
Jonathan Shaw



How does Fable use Lua?
 AI

 Quest scripts

 Camera

 Start-up settings

 Miscellaneous scripts

 Debugging

 Patching



A (very) brief history
 The original Fable used C++ as its “scripting” language, 

using macros to make it more “user friendly”.

 We used micro-threads (or fibres) to give each AI 
entity and each quest its own non-pre-emptive thread.

 We liked micro-threads, but didn’t like C++ as a 
scripting language.



Enter Lua
 Like all good scripting languages Lua is easy to write, 

and can give you almost-instant feedback when 
changing scripts while your game is running.

 Lua’s first class support for coroutines made Lua an 
ideal choice for Fable.

 Fable II and III make extensive use of coroutines.

 On busy levels we can have upwards of 100 coroutines 
running.



AI
 An AI entity in Fable II and III has a brain, defined in 

Fable’s general game editor.

 A brain has a list of behaviour groups with priorities 
(some of which can be the same).

 A behaviour group has a list of behaviours with 
priorities (some of which can be the same).



Deciding what behaviour to run
 Iterate through the behaviour groups, starting with the 

highest priority – see if they’re valid to run.

 E.g. a “work in the factory” behaviour group isn’t valid to 
run if it’s night time.

 For each valid behaviour group, iterate through the 
behaviours, starting with the highest priority, to see if 
they’re valid to run.



Same priority behaviours
 If some behaviours or behaviour groups have the same 

priority, we want to iterate through them in a random 
order.

 Custom iterators in Lua were the perfect solution for 
this design.

 Sadly, very nice to write, but a performance bottleneck, 
so we moved the logic to C++.



Quests
 A quest will have one “master” coroutine, with a 

number of “child” coroutines – when the master 
coroutine is finished we automatically kill the child 
coroutines.

 We have the concept of “entity threads” – these are 
automatically tied to specific entities and die when the 
entity dies (or suspend when the entity is unloaded 
when the player changes level).



Saving quests
 We wanted players to be able to save the game 

wherever they were in the game and for it to be a 
“perfect save” – without quest scripters having to do 
anything to make it work.

 Quite a challenge, until we learned about Pluto for 
Lua, by Ben Sunshine-Hill.



The patch challenge
 Using Pluto allows you to save coroutines and to 

resume them where they left off after loading the save 
game.

 What if you want to patch a function that a coroutine 
was yielded in?

 If you change the line numbering (of the resultant Lua 
byte code) before the final yield in the function, you 
can’t.



Nasty tricks
 This forces you to come up with some “creative” 

solutions.



Making it a little easier
 In Fable III some of our scripters have started 

changing how they format their while loops:

while true do

-- Check for various

-- conditions and act

-- on them

coroutine.yield()

end

while true do

coroutine.yield()

-- Check for various

-- conditions and act

-- on them

end



Bring on the Watch Dogs
 Lua is extremely flexible and inspectable.

 Add scripts to run in their own coroutines and inspect 
the state of the known problem scripts – when they 
detect the problem, fix it and shut down.



Lua/C++ interface
 We wanted it to be as easy as possible to register C++ 

functions in Lua.

 The more functions exposed to Lua, the more power 
you have when it comes to debugging and releasing 
DLC without requiring a Title Update.

 There were features in Fable II’s second DLC that we had 
to drop because the one function the scripts needed 
hadn’t been exposed.



Lua Plus Call Dispatcher
 We use Joshua Jensen’s Lua Plus Call Dispatcher.

 This lets you expose a function with any arbitrary 
signature to Lua (it doesn’t have to be a 
lua_Cfunction).

 You can describe to the call dispatcher how to 
interpret any type you might want to expose to Lua.



Hiding the Lua stack
 For a C++ programmer used to dealing with objects, it 

can be useful to be able to treat Lua tables and 
functions as C++ objects.

 Using inspiration from LuaPlus we wrote CLuaTable
and CLuaFunction classes.

 These use the Lua registry to keep handles to the table 
and functions alive even if no handles to them in Lua 
remain.



