
Handling Many Platforms with a

Small Development Team

Dietmar Hauser

Head of Console Technology, Sproing

About Sproing

• Based in Vienna, Austria

• Work for hire on all platforms

• Independent for over 10 years!

• More than 50 titles shipped!

What the publisher wants

• An awesome game that sells very well

• Sell it on as many platforms as possible

• Get it delivered on time or earlier

• Spend as little money as possible

What we have

• A small team

– 1-n Designers, Artists, Producers

– 1-10 Programmers

• Many platforms

– 2-n Consoles / PC / Phones / Tablets…

• A tight schedule

– And all platforms finished at the same time

Possible Solutions

• Spend more money

– By extending time and/or growing team

– Very risky for everyone involved

– Results in death marches and bankruptcies

• Develop all platforms simultaneously

– Pretty difficult, but possible

– Everything needs to be shared between

platforms as much as possible

Challenges

• Different platform capabilities

– Several asset fidelities required

– Gameplay differences (i.e. controls)

– Code performance differences

• Different APIs

– No good standards (not even POSIX)

– „Close to the metal“ APIs

Sharing Code / Abstraction

• Share only what can be shared well

• Don‘t force abstraction

– Can get too complicated

– Hides actual behaviour

– Hides bugs / performance problems

• Seperate what doesn‘t fit together

Examples

• Easy to abstract

– File I/O, Memory, Network, Threading,…

– Textures, Meshes,…

• Tricky, but possible

– Rendering, Controls,…

– Save Data, DLC,…

• Very tricky, almost impossible

– Peripherals like Kinect, Move, Wiimote,…

– Unique platform features

Ways to abstract code

• Preprocessor directives

– Most obvious and basic way

– Unused code is discarded

– Hard to read Error prone

#if PLATFORM_A

 DoStuffPlatformA();

#elif PLATFORM_B

 DoStuffPlatformB();

#else

 #error Unsupported Platform

#endif

Ways to abstract code

• Pointer to Implementation (PIMPL)

– Common, clean and useful

– A lot to type and virtual function call overhead

class Foo {

 void DoIt() { impl->DoIt(); }

 FooImpl* impl;

};

class FooImpl {

 virtual void DoIt() = 0;

};

#if PLATFORM_A

class FooImplA {

 virtual void DoIt() { DoItPlatformA(); }

};

#endif

Ways to abstract code

• Templated PIMPL

– Similar functionality to classic PIMPL

– Less to type, less overhead

template <class FooImpl>

class FooBase {

 void DoIt() { impl->DoIt(); }

 FooImpl* impl;

};

#if PLATFORM_A

class FooImplA {

 void DoIt() { DoItPlatformA(); }

};

typedef FooBase<FooImplA> Foo;

#endif

Ways to abstract code

• Master header files

– Platform specifics can be exposed

– Least to type, zero overhead

– Danger of code multiplication

// Foo.h

#if PLATFORM_A

 #include „FooA.h“

#elif PLATFORM_B

 #include „FooB.h“

#else

 #error Unsupported Platform

#endif

Ways to abstract code

• There are many many other ways…

– .inl files

– Layered abstractions

• No best way, so mix and match

• Don‘t be afraid to change it while you can

Compiling & Linking

• Each platform has a different toolchain

– Luckily, they‘re all command line tools

– Accept the same source code (mostly)

– Need different parameters

– Print different diagnostics

• Some platforms have a VS integration

– Which is usually pretty bad…

Compiling & Linking

• Use a build tool

– Make, omake, jam, ant, scons,…

• Or roll your own VS integration

– This is what we did…

– … and it‘s simpler than you might think

Introducing ClWarrior

• Lets Visual Studio compile all platforms

– Replaces cl.exe, link.exe and lib.exe

– Translates arguments

– Translates diagnostics

• Very straightforward for new employees

– Code on windows

– Change platform to anything

– Build!

ClWarrior Challenges

• Visual Studio dependency check fails

– Because it relies on a proprietary file (.idb)

– So we wrote our own (it‘s pretty simple)

– And hooked it up using an Add In

• Adding new platforms is not supported

– Except for smart phones…

– „WCE.VCPlatform.config“ can be hijacked

• Debugging still needs the platform tool

– Unfortunate, but acceptable

Keeping the code alive

• There are a lot of code configurations

– We use Debug, Release and Master

– With 4 platforms that‘s 12 builds

• Checking all of them is difficult

– Build is broken very often

– Everyone gets frustrated

– Code commits slow down

Solutions

• Continous Integration (CI)

– All code is built all the time

– Broken builds get reported immediately

– And hopefully fixed immediately

• Unit Tests

– Can be run automatically

– Can detect regressions

– Are very useful when porting to new platforms

More Solutions

• Static Code Analysis

– Can also be run automatically

– Can detect a lot of potential and real bugs

– But can be difficult to set up

• Production QA

– Ensures quality during production

– Problems are uncovered at an early

– Can prepare for final QA

– Usually an overall cost reduction

Assets

• Dependent on the platform combination

• Start with the highest fidelity assets

– Scaling down is easier than scaling up

• Split assets at the latest possible time

– Most changes affect all versions

• Leverage automated downscaling

– Textures are obvious candidates

Asset Conversion

• Automate it!

– Everything is else is too error prone!

– The build tools mentioned earlier can help

– We use a selfmade rule based system

• Speed it up!

– To decrease iteration time

– Easiest way is to do it on one machine and

distribute it to everyone else‘s

Surviving Certification

• Learn, implement and test the

requirements early

• Make sure everyone in the team is aware

of the requirements

– Most of them are actually NOT technical

• Take advantage of pre-cert passes

Certification Tips

• Never stall the render thread

– File I/O is usually to blame

• Make sure your game can be paused at

any time

– And resumed, of course…

• Watch out for memory fragmentation

– Everything will work ok until the end

This is it…

Questions?

