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Robotic Testing

(to the rescue)
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Abouf us

» Paul: Senior Programmer

» Bert: Software Test

» RoBert:
Robot brainchild
Automated tester




120-second pitch
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Unit testing is well understood

1]

» “But how do we test game logic...”

)
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We implemented a prototype

» “Hey, It works...”
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120-second pitch

)

\4

Unit testing is well understood

1]

» “But how do we test game logic...”

)

\4

We implemented a prototype
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“Hey, it works... really welll”
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120-second pitch

The result

» Framework for writing very high-level
code to exercise game

» Runs on any idle devkit

» Used directly by
% Test
< Gameplay, System programmers

< Designers Z




120-second pitch

The result

»

—veryone at Double Fine loves
(even though it gives them bugs)

RO

Sert

» Game would be significantly smaller
without It

» Never want to ship a game without it



60-second pitfch

The result

Demo time!




60-second pitfch




Overview of talk

Motivation

>
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>

\2

Implementation

>
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Uses and examples
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Analysis and future work

» Q&A + discussion period




Nofa bene

» Innovative?

» Perfect and polished?

Generic and germane?
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Inexpensive!
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Terminology: Unit Test

>

\4

http://c2.com/xp/Unit Test.html

|“

Individua

>
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unit” of functionality

>

\4

Tests should run quickly

Doesn't tend to test interaction
between systems
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http://c2.com/xp/UnitTest.html
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Terminology: Functional Test

http://c2.com/xp/Functional Test.html

>
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>
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Higher-level than “unit test”

>

A\

Test interaction between systems

Like unit tests, have a well-defined
“result”
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http://c2.com/xp/FunctionalTest.html
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Problem summary




Problem summary

»

»

» .

»

Brutal Legend is big
..big technical challenge

..big design

..big landmass




Problem summary

» Double Fine is small

» Jest team is very small

»

Build breakages (theoretical)




Solution

Automate some tester duties

>

\4

>

\2

Write tests in LLua

» Run them in-game, on console

>

\2

(Optionally) produce controller input
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Preéxisting Tech
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»

n-game scripting (Lua)

Console, networked

Nnput abstraction

» Reflection




In-game scripfing

» We use Lua 5.1 (http://www.lua.org)

» Tiny code footprint

»

Reasonable memory footprint

» Compiler and interpreter

» Also used for console commands
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http://www.lua.org
http://www.lua.org

Console, nefworked

» Simple TCP-based messaging
» Game sends debug output

» Game receives and executes
commands

» Host-side tools in C# and Python
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Input absfraction

» Multiple possible input sources

From file
From network
From device

From script




Reflection

CoPhysics CoController CoDamageable

Pos: (3,4,5) State: lIdle Health: 30
Mass: 10 Ragdoll: true




Reflection + Lua

function Class:waitForActivelLine (self, ent)
while true do
self:sleep(0)
1f ent.CoVoice.HasActiveVoiceline then

return
end
end
end
S0 : e 10



New fech

» Test framework (on console)

» Test runner (on host PC)

» “Bot Farm”




Framework

» Similar to unit test framework

» Create class, implement Setup (),
Teardown (), Run(), ...

» Call ASSERT () method on failure

» Return from Run () signhals success
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Framework

» Run () may run for 1000s of frames

» Allow blocking calls; provide Sleep () as
a primitive

» Cooperative multithreading (coroutines)
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Framework

Test can function as input source

>
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» Mutate a state block

Use blocking calls to make AP
convenient

Manipulate joystick in “world
coordinates”
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Example: providing input

-- push some button for time t1l

self.input.buttons[btn] true

self:sleep(tl)
self.input.buttons[btn] = false

-- move towards world-space pos x,Vy,Zz

self.input.joyl = test.GetInputDir(x,y,z)