A quick example
class CEntity; class Vec3;

Vec3 CEntity::GetPos() const;

luaL_newmetatable(L, “EntityMetaTableName”);

lua_pushvalue(L, -1); // Pushes the metatable

lua_setfield(L, -2, "__index"); // mt.__index = mt

CLuaTable entity_mt (L); // This pops the metatable

off the stack

entity_mt.RegisterDirectMemberFunction<CEntity>(

“GetPos", &CEntity::GetPos);



Using that in Lua
local hero = GetHero()

local trigger = GetEntity(“Trig1”)

-- The hero is now within 10 units of the trigger

while (hero:GetPos()-trigger:GetPos()):GetLength() > 10 do

coroutine.yield()

end

while IsDistanceBetweenEntitiesOver(hero, trigger, 10) do

coroutine.yield()

end



Debugging Lua
 Lua provides debugging hooks to allow the creation of 

a debugger application without needing to modify any 
of the Lua source code.

 Our Lua Debugger supported breakpoints, step into, 
step over, per-coroutine breakpoints, a watch window 
and the ability to break into Lua from a C++ assert.

 Saving a file in the debugger would automatically 
reload it in the game.



Debugging with Lua
 Our in-game debug console ran in the game’s Lua 

environment.

 This meant everything scripts or AI could do, you 
could do in the console (including inspecting the 
current state of the AI and quests).

 On Fable III we have remote access to this same 
console (including niceties like auto-complete).



Automation
 Having remote access to the Lua environment means 

we can very easily write external scripts (ours are in 
Python) to drive the game however we like.

 We change start-up settings (so Lua is one of the first 
systems in the game we initialise) and test that every 
level in the game loads successfully, and get 
performance metrics from the game using this system.



Profiling Lua
 This is something we struggled with, partly due to our 

heavy reliance on coroutines.

 Profilers that hooked into function entries and exits 
wouldn’t stop the timer during yields, giving very 
skewed results.

 For Fable II, we didn’t have anything more 
sophisticated than manually timing suspected 
expensive functions and printing times to the debug 
output channel.



Memory usage
 When Fable II shipped Lua was using roughly 8 to 

15Mb of memory.

 We had a custom allocator designed for many small, 
fragmenting allocations.

 Tracking memory “leaks” in Lua was extremely 
difficult.

 We found that pre-compiling our Lua scripts massively 
reduced fragmentation (in addition to the small 
improvement in loading time).



Reducing memory footprint
 Using Lua 5.1’s module system made demand-loading 

quest scripts very simple.

 Changing lua_Number to float from double saved us 1 
or 2Mb, because those extra 4 bytes exist in every Lua 
type, whether table, Boolean, function, etc.

 The problem with floats comes when you want to pass 
32 bit hashes or UIDs to and from Lua (because 
integers above 8 million lose precision when converted 
to floats).

 Light user data was the solution.



Taming the garbage collector
 We turn the garbage collector off and manually run it 

once per game frame.

 We played around with the step size to try to balance 
the time the collector takes and the collector having 
enough time to clean up the general memory churn in 
any given frame.

 Even when we found a number we were reasonably 
happy with, the collector would sit at about 3ms, often 
spiking over 6ms.



Smoothing the spikes
 One of our colleagues from Turn 10 gave us the 

solution.

 To this:
double start_time = LHTiming::GetTime();

double end_time = start_time + 

g_SecondsForGarbageCollection; // 2ms

do

{

lua_gc(L, LUA_GCSTEP, 0);

}

while(LHTiming::GetTime() < end_time);

 From this:
lua_gc(L, LUA_GCSTEP, 120);



Lua and Fable III
 We were very happy with our use of Lua in Fable II, so 

haven’t really changed that much with Lua in Fable III.

 Our quest scripts now support mid-quest “skip points” 
so that when debugging a quest you can now skip 
(forwards or backwards) to a decent number of points 
in the middle of quests.

 We’re using Kore in Fable III, which gives us improved 
performance and improved tools, including a profiler.



Conclusion
 Lua lets us develop systems quickly with fast iteration.

 Performance is an issue and can be too much of a 
“black box”.

 Having a rich and full interface between your game 
and scripting language will serve you well when it 
comes to extending the game.



References
 Lua:

 http://www.lua.org

 Pluto for Lua:

 http://luaforge.net/projects/pluto/

 LuaPlus:

 http://luaplus.org

 Kore

 http://www.kore.net

http://www.lua.org/
http://luaforge.net/projects/pluto/
http://luaplus.org/
http://www.kore.net/

