PRACTICAL OCCLUSION CULLING FOR PS3

Will Vale
Second Intention Limited

Y

GUERRILLA

Q| i

WHO IS THIS GUY?

« Freelancer with graphics tech bias
- Working with Guerrilla since 2005
- Talking about occlusion culling in KILLZONE 3

Q| i

TAKEAWAY

- Background: Why do occlusion culling?

« The SPU runtime (rendering and testing)

» Creating workable occluders

- Useful debugging tools

» Problems and performance

» Results, and thoughts on where to go next

D

WHY DO OCCLUSION CULLING?

Q| i

KILLZONE 2: STARTING POINT

Scene geometry in a Kd-Tree
Culled using zones, portals and blockers

Problems:
« Lots of artist time to place and tweak
- Entirely static

« Geometric complexity
» Lots of tests, fiddly code

= Too much time - around 10-30% of one SPU (serial)
Can't feed RSX until it's done

Qlvs

‘-’*%‘. .

Coritith Rlver‘&KILLZDNE'E\

22 oo "

R &

~
\‘-

ol

SPU
SPU
SPU
SPU
SPU

KILLZONE 2: RENDERING PIPELINE

eeeee

Qe

SPU

KILLZONE 2: RENDERING PIPELINE

Prepare

to draw Kick

Scene Query

database result

Kd-Tree Objects
Zones Parts

Portals Lights

Main
memory

Q| i

KILLZONE 3: ART GOALS

- Increase scene complexity
- Larger, more open environments
« With more stuff in them
- Simplify content pipeline
= Don't waste artist time on things which aren't pretty
- Don't require artist tweaks - but allow them
« 80% solution
- Want it to “just work” 80% of the time

KILLZONE 3: TECH GOALS

- Don't increase RSX load
- Never enough GPU time that we can waste it

Q| i

« Fully conservative solution
= No popping when you go around corners
= Drop into pipeline without restructuring

« Reduce risk
- Allow swapping between implementations at runtime

Q| i

THE IDEA

Some spare memory
Some spare SPU time

Best guess: create and test a depth buffer on SPUs
« Decouples tests and occluders

« Rendering linear in number of occluders

- Testing linear in number of objects

Plays to SPU strengths
Culls early

Q| i

THE PLAN

« Create occluder geometry offline

Each frame, SPUs render occluders to 720p depth buffer

- Split buffer into 16 pixel high slices for rasterisation

Down-sample buffer to 80x45 (16x16 max filter)

- Test bounding boxes against this during scene traversal

- Accurate: Rasterisation + depth test
« Coarse: Some kind of constant-time point test

D L LY LTE'tI""'!"—\hA_.LtL"IJ"-:"-I,E_’.‘ng:hi:_:' 7 31k

11 Inpurs

Stage, nund:lc'= Rir (Prim, Ger T;'\:ie"&:_r_ A¥ (1),

& = 3/ PRIHE JF'P""T’ ES;
ir ¢ NRFIJICT L"KEL"[‘s < inf_"g'_:r.-:,.‘ I

* STigg COUNT] ;
Stage, rrnu:u“‘ 1

Vertics - 5):
= 3ta .-.:crfi-:':t:un- >Get Drs L'imltii-“f{,.‘ £
ey Faang
CUIntyg Seag
"’.' =
st-s-ye.m'\.l’ertices.I;}:'c ._';'-r_'m._r.';e_ CVertey Ay * Prim. ge = ‘hdexor faeg (), J.l]f1J.l.\E)‘J~r !m)’!‘i-;- :

if| ¢ P!«;EIJILT: IKEL}

Qe

SPU
SPU
SPU
SPU
SPU

KILLZONE 3: MODIFIED PIPELINE

rrrrr

Qe

SPU

Scene Query Staging Occlusion Query
database result area buffer result
Kd-Tree Occluder Projected Depth data Objects
meshes occluder Parts
triangles

Lights

KILLZONE 3: MODIFIED PIPELINE

Main
memory

MAIN MEMORY STAGING LAYOUT

I
Block Size Count
Global triangles 48 bytes 4096
DMA list entries 8 bytes 23K

Job commands

Total
192KB

184KB
3KB

Grand total 379KB

NB:

- We originally rasterised at 720p
« Ended up shipping with 640x360 (see later)
- Memory and performance figures are for this option

OCCLUDER QUERY JOB

« Finds occluders in the (truncated) view frustum

Q=

« Occluders are normal rendering primitives

= Live with the rest of a drawable object, identified by flag bit

Main
Kd-tree Mesh Query

memory data result

OCCLUDER SETUP JOB

« Decodes RSX-style vertex and index arrays
= Outputs clipped + projected triangles to staging area

- Internal pipeline to hide DMA latency

Resolve indirection in-engine data

Q=

Workload

WETY Query Engine Array Index Vertex Staging
memory result structs headers array array area

