

Robotic Testing
(to the rescue)

Bert Chang and Paul Du Bois
Double Fine Productions

About us

» Paul: Senior Programmer

» Bert: Software Test Engineer

» RoBert:
Robot brainchild
Automated tester

120-second pitch

» Unit testing is well understood

» “But how do we test game logic…”

» We implemented a prototype

» “Hey, it works…”

120-second pitch

» Unit testing is well understood

» “But how do we test game logic…”

» We implemented a prototype

» “Hey, it works… really well!”

The result
120-second pitch

» Framework for writing very high-level
code to exercise game

» Runs on any idle devkit

» Used directly by

❖ Test

❖ Gameplay, System programmers

❖ Designers

The result
120-second pitch

» Everyone at Double Fine loves RoBert
(even though it gives them bugs)

» Game would be significantly smaller
without it

» Never want to ship a game without it

The result
60-second pitch

Demo time!

60-second pitch

(video)

Overview of talk

» Motivation

» Implementation

» Uses and examples

» Analysis and future work

» Q&A + discussion period

Nota bene

» Innovative?

» Perfect and polished?

» Generic and germane?

» Inexpensive!

Motivation¨

Terminology: Unit Test

» http://c2.com/xp/UnitTest.html

» Individual “unit” of functionality

» Tests should run quickly

» Doesn't tend to test interaction
between systems

http://c2.com/xp/UnitTest.html
http://c2.com/xp/UnitTest.html

Terminology: Functional Test

» http://c2.com/xp/FunctionalTest.html

» Higher-level than “unit test”

» Test interaction between systems

» Like unit tests, have a well-defined
“result”

http://c2.com/xp/FunctionalTest.html
http://c2.com/xp/FunctionalTest.html

Problem summary

Problem summary

» Brütal Legend is big

» …big technical challenge

» …big design

» …big landmass

Problem summary

» Double Fine is small

» Test team is very small

» Build breakages (theoretical)

Solution

» Automate some tester duties

» Write tests in Lua

» Run them in-game, on console

» (Optionally) produce controller input

Implementation¨

Preëxisting Tech

» In-game scripting (Lua)

» Console, networked

» Input abstraction

» Reflection

In-game scripting

» We use Lua 5.1 (http://www.lua.org)

» Tiny code footprint

» Reasonable memory footprint

» Compiler and interpreter

» Also used for console commands

http://www.lua.org
http://www.lua.org

Console, networked

» Simple TCP-based messaging

» Game sends debug output

» Game receives and executes
commands

» Host-side tools in C# and Python

Input abstraction

» Multiple possible input sources

❖ From file

❖ From network

❖ From device

❖ From script

Reflection

Entity A02_Headbanger2F3

CoPhysics

Pos: (3,4,5)
Mass: 10

CoController

State: Idle

CoDamageable

Health: 30
Ragdoll: true

Reflection + Lua

 function Class:waitForActiveLine(self, ent)
 while true do
 self:sleep(0)
 if ent.CoVoice.HasActiveVoiceLine then
 return
 end
 end
 end

New tech

» Test framework (on console)

» Test runner (on host PC)

» “Bot Farm”

Framework

» Similar to unit test framework

» Create class, implement Setup(),
Teardown(), Run(), …

» Call ASSERT() method on failure

» Return from Run() signals success

Framework

» Run() may run for 1000s of frames

» Allow blocking calls; provide Sleep() as
a primitive

» Cooperative multithreading (coroutines)

Framework

» Test can function as input source

» Mutate a state block

» Use blocking calls to make API
convenient

» Manipulate joystick in “world
coordinates”

Example: providing input

-- push some button for time t1

self.input.buttons[btn] = true
self:sleep(t1)
self.input.buttons[btn] = false

-- move towards world-space pos x,y,z

self.input.joy1 = test.GetInputDir(x,y,z)

Example: simple mission

function Class:Run()
 function fightSpiders(entity)
 self:attackSmallSpiders()
 self:killHealerSpiders()
 self:basicFightFunc(entity)

 self:waypointAttack(
 "P1_050_1", "Monster", 40, fightSpiders)
 self:attackEntitiesOfTypeInRadius(
 "Monster", 50, fightSpiders)
 self:attackBarrier("A_WebBarrierA", 100)
 self:waypointTo{"P1_050_ChromeWidowLair"}

