

A Bioshock 2
Post-Mortem

Michael Kamper
2K Marin Audio Lead

Michael Csurics
2K Marin Dialogue Supervisor

Guy Somberg
2K Marin Audio Programmer

Single Player
Audio Staff

David Steinwedel
2K Marin Senior Sound Designer

Justin Mullins
2K Australia Sound Design/Implementation

Andy Lackey
2K Marin Contract Sound Design/Implementation

Single Player
Additional Audio

David Farmer
Contract Sound Design

dSonic
Contract Sound Design

One Step Up
Foley Recording

Multi Player
Audio Staff

George Spanos
Digital Extremes Audio Lead

Dustin Crenna
Digital Extremes Audio Designer

Music

Garry Schyman
Composer

Challenges

Live Up To A Classic

 Bioshock universally lauded for audio

 Rich environments and characters

 Established style and framework

 Created shorthand for world elements

Challenges

Legacy Audio
Engine/Implementation

 Completely text-based

 Extended baking time

 Counter-intuitive

Building the
Foundation

 Bioshock 1 engine was showing its age

 Slow iteration time

 Complicated integration procedure

 No modern audio engine features

 Myriad code problems

 Time for a rewrite

 Do what you want

 But don’t break it!

Audio Engine Goals

 Fast iteration time

 Make sound design and integration easy
and flexible

 Provide modern audio engine features

 But don’t break it!

 Conclusion:

 Use FMOD Designer Tool

FMOD Designer Tool

Sound Design

FMOD Design Tool

 Positives

 Dynamic Design Capabilities

 Fast Iteration and Implementation

 Negatives

 Increased System Memory

Sound Design

Creative Approach

 Part of that World

 Living Ambience

 Interactive Ambience

 It’s not real if it doesn’t make a sound

Sound Design

Creative Approach

 Non-Diegetic Audio

 Unnerving and Off-putting

 Adds Depth

 Builds Intensity

Sound Design

Creative Approach

 Cinematic Stylings

 If you think it’s too big,

it’s not big enough

 Hyper-realism

 Peaks and Valleys

Sound Design

Mix States

 Dynamic Mixing

 In-Engine Cut Scenes

 Cinematic Moments

 Radio Ducking

 Manipulation of FMOD’s Plug-Ins

“All Things
Are Possible”

 FMOD provides large chunks of
functionality out of the box
 Advanced event editor
 Event Categories (aka Buses)
 “Et Cetera”

 Engine integration
 UnrealEd integration was already done

 (“But don’t break it!”)

 Lots more to do:
•Reverb
•Memory Management
•Localization

•Advanced Features
•Debugging Tools
•“Et Cetera”

Advanced
Audio Features

 Debugging

 Multi-Reverb

 Occlusion

 Virtualization

 Background Sound Engine

 Real-time Mixing Controls (Mix
States)

Debugging

 Goals:

 Get Information

 Improve Iteration Time

 In-engine displays and logs

 Mostly text-based

 Meters, Spectrum, and source display

 FMOD Designer Audition,
ReloadAudioData, and FroAM

Debug Commands

 BGSoundDebug

 BGSoundToggle

 BGSoundTogglePrimary

 BGSoundToggleSecondary

 BusDebug

 ClearAllMixStates

 ClearMixState

 DumpTrackedMemoryInfo

 FroAMTest

 KillLogs

 MixState

 MixStateChaos

 MixStateDebug

 MixStateDebugAll

 OverridePrimaryReverb

 OverridePrimaryReverbRoomEffectLevel

 OverrideSecondaryReverb

 OverrideSecondaryReverbRoomEffectLevel

 PlayBGSoundPrimary

 PlayBGSoundSecondary

 PlaySound

 ReloadAudioData

 ResetStreamStats

 ReverbDebug

 ReverbDebugSecondary

 SoundChaos

 SoundDebug

 SoundDebugAll

 SoundDebugStopped

 SoundDebugToggle

 SoundDebugToPlay

 SoundDebugVirtual

 SoundDebugVirtualizing

 SoundGeometryToggle

 SoundLoad

 SoundLoadPrefix

 SoundLogEventMemoryUsage

 SoundLogLoadedMemoryUsage

 SoundLogLoadedSounds

 SoundLogLoadedSoundsAll

 SoundLogLoadedWaveBanks

 SoundMemoryDebug

 SoundMeters

 SoundMetersResetPeaks

 SoundMetersSpectrum

 SoundParamDebug

 SoundPlayFilter

 SoundSpamAllocations

 SoundStreamBankDebug

 SoundStreamDebug

 SoundToggleMemoryTracking

 SoundToggleOcclusionRender

 SoundToggleReverbOcclusionRender

 SoundToggleSourceDisplay

 SoundToggleSourceRadiusDisplay

 SoundUnload

 SoundVirtualizeFilter

 StopAllSounds

 StopAllSoundsForce

 StopBGSoundAll

 StopBGSoundPrimary

 StopBGSoundSecondary

 StopSound

 ToggleFMODDebug

Multi-Reverb

 Reverb is reverb

 The middleware takes care of it

 Problem:

