
1Sunday, April 3, 2011

2Sunday, April 3, 2011

DOING MORE

Animating NPCs in Uncharted

WITH LESS

2Sunday, April 3, 2011

John Bellomy

AI & Animation Programmer

3Sunday, April 3, 2011

Animation System

• Emphasis on NPCs

• Beginning with Uncharted 1

• Problems Encountered

• Solutions Developed for U2

4Sunday, April 3, 2011

Overview talk here

animation system, emphasis on npcs
story of uncharted 1 to uncharted 2
problems encountered
solutions

Animation System

5Sunday, April 3, 2011

Animation System

• Robust

• Flexible

5Sunday, April 3, 2011

Animation System

6Sunday, April 3, 2011

Animation System

• Fast

• Minimal Memory Cost

6Sunday, April 3, 2011

Node Based

7Sunday, April 3, 2011

Show screenshot of a node editor

One common approach is to have one large node graph controlling the animations and blends for a character

Node Based

8Sunday, April 3, 2011

This can be thought of as one big tree

State Graph Based

9Sunday, April 3, 2011

a single tree per behavior

10Sunday, April 3, 2011
Lets talk about Uncharted 1.

It was a from-scratch engine created for the PS3.

Christian Gyrling previous talks

Most game engines & animation software packages out there will include a well developed node-based animation editor and build their runtimes to work with this data. We did not have any such editor.

What we did have...

()
11Sunday, April 3, 2011

Was a good familiarity with Lisp

DC

• Based on PLT Scheme

• Dual Roles:

• Data Generation

• Runtime Scripting

• Compiles into bin file

12Sunday, April 3, 2011

Limit DC example context to animation system

anim-elena

Uncharted States

s_idle

s_run

s_cover

s_walk

13Sunday, April 3, 2011

A character would have a module which contained all it’s states

anim-elena

Uncharted States

s_idle

s_run

s_cover

s_walk

13Sunday, April 3, 2011

A character would have a module which contained all it’s states

anim-elena

Uncharted States

s_idle

s_run

s_cover

s_walk

s_idle

s_run

s_cover

anim-sullivan

s_walk

s_idle

s_run

s_cover

anim-pirate

s_walk

14Sunday, April 3, 2011

Each character had their own module to describe their animation state graph

Animation State

Tree
walk-anim

walk-look-left-right

walk-look-up-down

s_walk

Transitions
idle s_idle

run s_run

Script Funcs

15Sunday, April 3, 2011

Transitions

Idle

Walk Run

16Sunday, April 3, 2011
States are connected via transition links.

Transitions describe both the behavior of the blend (i.e. blend time, blend curve, blending motion versus blending animation)

Transitions

• Blend Time

• Curve Type

• Animation & Motion Blending Controls

• Optional Conditions

17Sunday, April 3, 2011

Transitions

Idle

Walk Forward

Walk RightWalk Left

Walk Backward

18Sunday, April 3, 2011
A major benefit about this approach is the use of named transitions between states.

Instead of taking transitions by requesting the desired state explicitly, each transition is named and thusly requested by. The calling code doesn’t even need to know about what state it’s currently in, let alone how the transition will behave (we have various helper functions to query for transition availability).

This means a transitions behavior (how long a blend, if it went to an intermediary state, etc) could be defined independently of it’s functionality (this is a ‘walk’ transition).

Transitions

Idle

Walk

WalkWalk

Walk

19Sunday, April 3, 2011
A major benefit about this approach is the use of named transitions between states.

Instead of taking transitions by requesting the desired state explicitly, each transition is named and thusly requested by. The calling code doesn’t even need to know about what state it’s currently in, let alone how the transition will behave (we have various helper functions to query for transition availability).

This means a transitions behavior (how long a blend, if it went to an intermediary state, etc) could be defined independently of it’s functionality (this is a ‘walk’ transition).

Transitions

20Sunday, April 3, 2011

Often we will have multiple transitions with the same name with varying conditions based on the desired character behavior.

