
FORZA MOTORSPORT

Streaming Massive Environments
From Zero to 200MPH

Chris Tector (Software Architect Turn 10 Studios)

2

Turn 10

• Internal studio at Microsoft Game Studios - we make Forza Motorsport
• Around 70 full time staff

Streaming Massive Environments

3

Why am I here?

• Our goals at Turn 10

• The massive model visualization hierarchy

• Our pipeline, from preprocessing to the runtime

Streaming Massive Environments

4

Why are you here?

• Learn about streaming

• Typical features in a system capable of streaming massive
environments

• Understand the importance of optimization in processing streaming
content

• Practical takeaways for your game

• Primarily presented as a general system

• But there are some 360 specific features which are pointed out as
they are encountered

Streaming Massive Environments

5

At Turn 10

Streaming Massive Environments

GOALS

6

Streaming

• Rendering at 60fps

• Track, 8 cars and UI

• Post processing,
reflections, shadows

• Particles, skids,
crowds

• Split-screen, replays

Streaming Massive Environments

7

Massive Environments

• Over 100 tracks, some up to 13 miles long

• Over 47000 models and over 60000 textures

Streaming Massive Environments

8

Zero

• Looks great when standing still

• All detail in there when in game or photo mode

• Especially the track since it is the majority of the screen

Streaming Massive Environments

9

200

• Looks great at high speeds

• All detail is there when in game or replay mode, UGC video

• Again, especially the track

Streaming Massive Environments

10

Running Example

• Le Mans is an 8.4 mile long track
• It has roughly 6000 models and 3000 textures
• As this talk goes on we can track how much data is streamed

Streaming Massive Environments

• Data streamed :

• 13.3 Miles driven
• 1.6 Laps
• 0.98 GB Loaded

• 0.14 GB Mesh
• 0.84 GB Texture

11

Factors to Optimize for

• Minimize

• Size on disk (especially when shipping large amounts of content)
• Size in memory

• Maximize

• Disk to memory rate
• Memory to processor rate

• All while maximizing quality

Streaming Massive Environments

12

The Hierarchy

Streaming Massive Environments

MASSIVE MODEL VISUALIZATION

13

Massive Model Visualization in Research

• Most relevant area to search

• Good course notes from Siggraph 2007

• http://www.siggraph.org/s2007/attendees/courses/4.html

• But a lot of “real time” options in the literature aren’t game real time

Streaming Massive Environments

14

Typical massive model visualization hierarchy

Streaming Massive Environments

Speed

Space

Disk/Local Storage

Compressed Cache

Decompressed Heap

GPU/CPU Caches

GPU/GPU

15

Disk

Streaming Massive Environments

• Stored on zip disk in packages

• We store some extra data in zip format, but
honor base format so standard browsing tools
all still work (explorer, WinZip, etc.)

• Stored in LZX format inside the archive

• 90-300MB per track

Disk/Local Storage

Compressed Cache

Decompressed Heap

GPU/CPU Caches

GPU/GPU

16

Disk to Compressed Cache

Streaming Massive Environments

• Fast IO in cache block sizes

• Block is a group of files within the zip
• Total up size of files until block size is reached
• Retrieve that file group with a single read

• Compressed cache reduces seeks

• 15MB/s peak
• 10MB/s average
• But 100ms seeks

Disk/Local Storage

Compressed Cache

Decompressed Heap

GPU/CPU Caches

GPU/GPU

17

Compressed Cache

Streaming Massive Environments

• LZX format in-memory storage

• Cache blocks streamed in on demand and out LRU

• 56 MB

• Block sizes tuned per track, but typically 1 MB

Disk/Local Storage

Compressed Cache

Decompressed Heap

GPU/CPU Caches

GPU/GPU

18

Compressed Cache to Heaps

Streaming Massive Environments

• Fast platform specific decompression

• 20 MB/s average

• Heap implementation

• Optimized for speed of alloc and free
operations

• Good fragmentation characteristics using
address ordered first-fit Disk/Local Storage

Compressed Cache

Decompressed Heap

GPU/CPU Caches

GPU/GPU

19

Decompressed Heap

Streaming Massive Environments

• Ready for GPU or CPU to consume

• Contiguous and aligned per allocation

• 194MB

Disk/Local Storage

Compressed Cache

Decompressed Heap

GPU/CPU Caches

GPU/GPU

20

Multiple Levels of Texture Storage

Streaming Massive Environments

• Three views of each texture

• Top Mip: Mip 0, the full resolution texture

• Mip–Chain: Mip 1 down to 1x1

• Small Texture: 32x32 down to 1x1

• Platform specific support here to not require
relocating textures as top mip is streamed in Disk/Local Storage

Compressed Cache

Decompressed Heap

GPU/CPU Caches

GPU/GPU

21

Multiple Levels of Geometry Storage

Streaming Massive Environments

• LOD

• We consider different LODs as different
objects to allow streaming to dump higher
LODs when they wouldn’t contribute

• Instances

• Models are instanced with per instance
transform and shader data Disk/Local Storage

