Advanced Screenspace Antialiasing

by Arne Schober
Yager Development GmbH

) YAGER

Advanced Screenspace Antialiasing

Antialiasing Techniques
What types of artifacts can be removed?
Morphological Antialiasing

Advancements in the implementation
— Discontinuity detector

— Richards counting optimization

— (Calculating coverage

— Advanced coverage calculation

Implementation details

— Overview

— Blending optimizations

— Linear textures on Xbox360
— Synchronization

— Counting on the GPU

ANTIALIASING TECHNIQUES

Antialiasing Techniques

Antialiasing
| | 1
removing preventing
artifacts artifacts
| 1 , , | .
Screenspace Viewspace I .
detector detector prefiltering sampling
area jit’c_ered stochastic
uniform
Samples by Mipmapping i Distributed
Mv'a"‘i:-::d AA Malan, H. Voxeldlouds A-Buffer MSAA SSAA CSAA Raytracing
Egbert, C.

WHAT TYPES OF ARTIFACTS CAN
BE REMOVED?

What types of artifacts can be removed?

e |nformation that has been lost cannot be recovered!
— under sampling artifacts cannot be removed

What types of artifacts can be removed?

 Transparencies are not handled in our implementation

— depth peeling or a stencil routed K-buffer might fix this

— avoid intersection of transparent geometry (window & frame)
— add an opaque edge where transparencies occur

' A . . "5 -:
Edgebuffer on top
} o ' i ’
Yl || S o |]
B G

What types of artifacts can be removed?

 Alpha Test geometry as well as geometry edges are handled

Without ASAA

MORPHOLOGICAL ANTIALIASING

Morphological Antialiasing

Original idea from Reshetov, A. (HPG 2009)

GPU implementation available from Biri, V. (Siggraph 2010)
— http://igm.univ-mlv.fr/~biri/mlaa-gpu/

Uses a color discontinuity detector
® Might miss important edges (where the difference in color is small)
® Mightbe overly sensitive (detects texture details)
© Willdetect transparencies
© noneed of extrabuffers (e.g. normal, texcoord & depth)

Edge detection convolution kernels

vertical horizontal
0|00 0(0]|O0
0|10 O1](-1
0|-1|0 0O(0]|O0

http://igm.univ-mlv.fr/~biri/mlaa-gpu/
http://igm.univ-mlv.fr/~biri/mlaa-gpu/
http://igm.univ-mlv.fr/~biri/mlaa-gpu/
http://igm.univ-mlv.fr/~biri/mlaa-gpu/
http://igm.univ-mlv.fr/~biri/mlaa-gpu/

Morphological Antialiasing

 Detectvarious types of line segments

— Sshapes & U shapes composed of 2L shapes S shape U shape
 Actual length and pixel position needed
— (overage can be determined using the
Intercept theorem
width o
[{ *x position
value =
length

o coverage = value * width

-]

©

>

position

length

Horizontal counting

« 2 additional buffers for the edge detection (only one shown)

grayscale image vertical discontinuities

« Counting technique with 4 additional buffers (<, >, ™ V)

— counting buffer & counting buffer
o|o(o|0|j0j0O|0O]O o|o(o|o0|j0j0O|0O]|O
o|o(o0o|0|j0j0O|0O]O o|o(o0o|0|j0j0O|0O]O
o|o(o|jo0o|j0j0O0|0O]O o|o(o|jo0o|j0j0O0|0O]|O

Horizontal counting

grayscale image vertical discontinuities (edges)

 Alwaysreject all pixels not in the vertical discontinuity buffer

— counting buffer & edges & counting buffer & edges
0ojojojo0o|l0|0]|]0O0]|O ojojojoj0O0|l0O]|O]|O
o(ojojojofjoOf0O]oO ojojojo|jO0|lO]O]|O

ojojojofj0O0O|0]O ojojojojo|l0]0O]|oO

Horizontal counting

— counting buffer & edges & counting buffer & edges
ololo|oflo|o|o]oO ololo|oflo|o|o]oO
ojojojo|o|o|o]oO oj{ojojo|o|o|o]oO
ojlojojo|o|o|o]oO olojojo|o|o|o]oO

 startwith :let x = lookup pixel to the left or right
and only set to when pixels to
the left or right has not beenrejected else reject

— counting buffer & edges & counting buffer & edges
ojojo|1fl1|1]0]oO ojoj1|1|1]0]0]oO
ol1|o]o|o|o|o]oO 1|o|lofloflojo]o]oO

0(0|l0|O0O[0O0O]O0O]O0]|O 0O(0l0|O0O(0O]O]O0]|O

Horizontal counting

continue with (IS now 2):

— counting buffer & edges & counting buffer & edges
o(ojoj|1(2(3(0]O0 0|]0|3|2|1|]0]|]0]0
o(f1|j0|0|0f|O|0O]O 1/{0(0|l0|JO]jO|O|O
o(fojojojofofo]o ojojojo|l0o|0]0O]oO

do this repeatedly until no further pixels are drawn or
maximum precision is reached

the maximum number of needed passes will be:
maxPasses = log,(2mmBIts)
which is in fact the number of bits per counting value used