SETUP: LS MEMORY LAYOUT
lBtoek o T s T ecun e I T N

ol

Triangle write cache 6KB 1 6KB
DMA list write cache 1.5KB 23 34.5KB
Index cache 1KB 6 6KB
Vertex data cache 2KB 6 12KB
Post-transform cache ~600b 6 el]

Smaller data, alignment slop etc. 11KB
Total data 73KB

Stack 8KB
Code 40KB

Q| i

SETUP: LOAD DATA

First three stages load small (bytes rather than KB) engine structs
Index data streamed through 1K cache
First read pipelined, later reads block
Occluders diced so they usually fit in one go
Vertex data streamed through 2K cache
First read pipelined again
90% hit rate
32-entry post-transform cache
Direct mapped, not a FIFO
60% hit rate

SETUP: DECODE AND TRANSFORM

Last stage does all the heavy lifting
Decode vertices from 32-bit float or 16-bit integer
RSX formats
No-clipping path
Primitive bounds lie inside frustum
Store projected vertices in post-transform cache
Clipping path
Only when required

Cull/clip triangles against near and far planes
‘Scissor’ test handles image extents later

Store clip-space vertices in post-transform cache
Branchless clipper

Qe

Q| i

SETUP: CULL AND DISPATCH

= Cull projected triangles against image extents

- Send visible triangles to staging area in main memory
» Store one copy of each triangle
» via 6KB double-buffered write cache

« Store DMA list entry for each strip under the triangle
» via 1.5KB double-buffered write cache
« Saves memory (8 byte entries vs. 48-byte triangles)

- |f we run out of staging space, ignore excess triangles
« Then setup and kick rasteriser jobs

Q=

RASTERISE JOB

Launch one rasterise job per strip

Load triangles from staging area using list DMA

Draw triangles to a floating point 640x16 depth buffer in LS
Compress depth buffer to uint16 and store

Main Staging Occlusion
memory area buffer

ol

RASTERISE: LS MEMORY LAYOUT
lBioak s T eoun R IR I

Input triangle buffer 48KB 1 48KB
Depth buffer 20KB 1 20KB
Output scanline <1KB 1 <1KB

Smaller data, alignment slop etc. ~1KB
Total data 70KB

Stack 8KB
Code 11KB

Qe

RASTERISE: TRIANGLE SETUP

Traditional scanline rasterisation
Paid attention to triangle setup speed
Also considered half spaces
Not tried this yet though

Handle four edges at once (SoA)

Sort edges start and end on Y
Using shuffle table

Clip edges to strip
Walk edges and write X, Z pairs into 16-
entry span table

y=15

Qe

= Outer loop over span table
« C-with-intrinsics

= Inner loop along scanline y=0
- SPA assembler

= 4-pixel-wide SIMD
« Interpolate depth values

« Depth test and write if nearer
= Mask writes at start and end

RASTERISE: DRAWING SCANLINES

T

Q| i

RASTERISE: COMPRESS

Down-sample each 16x16 tile to 1 depth value
Take maximum so depth is conservative

Encode depth values as unsigned short
Scale float value such that the far plane is at Oxfffe
Take the ceiling of the scaled value

Reserve Oxffff for infinity
Occlusion frustum is much less deep than view frustum

Each rasterise job produces one row of the occlusion buffer (one tile high)
DMA row back to main memory
Full-size image never really exists

Last job out kicks the filter job
Synchronise with simple semaphore

Qe

RASTERISE: PATCHING HOLES

= Actually we cheat a bit ©

« Take 2x2 minimum before 16x16 maximum down-sample
« Patches holes cheaply - input isn't perfect
« Otherwise a single pixel hole becomes an entire tile!

ol

FILTER JOB

Runs after rasterisation is complete

Generates coarse reject data
Used during query to cull small objects

Writes back to reject buffer (contiguous with occlusion buffer)

Main Occlusion Reject
memory buffer buffer

OCCLUDED QUERY JOB

Tests work in a two-level hierarchy
Objects live in the Kd-tree, and contain multiple parts
Test objects to avoid extracting parts
« Test parts to avoid drawing them
« Final query result written to main memory and used to build display list

Q=

Main Kd-tree

Query
memory data Mesh data result

Q| i

QUERY: RASTER TESTS

- Rasterise front-facing quads of bounding box
= At resolution of occlusion buffer (40x23)
Early out and return visible as soon as a scan-line passes depth test
- Same code as occluders, smaller buffer
- Small guad optimisations important
Native quad support avoids setting up two triangles
- Relatively expensive
Rasterisation is costly
= Times 500-1500 objects with 2000-4000 parts