Example: reproduce a bug

function Class:Run()
 function waitForActiveLine()
 while true do
 self:sleep(0)
 if player.CoVoice.HasActiveVoiceLine then
 return

 streams = sound.GetNumStreams()
 while true do
 game.SayLine('MIIN001ROAD')
 game.SayLine('MIIN001ROAD')
 waitForActiveLine()
 if sound.GetNumStreams() > streams then
 self:sleep(1)
 self:ASSERT(sound.GetNumStreams() <= streams)

Test runner

» Launch test

» Watch output stream for messages
(start, fail, heartbeat)

» Watch for warning, assert, stack dump

» Exceptional results are reported via
email

Dynamic Bot Farm

» Find unused devkits and run tests on
them

» Perform intelligent test selection

» Record results

Role of the human

» Initially, start tests by hand

» Bot farm means more time writing
bugs

» Half time writing new tests, updating
old tests, writing/regressing bugs

» Half time on infrastructure work

Uses and Examples̊

Not built in a day

» Will quickly go over the various uses
we found for the framework

» Not all uses are related to testing

» Please note down which ones you're
interested in and ask!

Initial tests

» Before controller interface was written

» Convinced us that project was useful

» Does the game start/quit/leak memory?

» Do these entities spawn properly?

» Can this unit pathfind properly?

More tests

» Can player interact with this unit?

» Can bot fly across the world without
the game crashing?

» Can bot join a multiplayer game with
another bot?

» Are any desyncs generated?

» Do “debuffs” work properly?

More tests

» Can I go to each mission contact and
talk to them?

» Can I complete each contact's
mission?

» Can I successfully fail the mission?

» Multiplayer!

Test-writing strategies

» Bot is not sophisticated

» Means lower impact when missions
change

» Means less-precise diagnostic when
test fails

» Not a big deal in practice

Diagnostic “tests”

» What is our memory usage as a
function of time?

» How does it change from build to
build?

» Where are the danger spots?

Diagnostic “tests”

» What does our performance look like
as a function of time?

» How does it change from build to
build?

» What is it like in certain troublesome
scenes?

Non-test tests

» Reproduce tricky bugs

» Typically involve feedback between
test and programming

» Guess at the fail case, try to exercise it

Use by programmers

» Pre-checkin verification

» Soak testing for risky changes

» Can use Debug builds!

(video)

Use by designers

» Write a series of balance “tests”

» Throw permutations of unit groups at
each other

» Print out results in a structured fashion

» Examined by a human for unexpected
results

Use by artists

» They don’t run it themselves…

» …but they do see it running

» See parts of the game they normally
wouldn’t

» Notice things that don’t look right

šAnalysis

Number of bugs found

2006-05-01

2006-09-01

2007-01-01

2007-05-01

2007-09-01

2008-01-01

2008-05-01

2008-09-01

2009-01-01

(to date) 2009-05-01

(projected) 2009-05-01

0 750 1,500 2,250 3,000

bot totalDate through

Number of bugs found

» Raw bug count undersells RoBert

» Query didn’t catch all RoBert bugs

» Not all problems found get entered

Types of bugs found

» Almost all crashes and asserts

» Middleware bugs

» Logic bugs manifest as “Bot stuck in
mission” failures

» Complementary to bugs found by
human testers

What we test

» Most tests merely exercise behavior

» Unsuccessful at verifying behavior

» Correctness of test is an issue

What we don’t test

» No testing of visuals

» Limited testing of performance

» Specific behaviors, game logic

Problems and future work

» Big tests can take a long time to
complete

» Still a lot of human-required work

» May be guiding us to non-optimal
solutions

» Bot cheats a lot

Our takeaway

» Doesn’t replace a test team

» Does take tedious work off their plate

» Hillclimbing development strategy
worked well

» Very curious what others are doing!

‘’Questions?

dubois@doublefine.com

mailto:dubois@doublefine.com
mailto:dubois@doublefine.com

Fill out forms!

