

Bringing AAA graphics to mobile platforms

Niklas Smedberg

Senior Engine Programmer, Epic Games

Who Am I

- A.k.a. "Smedis"
- Platform team at Epic Games
 - Unreal Engine
- 15 years in the industry
- 30 years of programming
- C64 demo scene

Content

- Hardware
 - How it works under the hood
 - Case study: ImgTec SGX GPU
- Software
 - How to apply this knowledge to bring console graphics to mobile platforms

Mobile Graphics Processors

- The feature support is there:
 - Shaders
 - Render to texture
 - Depth textures
 - MSAA
- But is the performance there?
 - Yes. And it keeps getting better!

Mobile GPU Architecture

- Tile-based deferred rendering GPU
 - Very different from desktop or consoles
 - Common on smartphones and tablets
 - ImgTec SGX GPUs fall into this category
 - There are other tile-based GPUs (e.g. ARM Mali)
- Other mobile GPU types
 - NVIDIA Tegra is more traditional

Tile-Based Mobile GPU

TLDR Summary:

- Split the screen into tiles
 - E.g. 16x16 or 32x32 pixels
- The GPU fits an entire tile on chip
- Process all drawcalls for one tile
 - Repeat for each tile to fill the screen
- