# **Computing Distance**

#### Erin Catto

#### **Blizzard Entertainment**



# **Convex polygons**



#### **Closest points**

# Overlap



#### Goal

#### Compute the distance between convex polygons

# Keep in mind

- 2D
- Code not optimized

# Approach





# If all else fails ...

```
Input for the distance function.
truct Input
  Polygon polygon1;
  Polygon polygon2;
  Transform transform1;
  Transform transform2;
ruct Output
  enum
      e maxSimplices = 20
  Vec2 point1;
  Vec2 point2;
  float distance;
  int iterations;
  Simplex simplices[e maxSimplices];
  int simplexCount;
id Distance2D (Output* output, const Input& input);
```

# DEMO!

# Outline

- 1. Point to line segment
- 2. Point to triangle
- 3. Point to convex polygon
- 4. Convex polygon to convex polygon

# Concepts

- 1. Voronoi regions
- 2. Barycentric coordinates
- 3. GJK distance algorithm
- 4. Minkowski difference

Section 1

#### **Point to Line Segment**

# A line segment



# **Query point**

Q 🔴



# **Closest point**

Q 🔴



#### **Projection: region A**



#### **Projection: region AB**



### **Projection: region B**



#### **Voronoi regions**



#### **Barycentric coordinates**



G(u,v)=uA+vB

# **Fractional lengths**



G(u,v)=uA+vB

# **Fractional lengths**



G(u,v)=uA+vB

#### **Fractional lengths**



G(u,v)=uA+vB

# **Unit vector**



$$\mathbf{n} = \frac{\mathbf{B} - \mathbf{A}}{\|\mathbf{B} - \mathbf{A}\|}$$

# (u,v) from G





# (u,v) from Q





# Voronoi region from (u,v)





# Voronoi region from (u,v)



## Voronoi region from (u,v)



#### **Closet point algorithm**

input: A, B, Q
compute u and v

if (u <= 0)
 P = B
else if (v <= 0)
 P = A
else
 P = u\*A + v\*B</pre>



mass A = mass B



mass A > mass B



mass A < mass B



massA>0 massB>0

Section 2

# **Point to Triangle**
# Triangle



### **Closest feature: vertex**



## **Closest feature: edge**



#### **Closest feature: interior**



#### **Voronoi regions**





#### **Vertex regions**



# **Edge regions**



### **Interior region**



### **Triangle barycentric coordinates**



#### **Linear algebra solution**



#### **Fractional areas**



# The barycenctric coordinates are the fractional areas



#### **Barycentric coordinates**



#### **Barycentric coordinates**

 $u = \frac{area(QBC)}{area(ABC)}$ 

$$v = \frac{area(QCA)}{area(ABC)}$$

$$w = \frac{area(QAB)}{area(ABC)}$$

# Barycentric coordinates are fractional

line segment : fractional length

triangles : fractional area

tetrahedrons : fractional volume

### **Computing Area**



signed area= 
$$\frac{1}{2}$$
 cross (B-A,C-A)

## **Q** outside the triangle



## **P** outside the triangle



## **P** outside the triangle



# **Voronoi versus Barycentric**

- Voronoi regions != barycentric coordinate regions
- The barycentric regions are still useful

## **Barycentric regions of a triangle**



### Interior



# Negative u



# **Negative v**



# **Negative w**



#### The uv regions are not exclusive



# **Finding the Voronoi region**

- Use the barycentric coordinates to identify the Voronoi region
- Coordinates for the 3 line segments and the triangle
- Regions must be considered in the correct order

#### **First: vertex regions**



## **Second: edge regions**



#### Second: edge regions solved



# **Third: interior region**



# **Closest point**

- Find the Voronoi region for point Q
- Use the barycentric coordinates to compute the closest point Q



# Example 1



# **Example 1**


# **Example 1**























#### Implementation

```
input: A, B, C, Q
compute uAB, vAB, uBC, vBC, uCA, vCA
compute uABC, vABC, wABC
// Test vertex regions
•••
// Test edge regions
...
// Else interior region
...
```

#### **Testing the vertex regions**

// Region A
if (vAB <= 0 && uCA <= 0)
 P = A
 return
// Similar tests for Region B and C</pre>

### **Testing the edge regions**

```
// Region AB
if (uAB > 0 && vAB > 0 && wABC <= 0)
  P = uAB * A + vAB * B
  return
// Similar for Regions BC and CA</pre>
```

# **Testing the interior region**

```
// Region ABC
assert(uABC > 0 && vABC > 0 && wABC > 0)
P = Q
return
```

Section 3

## **Point to Convex Polygon**

# **Convex polygon**



### **Polygon structure**

```
struct Polygon
{
    Vec2* points;
    int count;
};
```

### **Convex polygon: closest point**



Query point Q

### **Convex polygon: closest point**



Closest point Q

#### How do we compute P?

# What do we know?



Closest point to point

Closest point to line segment

Closest point to triangle

# Simplex



### Idea: inscribe a simplex



### Idea: closest point on simplex



### Idea: evolve the simplex



### **Simplex vertex**

struct SimplexVertex
{
 Vec2 point;
 int index;
 float u;
};

# **Simplex**

```
struct Simplex
{
   SimplexVertex vertexA;
   SimplexVertex vertexB;
   SimplexVertex vertexC;
   int count;
};
```

#### We are onto a winner!

# The GJK distance algorithm

- Computes the closest point on a convex polygon
- Invented by Gilbert, Johnson, and Keerthi

# The GJK distance algorithm

- Inscribed simplexes
- Simplex evolution

# **Starting simplex**



Start with arbitrary vertex. Pick E.

