Insomniac Physics

Eric Christensen
GDC 2009

Overview

Go over the evolution of IG physics
SR

Shaders
Library Shaders
Custom event shaders

Original Design
Resistance: Fall of Man

Ported From PC to PS3

PPU Heavy

SPU Processes Blocked

Two Jobs (Collision, Simulation)

Simulation Jobs too memory heavy
dispatched to PPU version.

Expensive

Original Design
Resistance: Fall of Man

Physics Update

Gather Potentially

Colliding Objects

Original Design
Resistance: Fall of Man

Physics Update

Cache Collision

Geometry

Original Design
Resistance: Fall of Man

Physics Update

EiN RN NN

Run

SPU Collision Jobs

Original Design
Resistance: Fall of Man

Physics Update

1NN A=
__
\

Original Design
Resistance: Fall of Man

Physics Update

1NN i= N
__
\

Process Contact

Constraints

Original Design
Resistance: Fall of Man

Physics Update

1N =N
__
f

Create Simulation

Pools

Original Design
Resistance: Fall of Man

Physics Update

IERRANEE

Run

SPU Simulation Jobs

Original Design
Resistance: Fall of Man

Physics Update

IERENEEE

Run Simulations

Too Big For SPU!

Original Design
Resistance: Fall of Man

Physics Update

2NN A= N
__
.

Original Design
Resistance: Fall of Man

Physics Update

HNNEE=EE

Process Results

Original Design
Resistance: Fall of Man

Physics Update

Call Events

Original Design
Resistance: Fall of Man

Physics Update

Update Joints

Original Design
Resistance: Fall of Man

Simulation Jobs Ran as Pools were
generated.

PPU Simulation Jobs ran concurrently with
the SPU Simulation Jobs

This was the ONLY asynchronous benefit!
Not much!

Original Design
Resistance: Fall of Man

* Physics had the largest impact on frame
rate

* Pipeline design made it difficult to reliably
optimize

 There was A LOT to learn

Phase 2
Ratchet & Clank Future
Collision and Simulation run in a single
SPU Job
Single sync-point

Large PPU window from start of Job to
End of Job

Use of Physics Shaders

Phase 2
Ratchet & Clank Future

Physics Update

S]] eeowex)|

Gather Potentially Colliding Objects

Phase 2
Ratchet & Clank Future

Physics Update

ST eewe [

Cache Collision Geometry

Phase 2
Ratchet & Clank Future

Physics Update

ST eevwe)

| [[[[
|
Start Physics SPU Jobs

Phase 2
Ratchet & Clank Future

Physics Update

1| eeuwer [

|
Do Collision

Phase 2
Ratchet & Clank Future

Physics Update

||| PPuwok B

Generate Simulation Pools

Phase 2
Ratchet & Clank Future

Physics Update

1| eeuwer [

T

Phase 2
Ratchet & Clank Future

Physics Update

1| eeuwer [

T
Update Joints

Phase 2
Ratchet & Clank Future

Physics Update

1| eeuwer [

|
DMA Results

Phase 2
Ratchet & Clank Future

Physics Update

||| PPuwok B

Phase 2
Ratchet & Clank Future

Physics Update

T

Update Events

Phase 2
Ratchet & Clank Future

Shaders helped free up local store

Each big component had it's own set of
shaders

Constraints
Solvers
User customized data transformation

Physics Intersection Shaders

Example Function Prototype

unsigned int SphereOBB(const CollPrim &a, const CollPrim &b, CollResult *results)

« Shaders are loaded into local store during
the collision process and called via a
function table using a mask created by
geometry ID

* Rollback local store when done
« Savings of up to 70k of local store usage

Physics Jacobian Shaders

unsigned int BuildJDBall(Constraint *c, Manifold *m, RigidBody *rblist, float fps,

float error, float dscale, Jacobian *jlist,
CommonTrig *trig_funcs, CommonFunc *common_funcs,
ConstraintFunc *constraint_util);

An example of a shader being called from
another shader

Constraints are sorted by type, then the
corresponding shader iIs loaded to process a
group of like constraints

Saves us roughly 100k!

We can add more constraint types without
worrying about impact on kernel size

Physics Jacobian Shaders

Example Function Prototype

unsigned int BuildJDBall(Constraint *c, Manifold *m, RigidBody *rblist, float fps,
float error, float dscale, Jacobian *jlist,
CommonTrig *trig_funcs, CommonFunc *common_funcs,
ConstraintFunc *constraint_util);

« CommonTrig contains pointers to
trigonometry functions that live in the main

physics kernel
* Sin, Cos, ACos, Atan, etc...

* Any optimizations will benefit the shaders
without having to re-build them

Physics Jacobian Shaders

Example Function Prototype

unsigned int BuildJDBall(Constraint *c, Manifold *m, RigidBody *rblist, float fps,
float error, float dscale, Jacobian *jlist,
CommonTrig *trig_funcs, CommonFunc *common_funcs,
ConstraintFunc *constraint_util);

« CommonFunc contains pointers to
standard functions stored in the physics
kernel

* Printf, Dma(get,put), etc...

Physics Jacobian Shaders

Example Function Prototype

unsigned int BuildJDBall(Constraint *c, Manifold *m, RigidBody *rblist, float fps,
float error, float dscale, Jacobian *jlist,
CommonTrig *trig_funcs, CommonFunc *common_funcs,
ConstraintFunc *constraint_util);

ConstraintFunc contains pointers to constraint
utility functions that live in the physics kernel

Generating test vectors for limits
Constraint smoothing

Shared between all constraints that have limits
SO optimization Is a great benefit

Physics Solver Shaders

void SolverSim(SimPool *sim_pool, Manifold *m, char *dimensions, int *jd_build_ea,
int *jd_build_size, ManagedLS *allocator, CommonFunc *common_funcs,
CommonTrig *trig_funcs, ConstraintFunc *constraint_util);

One of many solver shaders that get
loaded by the main physics kernel

Full Simulation, IK, or “cheap” objects

jd_build_ea/size tells us about our
Jacobian functions (where they live / size)

Local store allocator provided for scratch

Custom Event Shaders

* Anyone can author their own custom event
shader for physics

« Currently we have two custom event
shaders.

