ambient Occlusion
	Screen Space Ambient Occlusion
	Horizon Based Ambient Occlusion
	Integration in Games
	Ray Traced AO
	HBAO with large radius
	HBAO with large radius
	HBAO with small radius
	HBAO with small radius
	HBAO Game Screenshots
	Horizon Mapping
	Finding the Horizon
	Finding the Horizon
	Finding the Horizon
	Finding the Horizon
	Sampling the Depth Image
	Noise
	Cross Bilateral Filter
	Cross Bilateral Filter
	Half-Resolution AO
	Rendering Pipeline
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Demo
	HBAO - Conclusion
	Acknowledgments
	References