Example: simple mission

function Class:Run ()
function fightSpiders (entity)
self:attackSmallSpiders()
self:killHealerSpiders()
self:basicFightFunc (entity)

self:waypointAttack (
"P1 050 1", "Monster", 40, fightSpiders)
self:attackEntitiesOfTypeInRadius (
"Monster", 50, fightSpiders)
self:.:attackBarrier ("A WebBarrierA", 100)
self:waypointTo{"P1l 050 ChromeWidowLair"}
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Example: reproduce a bug

function Class:Run()
function waitForActivelLine ()
while true do
self:sleep(0)
if player.CoVoice.HasActiveVoiceLine then
return

streams = sound.GetNumStreams ()
while true do
game.SayLine( 'MIINOO1ROAD' )
game.SayLine( 'MIINOO1ROAD' )
waitForActiveLine ()
if sound.GetNumStreams () > streams then
self:sleep(1)
self:ASSERT (sound.GetNumStreams () <= streams)
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Test runner

»

Launch test

» Watch output stream for messages

(start, fail, heartbeat)

» Watch for warning, assert, stack dump

»

—xceptional results are reported via
emall
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Dynamic Bot Farm

» FiInd unused devkits and run tests on
them

» Perform intelligent test selection

» Record results




Role of the human

» |nitially, start tests by hand

» Bot farm means more time writing
OUES

» Half time writing new tests, updating
old tests, writing/regressing bugs

» Half time on infrastructure work
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Nof built in a day

» WIll quickly go over the various uses
we found for the framework

» Not all uses are related to testing

» Please note down which ones you're
Interested in and ask!



Initial tests

» Before controller interface was written

>

\2

Convinced us that project was useful

>

\4

Does the game start/quit/leak memory?

>

\2

Do these entities spawn properly?

» Can this unit pathfind properly?



More tests

» Can player interact with this unit?

» Can bot fly across the world without
the game crashing?

» Can bot join a multiplayer game with
another bot?

» Are any desyncs generated?

» Do “debuffs” work properly?
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More tests

>
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Can | go to each mission contact and
talk to them?

>
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Can | complete each contact's
mission?

Can | successfully fail the mission?

>
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» Multiplayer!
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Test-writing sfrafegies

» Bot 1s not sophisticated

» Means lower impact when missions
change

» Means less-precise diagnhostic when
test fails

» Not a big deal IN practice
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Diagnostic “'tests’”

» What Is our memory usage as a
function of time?

» How does it change from build to
build?

» Where are the danger spots?
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Diagnostic “'tests’”

» What does our performance look like
as a function of time?

» How does it change from build to
build?

» What is it like Iin certain troublesome
scenes?
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Non-fest fests

» Reproduce tricky bugs

» Typically involve feedback between
test and programming

» GQuess at the fail case, try to exercise it
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Use by programmers

»

Pre-checkin verification

» Soak testing for risky changes

» Can use Debug builds!







Use by designers

» Write a series of balance “tests”

» Throw permutations of unit groups at
each other

» Print out results in a structured fashion

» Examined by a human for unexpected

results
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Use by artists

» They don’t run it themselves...
» ...obut they do see it running

» See parts of the game they normally
wouldn’t

» Notice things that don’t look right
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Number of bugs found

Date through B bot B total

2006-05-01
2006-09-01
2007-01-01
2007-05-01
2007-09-01
2008-01-01
2008-05-01
2008-09-01
2009-01-01

(to date) 2009-05-01
(projected) 2009-05-01

. 2,250 3,000



Number of bugs found

» Raw bug count undersells RoBert

» Query didn’t catch all RoBert bugs

» Not all problems found get entered




Types of bugs found

» Almost all crashes and asserts

» Middleware bugs

» Logic bugs manifest as “Bot stuck in
mission” failures

» Complementary to bugs found by
human testers
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What we test

» Most tests merely exercise behavior
» Unsuccessful at verifying behavior

» Correctness of test is an issue



What we don’t test

» NoO testing of visuals
» Limited testing of performance

» Specific behaviors, game logic




Problems and future work

» Big tests can take a long time to
complete

>

A\

Still a lot of human-required work

>

\2

May be guiding us to non-optimal
solutions

» Bot cheats a lot
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Our takeaway

» Doesn’t replace a test team

» Does take tedious work off their plate

» Hillclimbing development strategy
worked well

» Very curious what others are doing!

& p o % &
\ - LS
- W N



Ouestions?
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