Compressed Cache

Decompressed Heap

GPU/CPU Caches

GPU/GPU

22

Memory to GPU/CPU Cache

Streaming Massive Environments

• CPU specific optimizations for cache friendly
rendering

• High frequency operations have flat, cache
line sized structures

• L1/L2 Caches for CPU

• Heavy use of command buffers to avoid touching
unnecessary render data

Disk/Local Storage

Compressed Cache

Decompressed Heap

GPU/CPU Caches

GPU/GPU

23

GPU/CPU Caches

Streaming Massive Environments

• Right sizing of formats relative to shader needs

• Vertex/texture fetch caches for GPU

• Vertex formats, stream counts
• Texture formats, sizes, mip usage

• Use of platform specific render controls to reduce
mip access, etc.

Disk/Local Storage

Compressed Cache

Decompressed Heap

GPU/CPU Caches

GPU/GPU

24

Running Example

Streaming Massive Environments

• Data streamed :

• 66.8 Miles driven
• 7.9 Laps
• 4.9 GB Loaded

• 0.7 GB Mesh
• 4.2 GB Texture

25

The Pipeline

Streaming Massive Environments

BREAK IT DOWN

26

Pre-Computed Visibility

Streaming Massive Environments

• Standard Solution

• Given a scene what is actually visible at a given location
• Many implementations use conservative occlusion

• Our Variant Includes

• Occlusion (depth buffer rejection)
• LOD selection
• Contribution Rejection (Don’t draw model if less than n pixels)

27

Culling – Given this View

Streaming Massive Environments

• Occlusion culled (square)

• Other objects block this in
the view

• Contribution culled (circle)

• This object does not
contribute enough to the
view

28

Could do it at Runtime

Streaming Massive Environments

• LOD and contribution are easy, occlusion can be implemented

• Most importantly would have to optimize in runtime
• Or not do it at all, but that means streaming and rendering too

much

• Visibility information is typically a large amount of data
• Which means touching a large amount of data
• Which is bad for cache performance

• Our solution: don’t spend CPU/GPU on an essentially offline process

29

Pipeline

Streaming Massive Environments

RUNTIME

OPTIMIZATION

BUILDING

SPLITTING

SAMPLING• Our track processing pipeline is broken into 5
major steps

• Sampling
• Splitting
• Building
• Optimization
• Runtime

• All of this is fully automated
• Art checks in source scenes
• Pipeline produces optimized game ready

tracks

30

Linearize the Space

Streaming Massive Environments

• Track is broken up into zones using AI linear view
of track

• Art generates inner and outer splines for track
• Tools fit a central spline and normalize the

space
• Waypoints are generated at regular intervals

along the central spline
• Zone boundaries are set every n waypoints
• Runtime Sample points are evenly distributed

within the zones

RUNTIME

OPTIMIZATION

BUILDING

SPLITTING

SAMPLING

31

Track Space

Streaming Massive Environments

• Track

• Zone

• Waypoint

• Sample

32

How do we Sample

Streaming Massive Environments

• Environment is sampled along track surface only
and at a limited height

• Track is rendered from four views at each sample
point

• Oriented to local track space

• Sampled values stored at each sample point
• Also stored at neighboring sample points
• This is to reduce visibility pops when moving

between samples

RUNTIME

OPTIMIZATION

BUILDING

SPLITTING

SAMPLING

33

Sampling

Streaming Massive Environments

• Render all models to depth
• Run using position only mesh version of each

model on entire track

• Render each individual model inside a D3D
occlusion query and store

• Object ID
• Location of the camera during rendering
• Pixel count

• This includes LOD, occlusion and contribution
culling

RUNTIME

OPTIMIZATION

BUILDING

SPLITTING

SAMPLING

34

Size Reduction

Streaming Massive Environments

• Sample data is enormous
• Contains visibility of every model at every sample point

• Combine all samples to reduce data required for further
processing

• We condense it down to a list of visibility of models for each
zone

• Keep track of the per model maximum pixel counts, not just
binary visibility

• The pixel counts are the real value!

• Most data is used during pre-processing and then thrown out or
drastically reduced for the runtime

RUNTIME

OPTIMIZATION

BUILDING

SPLITTING

SAMPLING

35

Splitting

Streaming Massive Environments

• Breaks large artist meshes down to object level
• Example: an entire corner can be modeled and instanced

into the track
• Break model down against a world grid

• Clusters objects seen together into single models

• This stage represents workflow balance:
• The further we move towards procedural data providing

greater opportunities for instancing, the less this step does
since we don’t split instanced objects

• But it provides workflow savings when modeling large
amounts unique geometry

RUNTIME

OPTIMIZATION

BUILDING

SPLITTING

SAMPLING

36

Building

Streaming Massive Environments

• Geometry
• Collect common geometry per model to reduce draws
• Create texture and shader usage

• Textures
• Removal of duplicates at multiple levels

• Similar source
• Cross texture comparisons
• Cross mip comparisons
• Compression settings

