


Saints Row Scheduler

Discussion Areas:
Concepts/Philosophy
Architecture
Performance Topics



Scheduler Concepts/Philosophy

• What is a “Scheduler”?
o Control flow mechanism, similar to function call or thread 

dispatch.

o Used to manage dispatch of independently schedulable 
entities or “jobs” across multiple threads.

o Many, many valid designs.

o Commonly platform/hardware specific.



Scheduler Concepts/Philosophy

• What is a “Job”?

o Independently schedulable entity, without sequential or data 
dependencies on other “ready” jobs.

o Generally non-blocking. No waiting for I/O, D3D device, other 
asynchronous events.

o For our purposes, amounts to a function pointer/data block pair.

o Decomposing an application’s processing into jobs is the bulk of the 
work in making an application multiprocessor-ready. Outside the 
scope of this discussion.



Scheduler Concepts/Philosophy

• Design Criteria

o Simple as possible, intuitive as possible.

o Configurable by application, as flexible as possible.

o High-performance/low overhead, allowing fine job 
granularity.

o Mechanisms to handle preemptive events gracefully.



Scheduler Concepts/Philosophy

• General Philosophy

o Keep wires hanging out. 

o Create and use building blocks.

o Avoid advanced language constructs.



Architectural Block Diagrams

In the beginning, there were Alpha kits, then 
there were Betas…

Saints Row derived from a single-threaded application.
Six hardware threads, Woo Hoo!



Initial Threading Layout
Standard Sim/Render Split

Frame time varies, ~20 to ~50ms, usually ~33ms.
Audio driver uses ~2.3ms out of every 5ms.
When streaming active, uses entire thread.
Audio executes every ~30ms.



Problems and Concerns
Scheduling a large block of jobs from one of the main 
threads can monopolize the job threads. Consequence 
of “first-come, first-served” order.
Some threads have reduced bandwidth.

Thread 4 with DSP/Audio Driver only ~65%.
Thread 1 can be dedicated to streaming.
Both audio and streaming are preemptive.

Combined- and Pre-pass rendering both lengthy, 
monolithic operations.
Havok issues

Uses its own threading utility.
Must have thread memory allocated per-thread.
Often goes serial.



Scheduler Design Refinement
First-come, First-served Order

Using FIFO job Q results in “natural” job processing order.

Problem – scheduling a large block of jobs from one of the 
main threads can monopolize the job threads.

Finer job granularity no help.
Adding priority to jobs no help.

Solution: Add additional FIFO job Q’s and “job bias”. 
Job threads biased towards serving sim-type or render-type 
jobs.
Dynamically configurable – can change bias algorithms and 
thread/job types on the fly.
Ensures each of main threads gets some job thread time.



HandlingThreading Special Cases:
Split up job threads between Sim and Render 
jobs.

Sim gets 0, 2, and 1 when not streaming.
Havok only runs on 0, 1 and 2.

Render gets 3, 5, and what’s left of 4 after audio 
processing.

Also gets 1 and 2 during render intensive portions of 
frame.

Combined and PrePass:
Run prepass on main rendering thread, “nail” 
combined pass job to thread 3.

Top priority job.
Thread 3 free of other processing threads.



HandlingThreading Special Cases:
Havok

Comes with its own threading utilities.
No dynamic control
Each thread performing Havok processing needs Havok thread 
memory.

Executes ~half of processing serially.

Solutions:
Dedicate three threads to Havok.

Allocate thread memory only for those threads.
Call Havok timestep from our own scheduler.

Allows threading control, add or remove threads on per-frame 
basis.
Performance identical to Havok threading utility.

Break out and splat serial portions ourselves.



Flow – around.
Want to make use of thread 4, but it has a high-
priority thread scheduling intermittently.

Pre-empts and runs for 2.3ms.
Will cause six thread “dead spot” if pre-empts and 
blocks completion of a job batch.

XAudio supplies frame start and end callbacks.
Tied to scheduler, allows currently executing job to 
complete, then terminates job thread.
Reactivates job thread on frame end.
User specifies whether job is “short” or not.
Same mechanism used for audio thread.

General problem – preemption can catch 
application code in a blocking state.

Critical Sections.
See Lockless options.



Final Thread Layout
Havok moved to top 3 threads.
Combined pass fixed to thread 3
Render jobs allowed during most of frame.
Sim jobs allowed during intensive sim processing.

Actual sim window more complicated.
Jobs may schedule during main thread idle time.



The hard part.
Out of scope for us.

While splatting - Optimal job size is function of 
scheduler overhead.

Set some “acceptable” criteria such as “5% overhead 
or less”, then measure the per-job scheduling time.
For Saints Row, optimal size somewhere around 250-
500 microseconds.

Not desireable for jobs to take much longer. 

Only thing left – splat the 
application!



Saints Row PIX timeline
About 90% CPU usage



Detail Discussion, Job flow



Saints Row version, all protection by critical sections or 
spinlocks.
Six job threads sitting on each of the hw threads.
Inserting jobs into job Q activates any idle, matching job 
thread.

Events, not semaphores, for flexibility.
Job spawning thread may suspend and wait for 
dispatching event.

Suspending thread specifies what job types may run on his 
hw thread.

On completion, jobs fire either events (event triggers) or 
schedule more jobs (scheduling triggers).

Scheduler Internals



Performance

Single-job queueing.
More efficient to move block of jobs to job 
queues, more flexible to move one by one.
Job queue is a significant overhead source 
due to thread contention.
If using critical section protection, probably 
should block queue.



Performance

Lockless
Lockless structures (stacks, queues) perform 
significantly better than critical section protected 
structures.
LIFO –

SLists, GPGems 6 stack
Fairly straightforward.

FIFO –
Michael’s floating node.
Fober’s reinsertion.

Be Careful



Performance

Profiling
PIX
DmNotify Threadswitch
Realistic test cases

samples



Questions?