Morphological Antialiasing

— counting- & horizontal & counting- & horizontal
discontinuity buffer discontinuity buffer
oO(o0j|0|1(2]3]|]0]|0 0O(0|3|2(1]0]|0]|0
o(1|{0|0(0|0]|0O0]|O 110(0[(0|O0|O0]O0]|O
o(0ojo0o|j0f0O|0]|0O|O o(ojo0o|jo0of0|0|0]|0O

« Thelengthofal-s
determined:

nape and position on that shape canbe

|left — right] left +right+1

length =

position =

2 2

 Theblending value is rejected whenin the left case left +1

pixel to the left or

in the right case right pixel to theright is

not marked in the horizontal discontinuity buffer

Special Case: downside of S-Shapes

grayscale image

« forblending of the blue pixels there are no immediate values
therefore we have to look one line above

- counting- & horizontal & counting- & horizontal
discontinuity buffer discontinuity buffer
0[O0 |04 Lj2|3]|101|0 0[0|34 2(12|0]|0]|0O0
o(1|010(0|0]|0]|O 110100 |0|l0f0O]O
ojoj|o0|0j0O|0]|0O|O ojojo|j0j0j0|0|O

* |fwe have more than one blending value 2 use the maximum

Morphological Antialiasing

© The Algorithm handles U shapes always in an unambiguous way

® The implementation of Biri, V. uses a lot of memory
— 2 ARGB counting buffers
— 1ARGB blending buffer
— 1RG discontinuity buffer
— 1512x512px float Lookup Table for coverage calculations

® With clever packaging and buffer sharing the overall memory
consumption could be reduced significantly (at additional
computational costs)

® The algorithm uses a lot of conditional branching in the pixelshader
® The algorithm uses a lot of passes with no stencil early outs
® Therefore itis unsuitable for the current console generation

ADVANCEMENTS IN THE
IMPLEMENTATION

Discontinuity detector

Our implementation did not use color for discontinuity
detection because we thought depth would be more precise

Depth revealed not all edges and fine grained detail was lost

Added normal and texture coordinates as additional edge
detection hints

— These two additional buffers could be safely shared with the scene
color for the time they are being used

A laplacian convolution kernel was used for discontinuity
detection 2 detects discontinuities on both sides of an edge

vertical horizontal
O|-1|0 O|0|O
0|20 112 (-1

0O|-1(0 0[0]|O0

Edge detection buffers
Depth ~ ¥ Normals

P

-) g

° |= -
fexture Coordinates 4

Discontinuity detector

grayscale image

 Theresulting discontinuity buffers using a laplace
convolution

vertical discontinuity buffer horizontal discontinuity buffer

Richards counting optimization

» Original 4 counting buffers (<, >, ™ V)

M counting- & vertical — counting- & horizontal
discontinuity buffer discontinuity buffer
111{0(0|0|0]|3]|3 112(3|4|5(0]0
O(0|O0O|O0O|0O|O|2]2 110[(0|1|2|3]4
o(o|1|1(1]|1|1]|1 112(3|4|5|6]|7
J counting- & vertical & counting- & horizontal
discontinuity buffer discontinuity buffer
111|{]0(0|0|0]|1]1 5({4|13(2|1|0/|0
O(0|O0O|O0O|0O|0O|2]2 110[(0|5|4|3]2
o(o|1|1(|1|1(3]3 8|7 |6|5(4]|3]2

Richards counting optimization

 Combined results of (\1) and (<) counting using the
minimum operator

J I counting- & vertical — & counting- & horizontal
discontinuity buffer discontinuity buffer
1/1/10|]0|0|0|1]|1 112|132 |1]0(0

0O[0|0|O0O|0O0|O0|2]2 110|012 |3 |2

o|jo0oj1(1(1(1|1]|1 112|344 |3 |2

Calculating coverage

horizontal edges vertical edges

oO|™]0 01010
0 this 0 nxt | this | nxt
o(™|0 0O|l01|O0

* Intercept theorem for calculating the coverage between 2
pixel:

this + nxt + 1 o nxt — this
5 position = 5

length =

position)

coverage = saturate
I (ZZength

« (alculating coverage this way on 45° angles will result in no
coverage atall ®

Advanced coverage calculation

Use linear interpolation and calculate coverage for half-pixel
2position + frac(ZIength))
Around(2length)

coverage = Satumte(

0.75 1.25
X X

0.1875 +0.0625
= 0.2500

225 | 275 3.25|3.75 425

0.2250+0.1750 | 0.1250 +0.0750 | 0.0250
=0.4000 =0.2000

x x x x x x x x
425 375|325 2./5|225 1.75]|1.26 0.75]| 0.2¢

Advanced Screenspace Antialiasing
® Ambiguous handling of U shapes

(nxt — this) - & counting & shape
=0-5 0o | co| co| co| co| oo

— ‘\
n

2(this + nxt + 1) -
0 |[€B——a——3—0=} 0
1(2(3]3|2]1

lim saturate

nxt—co

© The memory usage is moderate
— 1RGB buffer for counting and discontinuities (lower than 2xMSAA)

