” p
0 GDConf con

d

Game Developers Conference® . ‘ Z
March 23-27, 2009 Moscon /’//

Robotic Testing

(to the rescue)

, ¥

4

<
!/" S

2R\ -
. Bert-Chang and Paul Du Bois
" Double Fine Productions %

Abouf us

» Paul: Senior Programmer

» Bert: Software Test

» RoBert:
Robot brainchild
Automated tester

120-second pitch

)

\4

Unit testing is well understood

1]

» “But how do we test game logic...”

)

\4

We implemented a prototype

» “Hey, It works...”
R~ £~ N
A ; e 70

(
N
\

120-second pitch

)

\4

Unit testing is well understood

1]

» “But how do we test game logic...”

)

\4

We implemented a prototype

>

\4

“Hey, it works... really welll”

W

2 : > /D

(
N
\

120-second pitch

The result

» Framework for writing very high-level
code to exercise game

» Runs on any idle devkit

» Used directly by
% Test
< Gameplay, System programmers

< Designers Z

120-second pitch

The result

»

—veryone at Double Fine loves
(even though it gives them bugs)

RO

Sert

» Game would be significantly smaller
without It

» Never want to ship a game without it

60-second pitfch

The result

Demo time!

60-second pitfch

Overview of talk

Motivation

>

A\

>

\2

Implementation

>

A\

Uses and examples

>

\2

Analysis and future work

» Q&A + discussion period

Nofa bene

» Innovative?

» Perfect and polished?

Generic and germane?

>

A\

>

\2

Inexpensive!

¢

-t
\—
Y d
Sl
&=
p—
Y e d
el
m

Terminology: Unit Test

>

\4

http://c2.com/xp/Unit Test.html

|“

Individua

>

\2

unit” of functionality

>

\4

Tests should run quickly

Doesn't tend to test interaction
between systems

>

\2

W

N
&

&

/

\

http://c2.com/xp/UnitTest.html
http://c2.com/xp/UnitTest.html

Terminology: Functional Test

http://c2.com/xp/Functional Test.html

>

A\

>

\2

Higher-level than “unit test”

>

A\

Test interaction between systems

Like unit tests, have a well-defined
“result”

>

\2

http://c2.com/xp/FunctionalTest.html
http://c2.com/xp/FunctionalTest.html

Problem summary

Problem summary

»

»

» .

»

Brutal Legend is big
..big technical challenge

..big design

..big landmass

Problem summary

» Double Fine is small

» Jest team is very small

»

Build breakages (theoretical)

Solution

Automate some tester duties

>

\4

>

\2

Write tests in LLua

» Run them in-game, on console

>

\2

(Optionally) produce controller input

S SN :
<-> P> /—:. ® . J /)
N LA P
E/'\ | ¢ e | ;;/i\'u_\
v o C— g

o

-t
\—
2 o d
Sl
o
Sl
-t
\ -V
=
=)
v
—
=
=

Preéxisting Tech

>

A\

>

\2

»

n-game scripting (Lua)

Console, networked

Nnput abstraction

» Reflection

In-game scripfing

» We use Lua 5.1 (http://www.lua.org)

» Tiny code footprint

»

Reasonable memory footprint

» Compiler and interpreter

» Also used for console commands

\

\
N
N
9
%

\
\
&

http://www.lua.org
http://www.lua.org

Console, nefworked

» Simple TCP-based messaging
» Game sends debug output

» Game receives and executes
commands

» Host-side tools in C# and Python

\

@

Input absfraction

» Multiple possible input sources

From file
From network
From device

From script

Reflection

CoPhysics CoController CoDamageable

Pos: (3,4,5) State: lIdle Health: 30
Mass: 10 Ragdoll: true

Reflection + Lua

function Class:waitForActivelLine (self, ent)
while true do
self:sleep(0)
1f ent.CoVoice.HasActiveVoiceline then

return
end
end
end
S0 : e 10

New fech

» Test framework (on console)

» Test runner (on host PC)

» “Bot Farm”

Framework

» Similar to unit test framework

» Create class, implement Setup (),
Teardown (), Run(), ...

» Call ASSERT () method on failure

» Return from Run () signhals success

b2 > .\,\ : ; | |
'y o = ‘%&1‘

Framework

» Run () may run for 1000s of frames

» Allow blocking calls; provide Sleep () as
a primitive

» Cooperative multithreading (coroutines)

P » ,

Framework

Test can function as input source

>

\4

» Mutate a state block

Use blocking calls to make AP
convenient

Manipulate joystick in “world
coordinates”

>

\4

>

\2

/\'—:'\‘ 2 - !/@‘a

Example: providing input

-- push some button for time t1l

self.input.buttons[btn] true

self:sleep(tl)
self.input.buttons[btn] = false

-- move towards world-space pos x,Vy,Zz

self.input.joyl = test.GetInputDir(x,y,z)

Example: simple mission

function Class:Run ()
function fightSpiders (entity)
self:attackSmallSpiders()
self:killHealerSpiders()
self:basicFightFunc (entity)

self:waypointAttack (
"P1 050 1", "Monster", 40, fightSpiders)
self:attackEntitiesOfTypeInRadius (
"Monster", 50, fightSpiders)
self:.:attackBarrier ("A WebBarrierA", 100)
self:waypointTo{"P1l 050 ChromeWidowLair"}

