February 28 - March 4, 2011
Moscone Center, San Francisco

www.GDConf.com

Multi-Core Memory
Management
Technology In

Mortal Kombat

Adisak Pochanayon ETHE}]REHLM

Principal Software Engineer
Netherrealm Studios
adisak@wbgames.com

http://[twitter.com/adisak
http://facebook.com/adisak

The MK Memory Manager \@j\)\

NETHESREAUM

Q: What is the MK Memory Manager ?

A: Completely new Modern Memory Manager
developed with console ideology in mind.

Spring 2011 Mortal Kombat

Topics to cover \@j\\)\

NETHESREAUM

 Memory Managers in our previous Game
* Locking and Fixed-Backstore Issues
* Multicore Awareness

* General Architecture and Primary Hybrid
Heap

« Small Block Memory Manager

« Simple Lockfree Primitives and Allocators
* Debug Support and Early-Init

* Postmortem Summary

The starting point @5\

NETHESREAUM

"MK vs DC” primarily used two memory
managers:
* Unreal Memory Manager (FMalloc)

— Engine side resources
— C / C++ memory management

« “Game” Memory Manager
— Game side resources
— Console oriented

Unreal MemMgr Limitations \@j\)\

NETHESREALM

* LibC++ feature set
 No multiple heap support

* Not natively threadsafe / multicore

— Non-threadsafe memory allocators are protected
with a “global lock”

— "MK vs DC" used DLMalloc internally
* Some operations cause large stalls!

Game MemMgr Limitations ‘l;"\‘

NETHESREAUM

 Not thread safe

* Not “Virtual Memory Aware”
— Supported only static fixed backstore

* Very Slow / O(N) ops
* Fragmented Easily (naive first fit)

Global Locking is Bad @;@\

NETHESREALM

* Not multicore optimized

 All operations can cause minor stalls or
context switches on other threads

» Certain operations can cause large system-
wide stalls

— Large Application Alloc Requests
— Heap Backstore Allocations
— Realloc() operations

Global Lock Realloc() (.4

NETHESREALM

Realloc()

Thread 1

Thread 2

Fine-Grained Lock Realloc() .

NETHESREALM

Realloc()

Thread 1

Thread 2

Non-Blocking Realloc() N

NETHESREALM

Realloc()

Thread 1

Thread 2 .. N

VM Awareness (.4

NETHESREALM

Fixed Backstore Leads to Fragments

® Alloc ®
Old School: Memory
Static Fixed = Frzﬁmer:.ted
ocation
Backstore Fixed Backstore won't fit
u _ Physical Page
— Physical Memory Remapped in
VM Aware:
Dynamic
Backstore
and Large
Allocations

Virtual Memory “solves” Physical Fragmentation

Multicore Approach \@j)\

NETHESREALM
* Threadsafe by default
» Lock-free when possible (and straightforward)
* Prefer Non-blocking locks when required
— Non-Exclusive Locks (ex: Reader-Writer)
— Fine-Grained Locking
— Striped Locking

* High performance for single-threading as well

— Uncontested accesses do not pay a significant
penalty.

New Memory Manager @j\\)\

NETHESREAUM

 Make Thread-Safe and Multi-Core Optimized

* Unify Separate MemMgr’s for Game and
Unreal Engine

« Support multiple heaps with extra features

* Improve performance (both CPU cycles and
Memory Usage Efficiency)

« Common Tracking and Debugging Ultilities

Concurrent Heaps \@j\\)\

NETHESREALM
 Heaps have minimal Thread “crosstalk”

« Simultaneous allocations / frees from
multiple threads possible on a single heap (if
supported by heap type — most do!)

« Backstore and Internal Heap Querying
operations typically operate concurrently

(using Lock-free, Striping or Reader-Writer
Locks)

» Realloc ()'s NEVER block while copy occurs

Simplified Architecture (

NETHESREALM

Application
: Allocations seen
Physical directly by App

Hier Child Heap Hierarchical BS

Hier BS Mgr

BS Director

Virtual Memory Manager (OS)

Ill File (PC Swap)

ile (

Physical Memory

Heap Implementations @j)\

NETHESREALM
 Heap API uses virtual functions

— Common support API for Backstore and OS Allocs

» Global Free() “knows” to which heap memory is returned

« Easy to make different Heap Implementations
— Direct OS Heap
— Best Fit Heap (using Red-Black Tree)
— Small Block Heap (Lock-Free Alloc / Striped Free)

— Fixed Block Heap (Lock-Free — used for MK Game
Obijects)

Hybrid Primary Heap R

* Primary Heap uses Hybrid approach to
handling allocations

— Large Allocations go directly through OS to
minimize fragmentation (but are tracked
internally)

— Medium Allocations go to a Best-Fit heap

— Small Block Allocations are handled by their own
heap

e C++ new / delete & C malloc / free calls
routed to the Primary (Hybrid) Heap.