— 2 G16R16F buffer for normal and texture coordinates

» Could be sharedin our case
| recommend compressing these values because the edge detection shader is

texture bound

© The algorithm uses no conditional branching
® On the Xbox360 and P53 the counting could be offloaded to

the CPU
© Therefore itis suitable for current consoles

IMPLEMENTATION DETAILS

Overview

rendered image

edge detection algonthm
e g. sobel operator

other rendering e.g¢
ambient occlusion,
shadowing, tonemapping
translucent rendenng

final image

CPU

distance calculation)

distanees

blending of the edges

Blending optimization

Blending of horizontal and vertical edges is done separately

A stencil prepass guaranteed that the expensive blending
shader would only be executed on the edges

The blending itself can be calculated this way:
minus =1 —¢c0 —cl
upper’ = upper xc0 lower’ = lower * c0
final = center x minus + upper’ + lower’

To save one resolve operation between horizontal and
vertical blending use alpha blend:

DestAlpha = minus SrcAlpha = ONE AlphaOp = ADD

SrcColor = upper’ + lower’

Linear textures on Xbox360
e Use MEMEXPORT in the pixelshader to write linear textures

— Saves theresolve operation

 Tosave the expensive transpose operation on the CPU we

pre-transposed the horizontal discontinuity buffer on the
GPU

— Exporting 4bytes per pixel was very expensive = ?cache line stalls?

— Therefore we exported 48bytes per pixel 64bytes were not effective
due to register spilling

int2 IntOffsets = round(InUV.xy * TexelOffset.xy);
int Stride = round(TexStrideWithPadding) ;

int offset IntOffsets.y * Stride + IntOffsets.x;
asm

{

alloc export=2
mad eA, offset, const0l, streamConstant
mov eM0, OutValue.x

mov eMl, OutValue.
mov eM2, OutValue.
mov eM3, OutValue.

= N K

Counting on the GPU (for XNA)

* Initialize the counting buffer with the maximum value
J I counting- & vertical - & counting- & horizontal

discontinuity buffer discontinuity buffer
FIF|F|F|F|F|F|F FI|F|F|F|F|F|F|F
FIF|F|F|F|F|F|F FIF|F|F|F|F|F|F
FI{F|F|F|F|F|F|F FIF|F|F|F|F|F|F

« Zerowhere there is a discontinuity and

« Where there is no edge in the other discontinuity buffer

J T counting- & — & counting- &

FIF|lo|O|O|O|F]|F FIF|F|F|F|O[O]|F
O|]O0O|]O0O|]O0O|O|O]|F]|F FI1O|O|F|F|F]|F|F
O[O |F|F|F|F|F|F FIF|F|F|F|F|F|F

Counting on the GPU

J I counting- & — & counting- &

FIF|O|O|O|O|F|F F{F|F|F|F|O|O|F
O(0O(0|O0O|O|O|F]|F FIO(O|F|F|F[F]|F
O|O|F|F|F|F|F|F FIF|F|F|F|F|F|F

 Startwith level=1and lookup level pixels in both directions
(texture border will count as 0) and take the minimum of these
values if the resulting value is not equal the maximumValue = F the
current pixelis updated with result = value + level and
in subsequent passes else reject the pixel

J T counting- & — & counting- &

FIF|O|O|O|O]|1]F FIF|F|F|l1|0|0]|F
O|0|O0O|O0O|O|O|F]|F 110|O0|212|F|F|F]|F
O|O|F|F|F|F|F|F 1| F|F|F|F|F|F|F

Counting on the GPU

J I counting- & —> & counting- &

FlFloflolo|o|1]F FIF[F|[F|1|0]0]F

ololo|o|o|O]|F|F 1{o|o|[1|F|F|F|F

olo|F|F|F|F|F|F 1| F|F|[F|F|F|F|F
continue with level *= 2 (level is now 2):

do this repeatedly until no further pixels are drawn or
maximum precision is reached

Remember the maximum number of passes is equal to the
number of bits used per counting value

J I counting- & — & counting- &

FIF|{O|O0O]|]O0O|O0]|1]|F FIF|3]12]1]0]|0]|F
O(0O|O0|O0O|O|O|F]|F 110[(0(1]|2|3]|F|F
O|O|F|F|F|F|F|F 1|2 |F|F|F|F|F|F

}

]

3

] !

Without AS

A

“If you can't make it good, at least make it look good.
Bill Gates

YAGER IS HIRING!

jobs@yager.de
www.yager.de/career.html

) YAGER