This is an example of the locomotion logic requesting the walk transition and the correct directional transition being taken automatically. The higher level logic didn’t need to deduce a walk-left or walk-180 transition
was needed, it just said ‘walk’

Animation State

 :transitions (
 (transition 'idle 's_idle)
 (transition 'run 's_run)
 (transition 'sprint 's_sprint))
)

(define-state s_walk
 :tree (blend
 (blend
 (anim "walk-anim")
 (anim “look--left-right“))
 (anim “look--up-down“))

21Sunday, April 3, 2011

Anim script funcs

22Sunday, April 3, 2011

- One benefit of authoring our animation states in scheme was that it was easy to inline snippets DC Script (our runtime scripting language)
- These were defined as scheme lambdas
- We would use these “animation funcs” various things, building in some initial flexibility

- E.g. an animation node could use it to repurpose the time axis of an animation

Animation State

(define-state s_walk
 :tree (blend
 (blend
 (anim "walk-anim")
 (anim “look--left-right“))
 (anim “look--up-down“))

:phase-func (npc-phase-func (* 1.5 phase))
 :transitions (
 (transition 'idle 's_idle)
 (transition 'run 's_run)
 (transition 'sprint 's_sprint))
)

23Sunday, April 3, 2011

Runtime

24Sunday, April 3, 2011

Runtime

Character

AnimControl

24Sunday, April 3, 2011

Runtime

Layer Layer

Character

AnimControl

24Sunday, April 3, 2011

Runtime

Instance

Layer

Instance Instance

Layer

Instance

Character

AnimControl

24Sunday, April 3, 2011

Runtime

Instance

Layer

Instance Instance

Layer

Instance

Character

AnimControl

Info

25Sunday, April 3, 2011

Runtime

Info

25Sunday, April 3, 2011

Runtime

Info

Aim Blend Factors

Movement Speed

Facing Direction

...

26Sunday, April 3, 2011

The info structure provides context

The animation system cannot read game data, only what is provided via the info structure

Animation world is isolated, and the info structure is the ambassador

Runtime

Info

Aim Blend Factors

Movement Speed

Facing Direction

...

26Sunday, April 3, 2011

The info structure provides context

The animation system cannot read game data, only what is provided via the info structure

Animation world is isolated, and the info structure is the ambassador

Runtime

Runtime
Animation
Controllers

Info

27Sunday, April 3, 2011

For doing things like aiming and look ats, we would combine script funcs and info structures. Info structures became a way for the higher level AI logic to influence the animation tree without having to know specific
implementation details of the currently active tree.

In the beginning we tried to get all our flexibility and features through script funcs and info structures, but it became too cumbersome and clunky. Adding a feature meant changes in multiple places and there was no
real good way to source the data on the runtime side.

Info structures

28Sunday, April 3, 2011

http://chrishecker.com/Structure_vs_Style

29Sunday, April 3, 2011

- Separating Structure and Style allows you to do both more efficiently
-

http://chrishecker.com/Structure_vs_Style
http://chrishecker.com/Structure_vs_Style
http://chrishecker.com/Structure_vs_Style
http://chrishecker.com/Structure_vs_Style
http://chrishecker.com/Structure_vs_Style
http://chrishecker.com/Structure_vs_Style

Moving Forward

30Sunday, April 3, 2011

-More characters
-More variations across character types
-More variations within character types

UDF Anim Graph Memory Usage

31Sunday, April 3, 2011

Jumping back to the end of Uncharted 1, our first priority was to get that crazy memory usage down.

UDF Anim Graph Memory Usage

Elena Sullivan Pirate (LG) Pirate (Pistol)

224

401

678 688

Si
ze

 (
K

B)

31Sunday, April 3, 2011

Jumping back to the end of Uncharted 1, our first priority was to get that crazy memory usage down.

Duplicate Trees

Elena
eln-walk-fw

eln-look-lr

eln-look-ud

sul-walk-fw

sul-look-lr

sul-look-ud

Sullivan

32Sunday, April 3, 2011

When we looked at all the different animation state graphs and trees there wasn’t that much difference between them. With some cajoling we could make every character use the same state graph and tree structure.

Of course each of the previous bin files referenced different animation names so the solution because obvious: introduce an animation name abstraction system and thus our first real foray into separating style and
structure.