* The physics kernel passes common
functions and a list of DMA tags

Custom Event Shaders

 Work memory Is passed from to kernel to
accommodate any temporary data.
Currently this Is 2k

 Shader author can DMA new data to a
PPU buffer of choice

Phase 3
Resistance 2

* Immediate and Deferred Modes
« Constraint Data Streaming
* Using library shaders for collision

Phase 3
Resistance 2

Physics Update

PPU
T[] ey v [[[reo v

Create Entity (moby) Lists

Cache Collision Geometry
[Immediate Jobs]

Phase 3
Resistance 2

Physics Update

PPU
T ey v [[[reo v

Start Immediate Jobs

Phase 3
Resistance 2

Physics Update

PPU
] Pruwork] | [[peuwor
!
Update Immediate Physics Jobs

Phase 3
Resistance 2

Physics Update

PPU
1] peuwork [| |]eu wor

Sync Immediate Physics Jobs

Phase 3
Resistance 2

Physics Update

PPU
T rrove e

Call Events [Immediate]

Phase 3
Resistance 2

Physics Update

PPU
T v] e

Create Entity (moby) Lists

Cache Collision Geometry
[Deferred Jobs]

Phase 3
Resistance 2

Physics Update

PPU
T rrove L e

Start Deferred Physics Jobs

Phase 3
Resistance 2

Physics Update

PPU
T rrovor | Lo
\ /

Update Deferred Jobs

Phase 3
Resistance 2

Physics Update

PPU
T rroven B v

Sync Deferred Physics Jobs

Phase 3
Resistance 2

Physics Update

PPU
IR

Call Events [deferred]

Immediate and Deferred Modes

* Physics objects that had no other
gameplay or animation based
dependencies didn’'t need to finish in one
frame

* Ragdolls had a one frame immediate
update and then defaulted to deferred so
they could reflect one frame of simulation
without “popping”

Immediate and Deferred Modes

* IK IS run In Immediate mode because it Is
being constantly being tweaked by
gameplay. Lag Is not an option

* Having a deferred process improved our
frame rate iImmensely since the majority of
the high volume environments had “fire-
and-forget” physics objects

Constraint Data Streaming

 Even with shaders, solver could run out of
local store

« Changed the solver update so that only 8
chunks of constraint data were allocated

* Solver chews on data while DMAIng next
list of constraints

Collision Shader Library

Having multiple versions of the same type
of thing adds more work and you have to
optimize more than once.

Not practical

Physics native collision routines made
available to all

Great re-use and optimization benefit

Resistance 2 successfully shipped with
this model in place

Current Phase

* Building of physics object lists as an SPU
(o]0
» Atomic allocation of PPU memory for

heavily used data types as well as physics
scratch memory

» Use of library shaders for broad phase
collision caching

Phase 3
Resistance 2

Physics Update

P P
U U
A

Start Entity Gathering & Collision Caching

SPU Job [for immediate jobs]

Phase 3
Resistance 2

Physics Update

P P
U U

Gather Entities
Cache Collision, Pre-culling

Phase 3
Resistance 2

Physics Update

P P
U U
A

Sync Gathering Jobs [for immediate]

Phase 3
Resistance 2

Physics Update

P P
U U

Start Immediate Physics Jobs

Phase 3
Resistance 2

Physics Update

P P
U U

Update Immediate Physics Jobs

Phase 3
Resistance 2

Physics Update

P P
U U
A

Sync Immediate Jobs

Phase 3
Resistance 2

Physics Update

U

Call Events [Immediate]

Phase 3
Resistance 2

Physics Update

P P
U U

Start Entity Gathering & Collision Caching

SPU Job [for deferred jobs]

Phase 3
Resistance 2

Physics Update

P P
U U

Gather Entities
Cache Collision, Pre-culling

Phase 3
Resistance 2

Physics Update

Sync Gathering Jobs [for deferred]

Phase 3
Resistance 2

Physics Update

P P
U U

Start Deferred Jobs

Phase 3
Resistance 2

Physics Update

P P
U U

Update Deferred Jobs

Phase 3
Resistance 2

Physics Update

Sync Deferred Jobs

Phase 3
Resistance 2

Physics Update

P
U

Call Events [deferred]

d C U0

Building Object Lists

Object list building was taking up valuable
time

Caching geometry was a blocked process
on the PPU

Very expensive

Now all object lists and geometry caches
are generated on the SPU

Building Object Lists

» Larger physics data types organized for
streaming

» Generating object lists requires allocation
of data structures from the PPU

* This includes allocating scratch space for
joint re-ordering and packed rigid body
data

Atomic Allocation

Converted PPU fixed block allocations to
atomic allocations

Physics scratch buffer allocation had to be
atomic as well

Rather straight-forward but...

Exposed a lot of pre-existing problems
with the way data was allocated on the
PPU

Broad Phase Collision Shaders

Previously, was only possible to gather
game collision geometry on the PPU

Insomniac Collision System ran on its own
SPU

Now the functions are in a shader library

We can build physics collision data on the
SPU through the use of the shader library
Interface

Saved valuable time!

Looking Forward

Optimize DMAS
Better data organization

Convert more of the physics kernel into
Shaders

Find more opportunities for interleaving
SPU update with PPU

Eric Christensen
Insomniac Games
Principal Engine Programmer
ec@insomniacgames.com

