
Creating Your Building Blocks 
Modular Component AI Systems 

 Brett Laming, Rockstar Leeds 

 Joel McGinnis, CCP 

 Alex Champandard, AiGameDev.com 



Overview 

1. Brett Laming 

 Component systems revisited 

2. Joel McGinnis 

 Behaviour and Design Patterns 

3. Alex Champandard 

 Performance and Multi-threading 



COMPONENT SYSTEMS 
REVISITED 

Part 1. Brett Laming 



Component Systems 

 What are they? 
 No single definition 

 Potentially 
 Smart objects 

 COM 

 Game object / entity architectures 

 Plug-ins 

 Message based, data driven  

 Fairly certain class cOgre : class cMonster 
is wrong 

 



Background 
 

       DEEP CLASS                 

class cThrowingKnife :  

public cRangedWeapon,  

public cMeleeWeapon 
 

 



Background 
 

       DEEP CLASS                 

class cWeapon : public cDynamicProp 

class cRangedWeapon : public cWeapon  

class cBow : public cRangedWeapon  

 

class cBallista :  

public cRangedWeapon,  

public cStaticProp, 

!public cDynamicProp 
 

 



Background 
 

       DEEP CLASS                FAT CLASS                 

class cWeapon : public cGameObj 

{ 

 cGameObj*  CreateAmmo(); 

// Reloading not for melee 

 eState  mState; 

 eAttackMode  mAttackMode; 

 eAmmoType mAmmoType; 

// Ranged weapons only 

 int    mAmmoCount;   

}; 



Background 
 

       DEEP CLASS                FAT CLASS                PLUGIN                



Background 
 

       DEEP CLASS                FAT CLASS                PLUGIN               DATA DRIVEN 



Damned if you do… 

 Don’t believe it. 

 We get the problems 



Component 

 Broad Classification 

 Key Properties 

 Defined I/O 

 Interchangeable 



System 

 Organisation 

 Compartmentalization 



Reusable A.I.  

 Output  gameplay. 

 Input  gameplay world 

 Disciplined gameplay 

 Good organisation 

 Purposeful data 

 Sensible lifetimes 

 Good reusable A.I. 

 

 

                 5 key levels of organisation 

INHERITANCE 
 Taxonomy 
 Component Name 

STRUCTURE 
 World Organisation 
 Parents – Children 

DATA FLOW 
 A.I.  Gameplay 

 

COMPARTMENTALIZATION 
 Data boundaries 
 Smart objects and DLC 

 

PARALLELIZATION 
 Homogenous 
 Batches / Jobs 



Inheritance 
Object Base        Classification         Name 

cGameObj 

cVehicle cCar 

cSeat 

cDrivingSeat 

cGunnerSeat 

cLiving 

cDog 

cArea 

cInterior 

cExterior 

cHuman 

cWeapon cPistol 

 Classification 

• RTTI queries 

• Ability to sort by class 
 Name  

• RTTI factory creation 

• Ability to serialise 
 Combined 

• Data driven approach 

• Shallow hierarchy 

 

 

 

 



RTTI Power 

typedef int RttiType 

DECLARE_RTTI_TYPE 

IMPLEMENT_RTTI_META_BEGIN 

IMPLEMENT_RTTI_META_END 

RTTI_CLASSIFY_AND_ADD( mpSeat, cSeat, p_obj ); 

cWeapon *p_wep = DynamicCast<cWeapon*>(p_obj); 

cRegistry::Instance().Create( R_STR(“cColt45”) ); 

virtual void Serialise( cAttributeReader &rdr ); 

virtual void Serialise( cAttributeWriter &wtr ); 

rdr << PTR_IS_OWNED( mpSeats ) 

 

 With a pre compile step, you can make it extremely efficient 
indeed! 

 



Structure 

 Spatial 
• cGameObj 

• Reference frame 

• World transform 

 Functional 
• Composition 

• Aggregation 

• Dependency tracking 
• Conflict resolution 

• Job ordering 

 

class cThing 

{ 

 RttiType mRTTI; 

}; 

 

class cGameObj : public cThing 

{ 

public: 

private: 

 cGameObj  *mpParent; 

 cGameObj  *mpFirstChild; 

 cGameObj  *mpNextSibling; 

 

 cMat4     mLocalTransform; 

}; 



Structure & Inheritance 
 

cWorld 

cWorldRegion 

cInterior 

cVehicle 

cCar 

cSeat 

cDrivingSeat 

cLiving* 

cHuman 

cSeat* 

cGunnerSeat 

cLiving* 

cHuman 

cWeapon* 

cLiving 

cDog 

cWorldRegion 

cInterior 

cWorldRegion 

cExterior 

cLiving 

cHuman 

cSkeleton 

cGameObject* 

cBrain 

cSensory 

cBrain 

cSensory 

cWeapon 

cPistol 

cTurret 



Data Flow 

 Data Flow 
• World State  A.I  

Gameplay  World State 

 Changes to structure 
• Not inside dt! 