Hybrid Primary Heap ¢)

NETHESREALM

“Hybrid” Primary Heap

_ SBMM:
Medium Small Alloc Small
Alloc
Block
Direct Best Fit Memory
Mgr Heap Manager
Backstore Backstore Thresholds:
Small <= 2K

Large >= 256K

Virtual Memory Manager (OS)

Allocation Profiling ¢

NETHESREALM

Allocation Memory Allocation Count
Usage in MB's

= Small (16.8 “ Small
MB) (118,905)
® Medium " Medium
(37.5 MB) (3,994)
Large (17.7 Large (33)

MB)

Allocation Profiling ¢)

NETHESREALM

Allocation Counts by Power of 2 sizes up to 2K (and Medium & Large Allocs)

35000

30000

25000

20000

15000
10000
5000 I
N B EEEEEEN)
16 32 64 128 256 512

1024 2048 256K LARGER

Small Block Memory Manager \@j\)\

NETHESREAUM

« SBMM = Small Block Memory Manager
— Very low thread contention
— Supports many simultaneous operations

— Binning allocator

» Sized Bins
 Lock Striping = Lock Per Bin

— LockFree Alloc()* (*most of the time)

* Lookaside cache uses “victim” blocks for lockfree
Allocs()

— Fast Stripe-Locked Free()

Small Block Memory Manager @j\\)\

NETHESREALM
Quick Terminology

Bin = Everything related to Allocations of a Specific
Size
SuperBlock = Backstore Memory Chunk (from OS)

Block = Subdivision of SuperBlock. Either empty or

owned by a Bin (and containing many items, all of
the same size).

Item = Subdivision of Block (sized for a bin). ltems
represent the actual memory returned from SBMM.

Victim = Lockfree Lookaside cache for a Block’s Iltems

SBMM Binning ¢)

NETHESREALM

“Victims” Look-aside Cache for Allocation
Array of LockFree Lists of Items

- S000088e -

e e ¢

| LockFree
? D ltem Lists

SBMM Memory Layout N

NETHESREALM

SBMM Heap Backstore Allocator Virtual Memory

Superblock (BS) Superblock (BS)

l :

a U I

Victim

In-Use Blocks

Exhausted Blocks

Small Block Memory Manager @j\\)\

NETHESREAUM

* Mostly LockFree Alloc ()
— LockFree freelist cache of “Victim” Block’s Items

— When empty, Bin striped-lock is acquired and
new freelist is established from next Block with

free Iltems
— This is a very fast operation until all the Blocks

are exhausted.

 |n this rare case, a new Block must be taken from the
SuperBlocks and a freelist initialized for the items. If
all the SuperBlocks are exhausted, a new SuperBlock

Is requested from OS.

Small Block Memory Manager @;@)\

NETHESREAUM

* Free()
— Originally LockFree but required Delayed GC

— Striped Lock == Easy Trimming (No Delayed
GC)

* Find Block & Bin Size and Fast-Lock Bin
 Push memory item and check count
 *If Trimming required, pull Block, Release Lock, Trim
« Otherwise Release Lock
» Uncontested case is very similar to LockFree speed
 Striped so normally Uncontested

Simple LockFree Allocators \@j\\)\

NETHESREALM
« AtomicPair is your friend. Allows you to

access a pair of words atomically (read /
write / CAS)

« Useful for a making a whole class of simple
allocators LockFree and Multicore friendly
— All allocators which use only two variable

updates for control words

« Concurrent FreelList (SLIST) [Head / ABA-Sequence]
 Slab Allocator [Write-Pointer / Remainder |

» Ring-Buffer [Read-Pointer / Write-Pointer] *

NETHESREAUM

 SLIST is a LockFree Singly-Linked List
— Implemented in the Windows API

— Very simple to roll your own (it's a good “hello
world” for teaching LockFree programming)

— Clever trick: Incorporate counter into ABA-
Sequence for “free”
« Example 32-bit Sequence starts at 0
« Add 0x00010001 for Push
« Add OxOO00FFFF for Pop
« Bottom 16 bits == item count (up to 64K)

LockFree NR-Pools (.4

NETHESREALM
Used for simple control structures in
the MK Memory System.

Application

FreelList FreelList
(Atomic Slist) (Atomic Slist)

Backstore

(Atomic Slab) SLAB MEMORY

Debugging Support \@j\\)\

NETHESREAUM

 Heap Validation Functions

 Memory Pattern Support (OXDEADBEEF et al)
« Basic Statistic Gathering

* Debug builds have extra heap integrity checks

* Debug Tracking can record all allocations
— Exported to a file automatically on Out-of-Mem
— Can track by specified “bins” or timed bread-crumbs

* Memory visualization tool: allocs & stack traces

Initialization Order @5\

NETHESREAUM

 Memory system must be initialized before C+
+ global constructors run if they call “new”.

« Construct-on-First-Use (COFU) has penalties
for both implicit and explicit versions.
* Use Early-Init instead:
GCC: __attribute_ ((init_priority (N)))
MSVC: #pragma init_seg(X)

What went wrong... ({h‘;\\)\

NETHESREALM
* Underestimating amount of work

— 10 months development prior to “live”
deployment

— 3 months up front writing support libraries alone

* Initial attempts at SBMM table sizing
— Powers of 2 and Sparse Tables wasted memory

* Debug features had unclear messages

— Asserts to trap memory corruption conditions led
to many “crash in the memory system” reports
that were flaws in game code

What went right @M\\\

NETHESREAUM

* QOverall architecture
— 3 Level Hybrid Heap approach for main allocator

* Building a library of multicore primitives
— Now used by Rendering and Job Graph as well

 Building in additional debugging features
 Fairly easy to share with other projects
— Example: 4 days to integrate without help

* Overall we are very pleased with the new
system

Questions ??7? ‘ ”\

NETHESREALM

Contact Info:

Adisak Pochanayon
Principal Software Engineer
Netherrealm Studios
adisak@wbgames.com

NETHESREALM