Q| i

QUERY: SPHERE TESTS

« Use extra levels of reject data
Same size as top level
Conservatively re-sampled
Test bounding spheres against this buffer if they are small enough
Fall back to raster test if a given object or part is too large
= Much cheaper
Constant time tests
« But limited
Only support spheres of certain radii
Large radius: more sphere tests, but more false positives
Small radius: more raster tests, but fewer false positives

Qe

RUNTIME STATS

Sample occlusion frame
Transform 100 occluders
With 1500 global triangles (2200 across strips)
Fill 500K pixels @ 640x360
Test 1000 objects
Test 2700 parts
Timings
Setup job: 0.5ms
Rasterise job: 2.0ms (on 5 SPUs)
Query job: 4.5ms (on 5 SPUs) with 1.0ms doing occlusion queries
Overall latency: ~2ms

CREATING OCCLUDERS

- Intended to build occluders from existing visual
meshes
- Avoid creating too much data
- Use same vertex buffer with new index buffer
- QEMM-simplified or some other method of reduction

- Easy to get started with test data
- Just render everything
= We used this for initial runtime development

Q| i

N 624,00 (Pause)
5 = e \E’
- . = X |
RS- Sia
+ K > D
w a5 o1} e
3 =
i "
I _' a,."-.ﬂ-. o¥renge - -
' Ear luders -
= ar‘ \'& OCC U EF‘S A S

MAIN MEMORY AND VIDEO MEMORY OVER BUDGET!

[FOraIs&Lones|

Camera: (24:12 - 4962406) ~F0\'/8000 v:ewrange 44, 15Jg 0;
Player: (18.28 -49/092.53), speed 0.00'm/s; heaﬁh 10000 ¥

Q| i

VISUAL OCCLUDERS

« Problems with this approach
- Far too much data
- Hard to reduce without losing silhouette

= Not closed
= Holes in the occlusion buffer
= Even worse with back-face culling

- Needed something better
= Turned out we already had a good candidate

Time: 12.55 Scale: 1.00 (Pause)
User

Current occluders

Streaming hint time: 0.00s; Est data read during hint: Ok of Ok
Section_ONE ()

Q| i

PHYSICS MESH OCCLUDERS

- Good properties:

» Closed
- Simple

- Somewhat accurate

= We have to be able to shoot it

= Not really accurate enough
» Didn't realise this until quite late

- Still way too much of it

- Small occluders
» Holey occluders

Qe

CHOOSING THE RIGHT OCCLUDERS

Good Bad

Q| i

OCCLUDER HEURISTICS

- Filter based on content meta-data
= Walls, floors, ceilings, terrain = good
« Set dressing, props, clutter = bad

- Filter based on geometry
« Don't create really small occluders at all
« Compare total area of triangles against surface area of bounds
= Throw away anything below a given threshold

» Actually use several thresholds, based on size

= Gives us reasonable starting point

Q| i

ARTIST CONTROLS

Needed the human touch to get the best out of the system

Tagging

= Never, Always, or Auto (in which case let heuristics decide)
Custom occluders

= Artists can provide their own meshes

« Give these priority at runtime during sort

« Often just 2-sided quads, or boxes

- Cheap to author, cheap to render

Occluders in action

ges= 2
=725

pach#"
1ranges
\)

B.‘\?‘Qﬁﬁ
e auend S annn9
€~ar,\end Spﬁ“““q edg” =
8 Shoﬂ edge§ =0
4 1‘\73

\N“Q‘s <
\)

HOW DO WE SEE THIS?

Q| i

» Testing a system like this is hard

- If you did a good job...

- ...then there are no visible results ®

- Makes it hard to prove you've done any work...

Qe

Three main modes

Common display:

« Occlusion buffer

= Timings, stats,
warnings

Can take screen shot

of occlusion buffer

- For debugging the
rasteriser

COMMON TOOLS

Q| i

DISPLAY OCCLUDERS

- Lit depth-tested translucent geometry

= Cheap, since we're rendering from hardware-style vertex and
index buffers.

- Colour coding
- Important/custom
- Active/inactive
= Overflows
- Important mode for artists
» Did my custom occluder work?

Time: 10.52 Scale: 1.00 (Pause)
User

- ¢
< -

Streaming hint time: 0.00s, Est data reqd-durfr:rg hint: Ok of 0k
Section ONE{)"

[Occiuders)

Time: 12.55 Scale: 1.00 (Pause)
User

Just occluders——

Streaming hint time: 0.00s; Est data read during hint: Ok of Ok
Section_ONE ()

Q| i

DISPLAY OCCLUDEES

- Draw bounding boxes when objects are culled out
- Drawing the not-drawn stuff

- Colour coded by type
- Objects, parts, lights, etc.
« Good for demos

- “"Wow, look at all that stuff | can't see!”
= And rough performance tuning

|

,lv:V'

lew:

-

Game v

5
'

Time: 943.87 Scale: 1.00 (Pause)
User

w o <

Dlsplay ocludees

Qlvs

[Occludees]

Q| i

DISPLAY BUFFER

- Draw the occlusion buffer tiles on the screen
- Transparency-coded for depth
» Good for checking conservatism is working

right

- Also used by artists when checking for

occlusion leaks

-

samerview

Time: 286.69 Scale; 1.00 (Pause)
User

U er: (s

Dlsplay @cclusmn

=
e A

i

[Occlusion]

DEBUG MODE 9

Q|

» Existing scene debug tool
- Uses player camera for the frustum
- But debug camera for the renderer
» Very useful for testing culling

-« Frustum and occlusion

- All games should have this!