Anim Sets

Sullivan
sul-walk-fw
sul-look-lr
sul-look-ud

Elena
eln-walk-fw
eln-look-lr
eln-look-ud

33Sunday, April 3, 2011

We want to extract out unique information

We use unique keys to pair ‘virtual’ animations

Anim Sets

Tree
walk

walk-look-lr

walk-look-ud

s_walk

walk

walk-look-lr

walk-look-ud

eln-walk-fw

eln-look-lr

eln-look-ud

34Sunday, April 3, 2011

At its core anim-sets are runtime translation of animation names. This is very simple but powerful.

We would define our state graph and tree in one as normal, but then create a second file that contained only anim sets for a particular character.

This is good because despite our shorthand macros to define animation states and trees it’s still not good for an animator to try and parse to make edits to animation names.

Anim Sets

walk

walk-look-lr

walk-look-ud

eln-walk-fw

eln-look-lr

eln-look-ud

35Sunday, April 3, 2011

At its core anim-sets are runtime translation of animation names. This is very simple but powerful.

We would define our state graph and tree in one as normal, but then create a second file that contained only anim sets for a particular character.

This is good because despite our shorthand macros to define animation states and trees it’s still not good for an animator to try and parse to make edits to animation names.

Uncharted States

s_idle

s_run

s_cover

s_walk

s_idle

s_run

s_cover

anim-sullivan

s_walk

s_idle

s_run

s_cover

anim-pirate

s_walk

anim-elena

36Sunday, April 3, 2011

Anim Sets Split

anim-sets

elena

sullivan

s_idle

s_run

s_cover

s_walk

anim-npc

37Sunday, April 3, 2011

(define-anim-set *longgun-soldier-medium-anim-set*

...

 (combat-run <- sol-med-lg-gunout-run-d-fw)
 (combat-run-look-left-right <- sol-med-lg-gunout-run-d-fw-look-left-right)
 (combat-run-look-up-down <- sol-med-lg-gunout-run-d-fw-look-up-down)

...

)

Anim Set File

Text

38Sunday, April 3, 2011

An anim-set file is much easier to parse mentally, even in scheme. With source animation names on the left and translated on the right.

(define-anim-set *longgun-soldier-medium-anim-set*

...

 (combat-run <- sol-med-lg-gunout-run-d-fw)
 (combat-run-look-left-right <- sol-med-lg-gunout-run-d-fw-look-left-right)
 (combat-run-look-up-down <- sol-med-lg-gunout-run-d-fw-look-up-down)

...

)

Anim Set File

Text

38Sunday, April 3, 2011

An anim-set file is much easier to parse mentally, even in scheme. With source animation names on the left and translated on the right.

(define-anim-set *longgun-soldier-medium-anim-set*

...

 (combat-run <- sol-med-lg-gunout-run-d-fw)
 (combat-run-look-left-right <- sol-med-lg-gunout-run-d-fw-look-left-right)
 (combat-run-look-up-down <- sol-med-lg-gunout-run-d-fw-look-up-down)

...

)

Anim Set File

Text

38Sunday, April 3, 2011

An anim-set file is much easier to parse mentally, even in scheme. With source animation names on the left and translated on the right.

Anim Sets

• Simple structure…

• Binary search queries

struct AnimSetEntry
{
 StringId m_sourceId;
 StringId m_remapId;
};

struct AnimSet
{
 const AnimSetEntry* m_animSetArray;
 I32 m_animSetArrayCount;
};

AnimSetArray
source remap

source remap

source remap
source remap

source remap

source remap

39Sunday, April 3, 2011

Anim set data is quite simple. A single entry is a key-value pair of string hashes (what we call StringIds).

Collectively the array of entries is sorted by key.

This results in an equally simple binary search function for querying

Memory Gains

anim-elena
anim-sullivan
anim-pirate

...

2.7 MB

anim-npc
anim-sets

347 KB

40Sunday, April 3, 2011

In Uncharted 1 we had individual animation bin files (containing all the states, trees, etc.) which in all consumed 2.27 MEGS of memory to have loaded.

Moving to Uncharted 2 we used only one animation bin file but multiple individual anim set files.

By simply removing the redundant animation states we saw a drastic drop in memory consumption: ~347KB to have animation data for all characters!

