

Embodied Agents in Dynamic
Worlds

John O’Brien & Bryan Stout

Pathfinding: Then

Use entirely pre-generated data
Nav mesh/grid + A* =
Limited dynamic avoidance necessary

Pathfinding: Now

Users want everything to blow up
Dynamic environments becoming the
norm
Physics and destruction part of gameplay

Dynamic Worlds

In today’s games:
Large objects move around
Paths open up and close off

The Problem

Pre-calculated data is pre-calculated for
a reason!
Modifying navigation data at runtime can
be prohibitively expensive

Solutions

Dynamic Motion/Avoidance Techniques
Dynamic Pathing Techniques

Dynamic Motion

Typical AI Motion System

Pre-generated navigation data
A* or derivative produces a series of path
points
Motion code moves agent from point to
point, avoiding other agents as it goes

Motion Models

Some AI systems heavily dependent on
animation states
Others have complete freedom of
movement
Both can benefit from force-based
steering solutions

Physics & Collision

Raycasts against collision geometry
typically too expensive for widespread AI
use
We need less expensive methods that
can be applied to many agents
simultaneously

Topic List

Avoidance Steering Behaviors
Agent-based potential fields
Shared potential fields

Outer Collision Avoidance

At a distance, force-based steering
methods try to achieve gentle course
correction.
This is often combined with strong
repulsion close to an obstacle.

Unaligned Collision Avoidance

Unaligned Collision Avoidance
Vector3 UnalignedAvoidance(Agent a1, Agent a2)

{

Vector3 relativeVel = a2.velocity – a1.velocity;

float relativeSpeed = relativeVel.Length;

relativeVel.Normalize();

Vector3 relativePos = a1.pos – a2.pos;

float projection = Dot(relativeVel, relativePos);

float deltaT = projection / relativeSpeed;

: // Calc future positions at +deltaT

return (a1FuturePos – a2FuturePos);

}

Inner Collision: Separation

Nearby agents strongly repel others
Simple and effective, cheap to calculate.

Unaligned Collision
Avoidance: Analysis

Good for avoiding other agents (small
obstacles which will also avoid you)
Straight repulsion and single point check
problematic for larger objects
Several Sqrt()s per check become
expensive as environment becomes
more crowded

Agent-Based Potential Fields

Less interested in
specific collision
detection
Conceptually like
magnetic fields

Standard Repulsive Field

Repulsive force increases as agent draws closer

Vortex Fields

Repulsion can still increase with closeness, but
pushes agent off to the sides, perpendicular to
distance vector

Vortex Fields:
Choosing Direction

One method: use distance X velocity.

v d

Vortex Fields:
Choosing Direction

Alternatively: use vector to goal instead of
velocity.
Can keep agent more closely following
intended path.

v
d

Vortex Fields
Vector3 CalcGyroscopicForce(Agent a, Obstacle o)

{

Vector3 distV = (o.GetPos() – a.GetPos());

float LengthSq = DistSq(distV);

if (distSq <= o.fieldRadiusSq)

{

float cross = Cross(distV, a.GetVelocity()).z;

if (cross < 0)

return TurnLeft(distV);

else

return TurnRight(distV);

}

}

Vortex Fields: Prediction

Scale center of field based on obstacle velocity
and distance to agent.
Gives same effect of agent avoiding a future
collision as we saw previously

Force-Based Steering Issues

Local minima
Attraction == repulsion

Vortex fields
Tend to guide object in
general direction of
attraction

Force-Based Steering Issues

Oscillation
Agent will swing back and forth, especially in
the presence of multiple obstacles.

Force-Based Steering Issues

Gyroscopic repulsion helps agents
navigate narrow areas more smoothly.

Inner Collision

For large, unevenly shaped obstacles, inner
collision will most likely require more than a
sphere representation
Capsules work well if you can use them
1st pass physics collision rep can work also

Vortex Field Analysis

Fairly smooth avoidance at a distance
Reasonably lightweight processor usage
Interact with each other in a more
favorable way than straight repulsion
techniques

Collision Candidate Filtering

Eliminating unnecessary checks is a key
component of performance
Smooth, believable motion relies on
eliminating unwanted influences

Collision Candidate Filtering

“Collision Buckets”

Collision Candidate Filtering

Angle Tests
Exclude objects that are not within a certain
angle of agent’s forward movement.

Demo

Agents move with constant attraction to
goal (except close in)
Agent sim clamps turning and velocity
changes
Weak separation behavior between
agents

Shared Potential Fields

A shared data structure representing the
potential field may be viable for large crowd
scenes.

Shared Potential Fields
Agents traverse the terrain trying to remain in
areas of high movement potential.
Can be used to simulate attractive areas like
roads and pathways in addition to repulsive
areas like obstacles

Continuum Crowds

Talk given at SIGGRAPH ’06
Crowd simulation using principles of fluid
dynamics.
Apparently capable of simulating large
crowds with realistic movement.

Continuum Crowds

Build series of state grids
- Crowd density
- Goal locations
- Impassable areas

Combine into single potential field
Move agents opposite to gradient of the
field

Continuum Crowds

Impressive city street crowd modeling
“Discomfort fields” used to keep agents on
sidewalk.
Projected density out in front of moving objects
like vehicles

Conclusion

Game worlds will continue to become
more and more dynamic.
AI agents will need to react well to
changes at runtime, and rely less on
pregenerated solutions.

References

Reynolds, C. 1999. Steering Behaviors for Autonomous
Characters, GDC 1999.
http://www.red3d.com/cwr/papers/1999/gdc99steer.html

Stout, B. 2004. Artificial Potential Fields for Navigation
and Animation, GDC 2004.

Treuille, A., Cooper, S., Popovic, Z, 2006, Continuum
Crowds, SIGGRAPH 2006.
http://grail.cs.washington.edu/projects/crowd-flows/

http://www.red3d.com/cwr/papers/1999/gdc99steer.html
http://grail.cs.washington.edu/projects/crowd-flows/

	Embodied Agents in Dynamic Worlds
	Pathfinding: Then
	Pathfinding: Now
	Dynamic Worlds
	The Problem
	Solutions
	Dynamic Motion
	Typical AI Motion System
	Motion Models
	Physics & Collision
	Topic List
	Outer Collision Avoidance
	Unaligned Collision Avoidance
	Unaligned Collision Avoidance
	Inner Collision: Separation
	Unaligned Collision Avoidance: Analysis
	Agent-Based Potential Fields
	Standard Repulsive Field
	Vortex Fields
	Vortex Fields: Choosing Direction
	Vortex Fields: Choosing Direction
	Vortex Fields
	Vortex Fields: Prediction
	Force-Based Steering Issues
	Force-Based Steering Issues
	Force-Based Steering Issues
	Inner Collision
	Vortex Field Analysis
	Collision Candidate Filtering
	Collision Candidate Filtering
	Collision Candidate Filtering
	Demo
	Shared Potential Fields
	Shared Potential Fields
	Continuum Crowds
	Continuum Crowds
	Continuum Crowds
	Conclusion
	References