.) ; e $ 7S ~7:‘> -
g . ’ o ,'A_e‘ .
* | S

‘Game view

Frame rate

Awesomeness of content

<€<—— Might get fired here...

PERFORMANCE ANXIETY

HH_J_Q

Qe

IMPROVING THE CULL RATE

Initially tried a bit too hard to get good SPU performance
Used sphere tests only for some situations
So we didn't get enough RSX culling

Had to make sure we do full tests on all objects
Makes optimisation even more important

Q| i

EASY OPTIMISATION

Rasterisation and testing too expensive
Both largely bound by fill rate
Already worked on triangle setup
720p occlusion buffer was a headache...
But it did provide a lot of headroom:
Downsize to 360p - 40x23 tiles rather than 80x45
Instant fourfold speedup!
Possible artifacts
Already have 2 pixel artifacts from gap removal - this makes them 4 pixel
Still quite small ©

Checked it in quietly...

MORE DIFFICULT

= Other significant optimisations

= Temporal coherence
« Assume an object is visible if it was last frame
- Use feedback from testing parts to update status
« Split query job into serial and parallel parts
» Serial: Walk Kd-Tree and generate object list
« Parallel: Test objects and extract parts
« Sub-mesh culling
» Use spatial Kd-Tree inside a mesh to cull it in arbitrarily small pieces
« Keep slicing and testing until we get to the break-even point

Q| i

Q|

LONG THIN OBJECTS

We had some specific problems with skinny objects

Radius too large for sphere tests

Not enough pixels generated during raster tests for reliable result
Didn't want to use conservative rasterisation

Too risky too late

Would have made all objects bigger, but we had only a few problem objects
Test a diagonal of each quad

If the diagonal is visible, the quad is visible

If not, test the quad

Fixed the skinny objects, plus it saved some time overall

CONCLUSION

M |2

Q| i

COSTS

- Code production costs

- Two man-months to get initial implementation running

= One month to switch to physics meshes and make
everything robust for production

- Two months bug fixing and optimisation
- Runtime costs

= ~400KB scratch memory per view
« 20-50% of one SPU (for everything)

Q| i

RESULTS

= Pros
Relatively fast, with room to optimise further
Stable and predictable performance
Completely dynamic
Excellent occluder fusion
- Cons
Still needed artist work to get levels running fast enough
But easier to do than with old system
Campaign levels: 5-10% of occluders custom made
Multi player levels: 20-50% of occluders custom made ®
Should have anticipated this earlier and changed workflow to suit

Q|

QUESTIONS?

- will@secondintention.com
- Slides will be in the GDC Vault

- Also on http://www.secondintention.com/

Q|

THE END

- Thanks for listening!
- Thanks to everyone at Guerrilla for being awesome!
- Special thanks to Incognito for their sample code

Q| i

BONUS SLIDE: FUTURE WORK

Tame software rasteriser = opportunity

Rendering Al depth cubemaps
Combined with caching and offline generation
Use idle time
Reasoning in dynamic worlds!
Experiments are promising...
Rendering sun occlusion
For really cool glares
Use idle time
Like the speeder bike sequence in Jedi

BONUS SLIDE: CHC DETAILS

- Reduce the number of tests
« CHC - Wimmer + Bittner - GPU gems 2 Ch. 6
= Much easier without the GPU involved

- Visible last frame?
= Assume visible this frame, and skip the test

- Update assumption based on low level tests
« Usually use GPU feedback for this
- We use feedback from part tests instead

Q| i

Q| i

BONUS SLIDE: PARALLEL QUERY

- Parallelise scenegraph job
- Kd-Tree part is fast but complicated - serial
- Extracting parts from objects is slow but dumb - parallel
- Works really well
- Same |0 as usual
= Output into array without locks using atomic reservations

= Lots more space in LS for each job
- Bigger caches

Q| i

BONUS SLIDE: SPU CODE MAKEUP

- Job code starts as C/C++
- Optimise when we have real data
- Structural code stays C/C++

« Lots of C style

= Mix in intrinsics where necessary
« To get SIMD
» To get to instruction set

= Can be 10x faster
- SPA for inner loops
- 2Xx faster again