This is our starting simplex.

#### **Closest point on simplex**



P is the closest point.

### **Search vector**



Draw a vector from P to Q.

Call this vector **d**.

# Find the support point



Find the vertex on polygon furthest in direction **d**.

This is the *support* point.

# **Support point code**

```
int Support(const Polygon& poly, const Vec2& d)
{
  int index = 0;
  float maxValue = Dot(d, poly.points[index]);
  for (int i = 1; i < poly.count; ++i)</pre>
    float value = Dot(d, poly.points[i]);
    if (value > maxValue)
      index = i;
      maxValue = value;
    }
  return index;
}
```

# **Support point found**



C is the support point.

#### **Evolve the simplex**



Create a line segment CE.

We now have a 1-simplex.

#### **Repeat the process**



Find closest point P on CE.

#### **New search direction**



Build **d** as a line pointing from P to Q.
#### New support point



D is the support point.

#### **Evolve the simplex**



Create triangle CDE. This is a 2-simplex.

# **Closest point**



Compute closest point on CDE to Q.

# **E is worthless**



Closest point is on CD.

E does not *contribute*.

# **Reduced simplex**



We dropped E, so we now have a 1-simplex.

# **Termination**



Compute support point in direction **d**.

We find either C or D. Since this is a repeat, we are done.

# **GJK algorithm**

Input: polygon and point Q pick arbitrary initial simplex S loop

```
compute closest point P on S
cull non-contributing vertices from S
build vector d pointing from P to Q
compute support point in direction d
add support point to S
```

end

# DEMO!!!

# **Numerical Issues**

- Search direction
- Termination
- Poorly formed polygons

# A bad direction



**d** can be built from PQ.

Due to round-off:

dot(Q-P, C-E) != 0

# A real example in single precision

Line Segment A = [0.021119118, 79.584320] B = [0.020964622, -31.515678]

Query Point  $Q = [0.0 \ 0.0]$ 

Barycentric Coordinates (u, v) = (0.28366947, 0.71633047)

Search Direction d = Q - P = [-0.021008447, 0.0]

dot(d, B - A) = 3.2457051e-006

# **Small errors matter**



#### An accurate search direction



Directly compute a vector perpendicular to CE. **d** = cross(C-E,**z**)

Where **z** is normal to the plane.

# Fixing the sign



Flip the sign of **d** so that:

dot(d, Q - C) > 0

Perk: no divides

# **Termination conditions**



### **Case 1: repeated support point**



#### **Case 2: containment**



We find a 2-simplex and all vertices contribute.

#### Case 3a: vertex overlap



We will compute **d**=Q-P as zero.

So we terminate if **d=0**.

### Case 3b: edge overlap



**d** will have an arbitrary sign.

#### Case 3b: d points left



If we search left, we get a duplicate support point. In this case we terminate.

# Case 3b: d points right



If we search right, we get a new support point (A).

# Case 3b: d points right



But then we get back the same P, and then the same **d**.

Soon, we detect a repeated support point or detect containment.

#### **Case 4: interior edge**



**d** will have an arbitrary sign.

#### **Case 4: interior edge**



#### Similar to Case 3b

# **Termination in 3D**

- May require new/different conditions
- Check for distance progression

# Non-convex polygon



Vertex B is nonconvex

# Non-convex polygon



B is never a support point

## **Collinear vertices**



B, C, and D are collinear

### **Collinear vertices**



#### **2-simplex BCD**

#### **Collinear vertices**



#### area(BCD) = 0

Section 4

# **Convex Polygon to Convex Polygon**

# Closest point between convex polygons



#### What do we know?



#### What do we need to know?



### Idea

- Convert polygon to polygon into point to polygon
- Use GJK to solve point to polygon

# Minkowski difference


#### Definition

$$\mathsf{Z} = \left\{ \mathsf{y}_{\mathsf{j}} - \mathsf{x}_{\mathsf{i}} : \mathsf{x}_{\mathsf{i}} \in \mathsf{X}, \mathsf{y}_{\mathsf{j}} \in \mathsf{Y} \right\}$$

#### **Building the Minkowski difference**

```
Input: polygon X and Y
array points
for all xi in X
  for all yj in Y
    points.push back(yj - xi)
  end
end
```

```
polygon Z = ConvexHull(points)
```

## **Example point cloud**



#### Compute Yi - Xj for i = 1 to 4 and j = 1 to 3



















# The final polygon



#### **Property 1: distances are equal**



#### distance(X,Y) == distance(O, Y-X)

#### **Property 2: support points**



support(Z, d) = support(Y, d) - support(X, -d)

# Convex Hull?

# **Modifying GJK**

- Change the support function
- Simplex vertices hold two indices

# **Closest point on polygons**

- Use the barycentric coordinates to compute the closest points on X and Y
- See the demo code for details

#### DEMO!!!

Download: box2d.org

# **Further reading**

- Collision Detection in Interactive 3D Environments, Gino van den Bergen, 2004
- Real-Time Collision Detection, Christer Ericson, 2005
- Implementing GJK: <u>http://mollyrocket.com/849</u>, Casey Muratori.

#### Box2D

- An open source 2D physics engine
- http://www.box2d.org
- Written in C++