• Upstream   Message 

• Downstream   Message 

 Changes to properties 
• Downstream   Signalling 

• Upstream   Signalling 

• Spatial Barrier   Message 

 

 

cWorld 

cWorldRegion 

cInterior 

cVehicle 

cCar 

cSeat 

cDrivingSeat 

cLiving* 

cHuman 

cSeat* 

cGunnerSeat 

cLiving* 

cHuman 

cWeapon* 

cBrain 

cSensory 

cBrain 

cSensory 

cTurret 

cGameObj 

cBullet 



Compartmentalization 

 

 Smart Objects 

 Reconstructable by RTTI 

 Near free 

 Given good structure 

 External instructions 

 A.I., animation etc… 

 Carried by signalling 

 

 

cVehicle 

cCar 

cSeat 

cDrivingSeat 

cLiving* 

cHuman 

cSeat* 

cGunnerSeat 

cLiving* 

cWeapon* 

cBrain 

cSensory 

cPhysics* 



Parallelization 

 The ideal… 

 … is still a way off 

 A.I./gameplay still parallelizes! 

 Even in game graphs! 

 Indirection 

 Aliasing 

 Candidates  

 Leaf output 

 animation, navigation, 
component update 

 Leaf input 

 sensory info, blackboards, ray 
tests  

cInterior cInterior 

cSensory cSensory 

cLiving* 

cBrett 

cLiving* 

cAlex 

cLiving* 

cJoel 



All things being good… 
 

cWorld 

cWorldRegion 

cInterior 

cVehicle 

cCar 

cSeat 

cDrivingSeat 

cLiving* 

cHuman 

cSeat* 

cGunnerSeat 

cLiving* 

cHuman 

cWeapon* 

cLiving 

cDog 

cWorldRegion 

cInterior 

cWorldRegion 

cExterior 

cLiving 

cHuman 

cSkeleton 

cGameObject* 

cBrain 

cSensory 

cBrain 

cSensory 

cWeapon 

cPistol 



Design Tricks 1 

 Remove temptation 
 Minimal data 

 Per frame  stack 

 Minimal lifetime 
 Use new/delete boundary! 

 Pools 

 Favour derivation 
 No equation contradiction 

 No duplicate data 

 Potential deep class problem? 
 Generalise 

 
 

class cPhysicalProperties 

{ 

public: 

 inline float Volume() const; 

 inline float Mass() const 

      {  

return Volume() * mDensity; 

      } 

 inline float BoundsRadius() const; 

 

 inline bool IsCarriable( cAABB grasp,  

 float force ) const; 

 

 inline bool IsThrowable( float force ) const; 

 

private: 

 cAABB mBoundingBox; 

 float mDensity; 

}; 

 



Design Tricks 2 

 Locality of reference 
 Abstraction + composition 

 Placement new 

 Embedded lists 

 Pools 

 Minimise NULL checks 

 Non-virtual pathways 
 Use RTTI filtering 

 Many virtual pointers 
 Package once and carry 

downstream 

 

 

 
 

class cProjectile : public cGameObj 

{ 

public: 

 DECLARE_POOL( ... ); 

 cProjectile() : mpPhysics( &mNullPhysics )  { } 

 

 void SetGravity( ... ) { mpPhysics->Add( mGravity ); } 

 

private: 

 iPhysics *mpPhysics; 

 cGravity mGravity; 

 static cDummyPhysics mNullPhysics; 

}; 

 



Conclusions  

 Gameplay gives us fun buttons to press! 
 Tight game-play  Good, reusable A.I. 

 Think 
 Minimal classes 

 Data life time 

 Locality of reference 

 Use 
 Generalisation 

 RTTI 

 Placement new/delete 

 Pools 

 Nothing is really that un-surmountable! 

 



AI DESIGN PATTERNS 

Part 2. Joel McGinnis 



What are the pressures? 

 Resources 

 Cycles 

 Memory 

 Design specificity 



 CA for AI 

 

 

 Flexibility 

 Performance balancing 

 



Word of warning 

 Paradigm not 
architecture 

 

 

 

 So we’ll be looking 
at patterns  



TAKING IT APART 



        Pattern 

AIComponent 

“Where shall we put the data?” 

“Lets just put it on the AIComponent” 

“That seems like a bad idea, lets not do it” 

(anti) 



So what do you have? 

Behavior 
Tree 

Pathfinder 

Movement 
controller 

Target 
manager 

Perception 

Tracking 



What you consume 

 Focal point 

 Targetable object 

 Cover markup 

 Interaction point 

 Trigger volume 

 

 

 

 

 

 

 Granularity is 
Good! 