• Small Texture Set
• Holds the small texture for all textures used in the environment (mip

chain from 32x32 down to 1x1)
• Only example of preloaded models or textures
• 20-60MB

RUNTIME

OPTIMIZATION

BUILDING

SPLITTING

SAMPLING

37

Optimization

Streaming Massive Environments

• Accumulate the working set

• For the three zones centered on the camera
• Accumulate the list of models that are visible
• Based on the set of visible models, generate a

visible texture set using the per model texture
usage data from the build phase

• Order the texture list by maximum pixel count
of all models which use a particular texture

RUNTIME

OPTIMIZATION

BUILDING

SPLITTING

SAMPLING

38

Working Set

Streaming Massive Environments

MODEL LIST

TEXTURE LIST

PREVIOUS ZONE CURRENT ZONE

UNION INTO SET

TEXTURE
WORKING SET

• Texture working set holds textures in pixel count order using maximum
pixel count from all models which use a texture

P
IX

EL
 C

O
U

N
TMODEL LIST

TEXTURE LIST

MODEL LIST

TEXTURE LIST

NEXT ZONE

39

Optimization Mechanism

Streaming Massive Environments

• Removal of textures only
• Geometry removed by sampling

• Remove textures at two levels
• Drop top mip – means the texture rendered

will only come from mip 1 and lower
• Drop mip chain – means the texture rendered

will only come from the small texture set

• Texture level is removed from texture lists in zones
contributing to the working set

RUNTIME

OPTIMIZATION

BUILDING

SPLITTING

SAMPLING

40

Optimization Criteria

Multiple Reduction Passes

Streaming Massive Environments

• Trivial Reduction Based on mip Size
• Object pixel count vs. total pixels in the small texture

• I.e. Is object pixel count < 32*32?

• Total Working Set Memory Size
• Sum of model and texture sizes vs. decompressed heap size
• Remove top mips or mip-chains in increasing pixel count order

• Total Streaming Bandwidth
• Compute the difference of the working set of zone n and the working

set of zone n+1
• Sum of model and texture sizes in working set delta vs. streaming

bandwidth (Assuming zone physical size and maximum racing speed
you can calculate the time allowed to stream the set)

RUNTIME

OPTIMIZATION

BUILDING

SPLITTING

SAMPLING

41

Running Example

Streaming Massive Environments

• A single zone transition can vary widely due to occlusion behavior
• 0.33/2.22 MB Mesh avg/max
• 1.87/17.9 MB Texture avg/max

• Data streamed :

• 120 Miles driven
• 14 Laps
• 8.8 GB Loaded

• 1.3 GB Mesh
• 7.5 GB Texture

42

Optimization

Streaming Massive Environments

• Create a cache efficient order for the package

• To reduce seek distance and increase cache hit
rate

• We use a “first seen” metric
• Walk over the zones and track which zone is

the first to use a model or texture
• Group all models together and order by first

zone, same with textures
RUNTIME

OPTIMIZATION

BUILDING

SPLITTING

SAMPLING

43

Runtime

Streaming Massive Environments

• Create delta of zones
• Decide where camera is in visibility space
• Map camera position to zones to load
• Difference of currently loaded zones and zones to load

• Create delta of resources based on zone deltas
• Basically reference counting
• Consolidate the work to ensure free first ordering (this is to

help with fragmentation)

• Stream out (free) data in trailing zones

• Stream in (allocation, IO and decompress) data in leading zones
RUNTIME

OPTIMIZATION

BUILDING

SPLITTING

SAMPLING

44

Runtime Considerations

Streaming Massive Environments

• Key Areas
• Work ordering
• Heap efficiency
• Decompression efficiency
• Disk efficiency

• For many problems any solution is better than
doing nothing

• Make sure all levels of the hierarchy have
been addressed

RUNTIME

OPTIMIZATION

BUILDING

SPLITTING

SAMPLING

45

Flythrough Demo

Streaming Massive Environments

46

Errors

Streaming Massive Environments

• Popping

• Limited to two Classes
• Late Arrival (Tuned by limiting the amount needed per zone to stay within the

system throughput)
• Visibility Errors (Tuned by further clustering objects or biasing the sampling

results)

• These tunings conflict though

• We provide manual overrides
• Geometry Bias (Affects sampling results)
• Texture Bias (Affects position in texture working sets during optimization)

• No amount of automation can compete with unrealistic expectations
• Example: all models are visible in a single zone means there won’t be space for any

textures

47

Future Directions

Streaming Massive Environments

• Non-linear streaming

• Integration in sampling, optimization and runtime

• Domain specific decompression

• Procedural generation
• Texture transcoding

• Streaming over the wire

• Missing piece of the massive model visualization hierarchy

48

Finally

Streaming Massive Environments

• Data streamed:

• 147 Miles driven
• 17.5 Laps
• 10.8 GB Loaded

• 1.5 GB Mesh
• 9.3 GB Texture

49

Questions?

Streaming Massive Environments

FORZA MOTORSPORT

Streaming Massive Environments
From Zero to 200MPH

Chris Tector (Software Architect Turn 10 Studios)