Memory Gains

anim-npc

anim-sets

347 KB

289 KB

58 KB

41Sunday, April 3, 2011

Production gains

• Files simple enough for artists to edit

• Decoupled programmer from workflow

• Supports dynamic reloading

• Fast iteration

42Sunday, April 3, 2011

Problems for Programmers

• One Tree To Rule Them All

• Fixed behaviors across character types

• Had to build for the most expensive case

• Changing trees hugely impactful on animators

43Sunday, April 3, 2011

• There are problems though…

• Using one animation bin file for all characters constrains all to the same state graph & tree structure
•The cajoling we did before meant giving up flexibility in our animation trees across different character types

• Since we had one state/tree definition list for all character types, creating a character became filling out a master list, which grew to a significant size- cumbersome!
• Animators were often required to make animations for slots not needed for the desired look

• For example a villager in the background might not need the same tree fidelity as Chloe, but they were the same.

Problems for Animators

 Creating a character became “Fill this list”
 Became a big list

 Characters with small variations
disproportionality time consuming

• Creating a character became “Fill this list”

• Became a big list

• Characters with small variations disproportionality time

consuming

44Sunday, April 3, 2011

• There are problems though…

• Using one animation bin file for all characters constrains all to the same state graph & tree structure
•The cajoling we did before meant giving up flexibility in our animation trees across different character types

• Since we had one state/tree definition list for all character types, creating a character became filling out a master list, which grew to a significant size- cumbersome!
• Animators were often required to make animations for slots not needed for the desired look

• For example a villager in the background might not need the same tree fidelity as Chloe, but they were the same.

Tree Variations

s_idle

s_run

s_cover

s_walk

anim-npc

45Sunday, April 3, 2011

We needed to be able to change the trees themselves per character

While a fist soldier might need a less complicated animation tree

a pistol char would be more demanding

Tree Variations

s_idle

s_run

s_cover

s_walk

anim-npc Fist

45Sunday, April 3, 2011

We needed to be able to change the trees themselves per character

While a fist soldier might need a less complicated animation tree

a pistol char would be more demanding

Tree Variations

s_idle

s_run

s_cover

s_walk

anim-npc Fist Pistol

45Sunday, April 3, 2011

We needed to be able to change the trees themselves per character

While a fist soldier might need a less complicated animation tree

a pistol char would be more demanding

Tree Remaps

s_idle

s_run

s_cover

s_walk

anim-npc

s_walk

s_run

Fist Pistol
tree-remaps

46Sunday, April 3, 2011

Tree Remaps

s_idle

s_run

s_cover

s_walk

anim-npc

s_walk

s_run

Fist Pistol
tree-remaps

46Sunday, April 3, 2011

Tree-remaps

47Sunday, April 3, 2011

With tree remaps we can now have a lot more variety for a single animation state (in this case ‘idle’), be it a simple looping idle animation, a base animation with a look at tree,
or a complicated aim-look tree

Data Source Hierarchy

anim-npc

PistolFist Longgun

Brawler Villager Pistol
Soldier Tenzin MinigunShotgun

Soldier Anim Sets

Tree Remaps

State Graph

48Sunday, April 3, 2011

Data Source Hierarchy

anim-npc

Pistol

Tenzin

49Sunday, April 3, 2011

Layered Remaps

50Sunday, April 3, 2011

Because we are resolving both animation trees and animation names in our runtime we can do some interesting things: namely layering.

Layered Remaps

Soldier

pistol-soldier

51Sunday, April 3, 2011

Layered Remaps

Soldier

pistol-soldier

Easy Soldier
pistol-soldier-easy

pistol-soldier

52Sunday, April 3, 2011

Layered Remaps

Easy Soldier
pistol-soldier-easy

pistol-soldier

53Sunday, April 3, 2011

Layered Remaps

25 Animations

200 Animations

Easy Soldier
pistol-soldier-easy

pistol-soldier

53Sunday, April 3, 2011

Layered Anim Sets

54Sunday, April 3, 2011

This lets us define characters in terms of deltas.

we can compose a character from multiple pieces and layering lets us achieve that

Layered Anim Sets

55Sunday, April 3, 2011

the animators took well to the layering approach because artists respond well to explanations of “it works like photoshop”