A , o “ 4 y20) |

v [4
& & 1
e - .
N o

Example: reproduce a bug

function Class:Run()
function waitForActivelLine ()
while true do
self:sleep(0)
if player.CoVoice.HasActiveVoiceLine then
return

streams = sound.GetNumStreams ()
while true do
game.SayLine('MIINOO1ROAD')
game.SayLine('MIINOO1ROAD')
waitForActiveLine ()
if sound.GetNumStreams () > streams then
self:sleep(1)
self:ASSERT (sound.GetNumStreams () <= streams)

\

Test runner

»

Launch test

» Watch output stream for messages

(start, fail, heartbeat)

» Watch for warning, assert, stack dump

»

—xceptional results are reported via
emall

S

Dynamic Bot Farm

» FiInd unused devkits and run tests on
them

» Perform intelligent test selection

» Record results

Role of the human

» |nitially, start tests by hand

» Bot farm means more time writing
OUES

» Half time writing new tests, updating
old tests, writing/regressing bugs

» Half time on infrastructure work

~—

<

= i » N
N A M s ; ’/‘;}
- W "

o
e
=y
=
£
O
=
—
=
m

Nof built in a day

» WIll quickly go over the various uses
we found for the framework

» Not all uses are related to testing

» Please note down which ones you're
Interested in and ask!

Initial tests

» Before controller interface was written

>

\2

Convinced us that project was useful

>

\4

Does the game start/quit/leak memory?

>

\2

Do these entities spawn properly?

» Can this unit pathfind properly?

More tests

» Can player interact with this unit?

» Can bot fly across the world without
the game crashing?

» Can bot join a multiplayer game with
another bot?

» Are any desyncs generated?

» Do “debuffs” work properly?
72 | o y e

A A N ‘g

g " 4

More tests

>

\4

Can | go to each mission contact and
talk to them?

>

A\

Can | complete each contact's
mission?

Can | successfully fail the mission?

>

A\

» Multiplayer!

N KA ’ v S5
=/\) . "j&%
' s

Test-writing sfrafegies

» Bot 1s not sophisticated

» Means lower impact when missions
change

» Means less-precise diagnhostic when
test fails

» Not a big deal IN practice

’ " J
- ‘!
=/\ -)
\/ . /fl»
S - - Y o
L 4

W

W
%

&

/

\

Diagnostic “'tests’”

» What Is our memory usage as a
function of time?

» How does it change from build to
build?

» Where are the danger spots?

512Mb

384Mb
256Mb
128Mb
OQ

Q'AQAQ Ny f\\ A A
’1&\ bQI 0/0/ (\‘» :\\i \i'\}\’\, ’\; '\,") \0 "\\ “‘\Q‘\Q‘&\P&Qo 0‘ \\0 \\O»& \r »» \r \C' ,\’0 ,\L\ ’\’"‘ f\{\\ AQ' n\ A\n,- ,-\",- /,\ ,\a\ '\ '\ <’> n<') A“_\ ho l A. =
¢ NENCNENTS Ty NENTENENENTS A4 144
RS Q\ MMM A oS coQ Q\ MM Ca\'co\'%\co\%\%\co\'co\co\@'co\co\ SRATATATATOTES ?
: MMM MM > Evey
o clllcccllcded(c o e e e i i e il Zéz\qz

N

Diagnostic “'tests’”

» What does our performance look like
as a function of time?

» How does it change from build to
build?

» What is it like Iin certain troublesome
scenes?

10

0.8

0.6

0.4

0.2

N

Non-fest fests

» Reproduce tricky bugs

» Typically involve feedback between
test and programming

» GQuess at the fail case, try to exercise it

\

1)
\

\\

)

(
\

|

Use by programmers

»

Pre-checkin verification

» Soak testing for risky changes

» Can use Debug builds!

Use by designers

» Write a series of balance “tests”

» Throw permutations of unit groups at
each other

» Print out results in a structured fashion

» Examined by a human for unexpected

results
2 k. K =N “ ‘l
AN P . - (X o

Use by artists

» They don’t run it themselves...
» ...obut they do see it running

» See parts of the game they normally
wouldn’t

» Notice things that don’t look right

N
b

d

<

\

g

Number of bugs found

Date through B bot B total

2006-05-01
2006-09-01
2007-01-01
2007-05-01
2007-09-01
2008-01-01
2008-05-01
2008-09-01
2009-01-01

(to date) 2009-05-01
(projected) 2009-05-01

. 2,250 3,000

Number of bugs found

» Raw bug count undersells RoBert

» Query didn’t catch all RoBert bugs

» Not all problems found get entered

Types of bugs found

» Almost all crashes and asserts

» Middleware bugs

» Logic bugs manifest as “Bot stuck in
mission” failures

» Complementary to bugs found by
human testers

\

e Nt
E/L\‘) P £
2 | " W ~

f) “

#ﬁ

What we test

» Most tests merely exercise behavior
» Unsuccessful at verifying behavior

» Correctness of test is an issue

What we don’t test

» NoO testing of visuals
» Limited testing of performance

» Specific behaviors, game logic

Problems and future work

» Big tests can take a long time to
complete

>

A\

Still a lot of human-required work

>

\2

May be guiding us to non-optimal
solutions

» Bot cheats a lot

m g ; P /‘: - , /
=/\ | o .
=y \ o W ¥

Our takeaway

» Doesn’t replace a test team

» Does take tedious work off their plate

» Hillclimbing development strategy
worked well

» Very curious what others are doing!

& p o % &
\ - LS
- W N

Ouestions?

&S BN ~

= el W,
@ dubo:l.s@doublef:l.ne cor‘n//,,,

& w

[4

mailto:dubois@doublefine.com
mailto:dubois@doublefine.com

L
Uy,
=
e
=

Bl

Yl
pms
\—

e

* Ay

i