 Pauper’s Drop Diner

Diner Atrium

Multi-Reverb

 Solution:
 Run two reverbs simultaneously

 (except on PS3)

 Primary reverb is set by the zone that you are in
 Secondary reverb is set by the nearest zone

that has a different reverb
 Sounds play in whichever reverb is most

appropriate:
 Secondary if sound plays in a zone that has the

secondary reverb
 Otherwise, Primary

 Adjust room effect level on Secondary Reverb

Occlusion

 Old way in Bioshock 1: “Propagation”
 But Propagation != Occlusion

 Mandate:
 Low CPU usage
 Ray casts are forbidden!
 WTF?

 Solution:
 Cheat!
 We used FMOD’s geometry engine

 Hand-edited occlusion values on collision mesh
 Lots of work, but it sounds great

Virtualization

 FMOD does virtualization for free

 But we implemented our own

 More flexibility

 Cleaner implementation with respect
to Event System

 Max Within Radius:

Background Sound
Engine

 My favorite!
 A Background Sound Engine:

 2D Sounds
 Loops that fade in and out, up and down

over a random time

 3D Sounds
 Sets of one-shots placed in a circle around

the listener, move with the player
 Distance is faked with volume
 Limited by quadrant

 We ran two engines (Even on PS3)
 Primary by zone
 Closest dissimilar zone

 -6dB

Background Sound
Engine Demo

Mix States

 Triggers:

 Sounds, Zones, Spheres, Scripts…

 Controls:

 Volume of buses with mix fades

 Increase or decrease volume, but no gain

 Attach effect chains to buses

 Override system reverb

Mix State Editor Demo

Music

Music and Mix States

 Combat Music Ducking

 Both Score and Licensed Tracks

 Fading into Backgrounds

 Music is part of the ambience

 Licensed Track Mixing

 Living believably in that space

Music

 Working with Garry Schyman

 Creative Use of Source

 Using different tracks and mixes
when thematically appropriate

 Vary the Experience

 Each level has it’s own
musical signature

 Basic Implementation

 No dynamic music system

Dialogue
Implementation

 Sound designers built FSBs

 Filename prefixes used to pick
subsounds

 This is not best practice!

 Problem:

 Too much content

 FSBankEx can be scripted, but still
needs babysitting

Dialogue
Implementation

 Solution: FSB Builder

 C# app linked with C++ DLLs

 DLLs are thin wrappers for fsbanklibex

 WARNING: fsbanklibex is not thread-
safe!

 FSB Builder uses three copies of the same
DLL

FSB Builder Demo

Dialogue
Tools

 covered

 VO Process

 PrePro

 Production

 Post

 Not so good -> Good

Dialogue

 Who am I?

 What do I do?

 What does that mean?

 Casting

 Script Wrangling

 Recording

 Editing

 Post Processing

 Implementing

 Napping

Pre Production
 Didn’t really have any

 No clear schedule

 No script review

 No tools assessment/development

 Casting sides not prioritized

 Professional crit-path scratch

 Real actors

 Better feel for the story

 More accurate focus testing

 It’s how we found Sinclair

 Precision Casting

 Unbelievable attention to detail

 Committed to accuracy

Production
 Moving Milestones/Soft Deadlines

 Incomplete Scripts

 2 Continents, 4 Countries, 6 Cities, 10
Studios

 30+ Crew, 70+ Cast (and their agents)

 30+ Crew, 70+ Cast (and their agents)

 Large buckets of money

 Hilarious Anecdotes

Sheryl Lee Sheryl Lee Ralph

Post Production
 Not enough time

 No Dynamic Processing

 Localization

 Big fat frowny face

Will forever now be mapped out diligently
during preproduction

 Editing

Outsourced to Jason Kanter at Mako Audio

 Implimentation

 Easy with the aid of Guy’s tools

 I highly recommend getting a Guy

VO Summary
 VO is a p1 dev pre-pro task

 Pre-Pro is very, very important

 Schedule backwards

 Start and localization and go to casting

 Deadlines are deadlines

 When booking talent, always write out
the full name in all caps

 Have fun with it

Wrap Up

Lessons Learned

 Pick the Right People

 Find Your Tech Weak Spots Early

 Have a Solid Vision

 But Be Willing To Adapt

 Always Push for What You Need

Four Classes of
Audio for Media

Terrible Audio
 Sticks out, ruins experience

Bad Audio
Detracts from experience

Good Audio
 Enhances experience

Great Audio
 Sucks player into experience

Any Questions?

Thanks For Attending!