Remap sources

56Sunday, April 3, 2011

Deciding which remaps we pushed could potentially come a multitude of sources:
- AI logic could add or remove them to match behavior changes
- Level scripts could do so to follow high level gameplay flow
- Designers could attach them to entity spawners in the level

Remap sources

• AI

56Sunday, April 3, 2011

Deciding which remaps we pushed could potentially come a multitude of sources:
- AI logic could add or remove them to match behavior changes
- Level scripts could do so to follow high level gameplay flow
- Designers could attach them to entity spawners in the level

Remap sources

• AI

• Level Scripts

56Sunday, April 3, 2011

Deciding which remaps we pushed could potentially come a multitude of sources:
- AI logic could add or remove them to match behavior changes
- Level scripts could do so to follow high level gameplay flow
- Designers could attach them to entity spawners in the level

Remap sources

• AI

• Level Scripts

• Spawner Property

56Sunday, April 3, 2011

Deciding which remaps we pushed could potentially come a multitude of sources:
- AI logic could add or remove them to match behavior changes
- Level scripts could do so to follow high level gameplay flow
- Designers could attach them to entity spawners in the level

Remap sources

57Sunday, April 3, 2011

Being able to add remaps on spawners ended up being a particularly big win for us because it made for really easy “spot-fixing” of characters as needed for levels.

An animator could create a small delta anim-set file to fixup the animations required for the situation created by the designer. The designer could then place it on the spawner
in our level editor and see the result right away.

All without having to bother a programmer – epic win!

variations

58Sunday, April 3, 2011

The same principle of defining characters with delta sets also allows us to tackle the problem of creating variations in a nice way.

Besides being able to configure variations of characters with delta animations, we could create variations within particular character types

Instance Variations

59Sunday, April 3, 2011

We created what we called “instance variations”

Instance variations were defined as a collection of anim-sets and a character would pick one of these collections at it’s birth and apply the set.

This works well because a walk animation might require different aim or look-at animations to go with it, and it’s important to vary them as a group as to not make the character
look disjointed.

Instance Variations

walk-a

walk-a-aim-lr

walk-a-aim-ud

A
walk-b

walk-b-aim-lr

walk-b-aim-ud

B

walk-c

walk-c-aim-lr

walk-c-aim-ud

C
walk-d

walk-d-aim-lr

walk-d-aim-ud

D

59Sunday, April 3, 2011

We created what we called “instance variations”

Instance variations were defined as a collection of anim-sets and a character would pick one of these collections at it’s birth and apply the set.

This works well because a walk animation might require different aim or look-at animations to go with it, and it’s important to vary them as a group as to not make the character
look disjointed.

Instance Variations

walk-a

walk-a-aim-lr

walk-a-aim-ud

A
walk-b

walk-b-aim-lr

walk-b-aim-ud

B

walk-c

walk-c-aim-lr

walk-c-aim-ud

C

walk-d

walk-d-aim-lr

walk-d-aim-ud

D

59Sunday, April 3, 2011

We created what we called “instance variations”

Instance variations were defined as a collection of anim-sets and a character would pick one of these collections at it’s birth and apply the set.

This works well because a walk animation might require different aim or look-at animations to go with it, and it’s important to vary them as a group as to not make the character
look disjointed.

Costs

60Sunday, April 3, 2011

With so much of an animation state in potential flux we needed a way to work and animate a character reliably and to avoid paying unnecessary re-resolve costs.

We needed to resolve once and store it for later. Our initial solution was to pad our DC animation state and animation node structures with fields for resolved values; we would
then make a copy of this structure and store it per active animation state instance.

This is obviously wasteful for both increasing the size of our bin files and duplicating constant data in memory!

Costs

• Many Translation Layers

• Re-evaluation Expensive

• Time Coherency Extremely Problematic

61Sunday, April 3, 2011

Solution

Capture
Instantaneous

Character State

62Sunday, April 3, 2011

Runtime

Instance

Layer

Instance

Layer

Instance

Character

AnimControl

Instance

63Sunday, April 3, 2011

Snapshotting

Instance

eln-walk-fw

eln-look-lr

eln-look-ud

Snapshot Tree

eln-walk-fw
eln-look-lr
eln-look-ud

64Sunday, April 3, 2011

When we construct an animation state instance, we record all translated animation names, trees and any other dynamically resolved data.

