

Sound in Nature

- Collisions lead to surface vibrations
- Solutions create pressure waves in air
- Pressure waves are sensed by ear

Physically Based Sound

- Generate Sounds directly from physics
- Sounds
- Problems with recorded sounds:

Difficult, expensive or dangerous to record (eg. Explosions) Repetitiveness

A typical foley studio*

* Image taken from: <u>http://www.marblehead.net/foley/index.html</u> WWW.GDCONF.COM

Xylophone: Short Demo

Dices on Xylophone

Playing "The Entertainer"

There are more than 350 collisions in this short clip. The audio simulation for this demo runs at >500 FPS

Challenges

- 🕭 Display: 30Hz
- Haptics: 1000 Hz
- Sound: 44,000Hz (at least) Human auditory range: 20-22000Hz
- Simulation time-step must be ~10⁻⁵ s
- Stability may require even smaller time-steps Most sound-producing systems are very stiff
- Scalability

Approach

- Brute force physical simulation infeasible
- Ose analytical solution for surface dynamics
- Exploit human auditory perception

Approach: Features

- Simple to formulate and implement
- A Handles surface meshes with arbitrary geometry and topology
- Andles both impact and rolling sounds elegantly
- & Runs in real-time, low CPU utilization (~10%)
- Supports hundreds of sounding objects

Outline

- Basic Approach
- Exploiting Perception
- Demos
- Summary
- Acknowledgements

Overview

Pre-processing

- Each mode represents a mode of vibration
- Frequency of a mode is fixed
- Applying impulse excites modes of vibration
- Se Position of impact determines proportion of modes

Sound Synthesis

- A Rigid Body Simulator provides impulses
- Transform to mode amplitudes
- Sound synthesized by adding the modes' sinusoids
- Adding damped sinusoids is very fast

Outline

- Basic Approach
- Sector Exploiting Perception
- Demos
- Summary
- Acknowledgements

Mode Compression

Humans can't distinguish two frequencies arbitrarily close to each other [Sek et. al., 1995*]

*Sek, A., and Moore, B. C. 1995. Frequency discrimination as a function of frequency, measured in several ways. J. Acoust. Soc. Am. 97, 4 (April), 2479–2486.

Quality Scaling

- A typical audio scene consists of foreground and background sounds
- Idea: Give more importance to foreground sounds
- A Higher intensity sounds are considered to be foreground
- Provides a graceful way to adapt to variable time constraints

Outline

- Basic Approach
- Sector Exploiting Perception
- . Demos
- Summary
- Acknowledgements

- System: 3.4 GHz Pentium 4 Laptop, 1 GB RAM
- Graphics: GeForce 6800 Go, 256 MB
- Sound: Creative Sound Blaster Audigy 2 ZS
- Software
 - SWIFT++ (Collision Detection)
 - DEEP (Penetration Depth Computation) Pulsk (UNC In-house Rigid Body Simulation) G3D (Rendering)
- OpenAL/EAX (Hardware Accelerated Propagation Modeling)

Position Dependent Sounds

Table struck in the middle

Analysis

Rolling Sounds

Rolling Sounds

Both the cylinder and table are sounding Note the contribution of the table's sound to the overall realism

Efficiency

Efficiency: Analysis

Realism

Outline

- Basic Approach
- Exploiting Perception
- Demos
- Summary
- Acknowledgements

Summary

- Simple formulation and easy to implement
- Works on arbitrary surface meshes
- Acceleration techniques exploiting auditory perception
- Well suited for Games with their real-time requirements with variable time constraints

Acknowledgements: People

- Nico Galoppo (In-house Rigid Body Simulator)
- Stephen Ehmann (SWIFT++: Collision Detection)
- Soung J. Kim (DEEP: Penetration Depth Computation)
- Morgan McGuire (G3D: Rendering)
- UNC GAMMA Group (<u>http://gamma.cs.unc.edu</u>)

Came Developers Torresterence Torresterence

Acknowledgements: Funding Agencies

- Army Modeling and Simulation Office
- Army Research Office
- Befense Advanced Research Projects Agency
- Intel Corporation
- A National Science Foundation
- Office of Naval Research
- RDECOM

Thank You!

Questions?

http://gamma.cs.unc.edu/symphony

References

Raghuvanshi, N., and Lin, M. C., Interactive Sound Synthesis for Large Scale Environments. In SI3D '06: Proceedings of the 2006 symposium on Interactive 3D graphics and games, ACM Press, New York, NY, USA, 101-108.