 



Component matrix 

Entities 

Sniper 

Heavy 

Barrel 

Terminal 

Behavior 
Tree 

Tree 
component 

Tree 
component 

Pathfinding 

Component 

Component 

Targeting 
system 

Targeting 

Targeting 

Target 

Target 

Target 

Target 

Movement 
Controller 

Movement 

Movement 

Cover 

Cover Point 



PUTTING IT BACK 
TOGETHER 



Substitution 

Behavior Tree 

Standard 
movement 

Perception 

Pathfinder 

Animation 

Targeting 



Substitution 

Behavior Tree 

Standard 
movement 

Perception 

Pathfinder 

Animation 

Targeting 

Big creature 
movement 



Substitution 

 What did we gain? 

 Wasn't enough to 
ship but... 

 Minimal investment 

 Nice prototype 

 Answered design 
questions sooner 

 

 Required: 

 COM, signaling, 
interface, 
messaging 

 

 Leverage hierarchy 

 OOP under the CA 



Find Via Registration 

Target Selection Targetable 



Find Via Registration 

Target Selection Targetable 

Targeting System 



Find Via Registration 

Target Selection Targetable 

Targeting System 



Find Via Registration 

 What did we gain? 
 Reduced search 

space 

 Scoping 

 

 Simplify 
construction of 
behavior 

 

 Required: 
 Life-cycle 

management 



Late construction of types 

Target Selection Targetable 



Late construction of types 

Target Selection Targetable 



Late construction of types 

 What did we gain? 

 The ability to 
change our minds 

 Load balancing 

 Try it everywhere 

 Keep it where most 
effective 

 

 Required: 

 Data driven(?) 

 Light weight 



Things to keep in mind 

 Simplest affordances – greatest benefit 

 Prefer small and light-weight CA  

 Lots of little components 



PERFORMANCE 
& MULTI-THREADING 

Part 3. Alex Champandard 



You Must Be Wondering… 

“How do you reconcile this modularity with 
high performance on all hardware?” 



Demo Interlude 

 Example Component 

 

 Influence Maps 

 Come back at 3:00 for details! 



High-Performance 

 Vectorization 

 Update 4x maps at a time with SIMD. 

 

 Parallelization 

 Run batches of 4x maps on multiple cores. 



The Solution 

 Build your Engine as modularly as Entities! 

 Physics, Sensory, Reasoning, Behavior, 
Navigation, Locomotion, Animation. 

 

 Just assure the break-down is the same. 

 It opens up opportunities for optimization. 



Architecture 

Entity 2 

Entity 1 Engine Systems 

Jobs 



BREAKDOWN 

Section 2. 



Component: Configuration  

# Threat Type, Influence 
 
HeavyEnemy  = 4.0 
RangedEnemy  = 2.0 
MeleeEnemy  = 4.0 
ScoutEnemy  = 1.0 
 



Component: Interface 
class ReasoningComponent 
{ 
public: 
 void setEntityThreat(EntityId, float threat); 
 void setAreaThreat(AreaId, float threat); 
 
 float getAreaThreat(AreaId) const; 
 
 /* … */ 
 
 
 
}; 



Component: Communication 
class ReasoningComponent 
{ 
public: 
 void setEntityThreat(EntityId, float threat); 
 void setAreaThreat(AreaId, float threat); 
 
 float getAreaThreat(AreaId) const; 
 
 /* … */ 
 
 typedef Delegate<void (float)> ThreatObserver; 
 void notifyThreatLevel(float threshold, ThreatObserver); 
}; 



Component: Life-Cycle 

 Request new influence map on init(). 

 Or when entering combat state. 

 

 Remove it on shutdown() 

 Or when going into wounded state. 



System: Batching & Prioritization 

 Don’t process individual requests… 

 

 Instead decides how to spawn jobs 

 Group maps updated at same frequencies. 

 Limit maximum number of jobs per frame.  



System: Memory Allocation 

 Manage memory for all influence maps. 

 

 Customize allocation: 

 Allocate 4x maps at a time! 

 Interleave the float values for SIMD. 



Jobs: Workload 

 Implemented using SSE, Altivec. 

 Process 4x maps at a time 

 

 Output 

 Influence Data 

 Input 

 Level Map 

 Parameters 



Jobs: Parallelism 

 Jobs are isolated from each other. 

 No communication or inter-dependencies. 

 

 Can run in parallel if necessary. 



SUMMARY 

Section 3. 



Components 

1. Very lightweight 

2. Simple interface 

3. Handles events 

4. Data-driven 

 



Systems 

1. Memory Allocation 

2. Computation Limits 

3. Batching 

4. Prioritization 



Jobs 

1. Computationally heavy work 

2. Easily parallelizable code 

3. Clear interface w/ engine 



Creating Your Building Blocks 
Modular Component AI Systems 

 Brett Laming, Rockstar Leeds 

 Joel McGinnis, CCP 

 Alex Champandard, AiGameDev.com 