Snapshotting

Instance

Snapshot Buffer

65Sunday, April 3, 2011

Instance doesn’t translates on entry
Stores translated information

Snapshots

Anim Node

32 Bytes

Snapshot Buffer

Blend Node

66Sunday, April 3, 2011

When we construct a snapshot tree we fill out a pre-allocated buffer with snapshot “nodes”

(A node is just a union of the snapshot blend and snapshot animation structures)

The snapshotting itself is simply accomplished by walking the DC tree, computing all the translated values, and storing them.

Constructing a new animation state instance takes ~100 microseconds spent constructing our snapshot. This is done any time a character changes animation states.

Snapshot Nodes

Anim Name

Skeleton

Art Resource

Anim Node

Blend Factor

Tree Breadth

Child Indices

Blend Node

67Sunday, April 3, 2011

Snapshot Memory

Instance

Layer

Character

AnimControl

Instance

SS BufSS Buf

Instance

Layer

Instance

SS BufSS Buf

68Sunday, April 3, 2011

9 KB

Snapshot Memory

7.25 KB / 4 InstancesInstance

Layer

Instance

1.5 KB / 48 NodesSS BufSS Buf

69Sunday, April 3, 2011

How much memory do we spend on snapshotting?

An NPC will typically contain only one AnimStateLayer (that is, an animation layer that uses our DC state graph system to construct blends). The total cost of allocating one of
these layers weighs in at a little over nine KB.

For each state layer we allocate a certain number of AnimStateInstances for the instance pool. This will be the maximum number of states we can be blending together at a
single point in time.

For NPC’s this number is 4, and a single instance weighs in at around 1.8KB, bringing the total allocation cost for instances to 7.25 KB for the entire layer.

Within a single instance we allocate 1.5KB for an array of 48 snapshot nodes (32 bytes each). This is the buffer needed for a single instance to completely snapshot a state. For
all 4 instances used by a layer this means we’re spending 6KB for our snapshot buffers. Not too bad!

Snapshotting

Base Anim
State

Anim Sets
Tree Remaps

Snapshot

70Sunday, April 3, 2011

Snapshotting

71Sunday, April 3, 2011

problems
• Loss of Clarity

• No quick way to see how a state will animate

• Best compensated with runtime debugging aids

72Sunday, April 3, 2011

problems
• Could no longer evaluate arbitrary animation states

• Predicting movement for things like jumps

• Fixed by ability to create arbitrary snapshots

• Typically on the stack with a stack buffer

73Sunday, April 3, 2011

Evolution

74Sunday, April 3, 2011

Evolution

Fill in Animations

Construct Trees

Add Fidelity

Create Variety

Build State Graph

74Sunday, April 3, 2011

Evolution

Fill in Animations

Construct Trees

Add Fidelity

Create Variety

Build State Graph

Structure Style

74Sunday, April 3, 2011

Evolution

Fill in AnimationsConstruct Trees

Add Fidelity

Create Variety

Build State Graph

Structure Style

74Sunday, April 3, 2011

Evolution

Fill in AnimationsConstruct Trees

Add Fidelity

Create Variety

Build State Graph

Structure Style

74Sunday, April 3, 2011

Evolution

Fill in AnimationsConstruct Trees

Add Fidelity

Create Variety

Build State Graph

Structure Style

74Sunday, April 3, 2011

Evolution

Fill in AnimationsConstruct Trees

Add Fidelity

Create Variety

Build State Graph

Structure Style

74Sunday, April 3, 2011

Evolution

Fill in AnimationsConstruct Trees

Add Fidelity

Create Variety

Build State Graph

Structure Style

74Sunday, April 3, 2011

Whats Next

• Better Tools

• Transitions

• Get it running on the SPUs!

75Sunday, April 3, 2011

questions

john_bellomy@naughtydog.com
P.S.: We’re Hiring ! jobs@naughtydog.com

76Sunday, April 3, 2011

mailto:john_bellomy@naughtydog.com
mailto:john_bellomy@naughtydog.com
mailto:jobs@naughtydog.com
mailto:jobs@naughtydog.com

