

Physics for Game Programmers

Contacts
or

“How (Not) To Make It Stick”

Gino van den Bergen

gino@dtecta.com

mailto:gino@dtecta.com

Contacts Are Tricky

 Act only in one direction (do not pull).

 Commonly exist for a short period only.

 Occur anywhere on an object’s surface.

 Involve sliding and rolling.

 Multiple solutions due to overconstraining

Contact Plane

fnormal

-fnormal

ffriction

-ffriction

Contact Plane (Cont’d)

 Normal forces/impulses act along the
plane normal.

 Friction forces/impulses act in the contact
plane.

 Forces/impulses apply to the contact
point(s).

Coulomb or “Dry” Friction

 The maximum tangential force to the
contact plane exerted by friction is equal
to the normal force times the coefficient
of friction

ffriction ≤ µ fnormal

Static vs Kinetic Friction

Friction Cone

 The total force exerted by a contact is
normal force plus friction.

 Coulomb’s law constrains the total force
to a cone.

 Friction forces can reduce tangential
velocity but cannot revert it.

Friction Cone (Cont’d)

fnormal

ffriction

µstaticµkinetic

Solving Contacts

 Determine contact impulses that filter out
inadmissible relative velocities.

 Impulses do not increase momentum.

 Restitution of velocity (rebound) only at
impact and only in normal direction.

 Restitution is zero for resting contacts.

Iterative Methods

 Are generally cheaper than direct
methods: O(n) as opposed to O(n3)

 Always return a solution (even when
there isn’t one).

 Exploit frame coherence (warm starting).

 Converge somewhat unpredictably.

Gauss-Seidel Method

 Solve each variable in a linear system in
isolation using the best approximation so
far for the other variables.

 Converges for positive-definite systems.
Any physics-based system (involving
inertia) is bound to be positive definite.

Solving Contacts: Step #1

 Solve contacts as ball joints, i.e. compute
impulses that keep contacts glued.

 Solve simultaneous contacts using a
Gauss-Seidel (block) solver.

 Contacts are solved one at a time.

 Momentum changes with each step.

Solving Contacts: Step #2

 The solution returned by the GS solver is
“clamped” to the applicable friction cone:

 Negative (pulling) impulses are removed.

 Friction impulses that exceed the friction
cone are clipped.

 We call this Projected Gauss-Seidel.

Clip Against The Friction Cone

fnormal

ffriction

µ

Solution from GS

Solution after clipping

Beware of Sliding Contacts!

 Prioritize contacts on relative velocities in
the normal direction.

Red contact should be solved
before blue one in GS solver.
Prefer normal impulses over
friction. The latter may get
clipped.

Solving Drift

 Solve drift either by:

 Adding a tiny target velocity that moves
the bodies out (Baumgarte stabilization).

 Solving penetrations independent of
velocities (post-stabilization).

Baumgarte Stabilization

 Additional impulses that correct
constraints also add momentum.

 Effectively, a tiny spring is added that
may cause oscillations.

 Needs some tweaking to get right.

Post-Stabilization

 Compute impulses that correct drift in
one time step but add them to a pseudo-
momentum that is zeroed each frame.

 Since we fix relative position (not
velocity) we may pre-integrate these
pseudo-impulses by the time step.

Post-Stabilization (Cont’d)

 These pre-integrated impulses (nudges)
result in linear and angular displacement.

 Iteratively find simultaneous nudges that
restore the constraints.

 Cline & Pai arrive at the same solution
coming from the other end.

Solving Penetration

 Don’t try to solve penetration completely!

 In-and-out contacts are a source of jitter.

 Often penetration is inevitable. Solving it
completely may result in a blowup.

 Successive under-relaxation (ω<1) helps.

Collision Detection

 Find all pairs of objects that are colliding
now, or will collide over the next frame.

 Compute data for response: normal and
contact points.

 Penetration depth is distance between
points.

Collision Objects

 Static environment (buildings, terrain) is
typically modeled using polygon meshes.

 Moving objects (player, NPCs, vehicles,
projectiles) are typically convex shapes.

 We need to detect convex-convex and
convex-mesh collisions.

Continuous Collision Detection

Continuous Collision Detection

Configuration Space

 The configuration space obstacle of
objects A and B is the set of all vectors
from a point of B to a point of A.

},:{ BABA  baba

Configuration Space (Cont’d)

 

 CSO is basically one object dilated by the
other:

Translation

 Translation of A and/or B results in a
translation of A – B.

Rotation

 Rotation of A and/or B changes the shape
of A – B.

Configuration Space?

 Collision queries on a pair of convexes
are reduced to queries on the position of
the origin with respect to the CSO.

 Point queries are easier than queries on
pairs of shapes.

Queries

 The distance between two objects is the
distance from the origin to the CSO.

 The objects intersect if the origin is
contained by the CSO.

BABA  0

 BABAd  xx :min),(

Queries (Cont’d)

 Whether and when two translated objects
ever come in contact boils down to a ray
query from the origin onto the CSO.

 For A translated over s and B over t, the
ray is cast from the origin along r = t – s.

}10,:min{   BAr

Ray Query on the CSO

Resting Contacts

 Contact data for resting contacts are
obtained through a hybrid approach.

 Objects are dilated slightly to add a skin.

 For interpenetrations that are only skin-
deep the closest points of the “bones”
give us the contact data.

Shallow Interpenetrations

Resting Contacts (Cont’d)

 For deeper interpenetrations contact data
are obtained from the penetration-depth
vector.

 This should only be necessary in
emergencies.

Deep Interpenetrations

GJK Saves the Day

 GJK is an iterative method that computes
closest points.

 The GJK ray cast can perform continuous
collision detection.

 The expanding polytope algorithm (EPA)
returns the penetration depth vector.

Meshes Have Bumpy Edges

Solving Bumpy Edges

 GJK returns barycentric coordinates of
the closest point.

 Use these coordinates to interpolate the
vertex normals.

 Similar to Phong shading: Use a
normalized lerp.

Smooth Interpolated Normals

References

 Erin Catto. Iterative Dynamics with
Temporal Coherence. GDC 2005.
box2d.org

 M.B. Cline and D.K. Pai, Post-Stabilization
for Rigid Body Simulation with Contact
and Constraints. In Proc. ICRA, 2003

References (Cont’d)

 Eran Guendelman, Robert Bridson, and
Ronald Fedkiw. Nonconvex rigid bodies
with stacking. In Proc. SIGGRAPH, 2003.

 Chris Hecker. How to Simulate a Ponytail.
Game Developer Magazine, 2000.
chrishecker.com

References (Cont’d)

 Gino van den Bergen. Collision Detection
in Interactive 3D Environments. Morgan
Kaufmann Publishers, 2004.

 Gino van den Bergen. Smooth Mesh
Contacts with GJK. In Game Physics
Pearls, A K Peters, 2010.

Thank You!

» For papers and other information, check:

www.dtecta.com

www.gamephysicspearls.com

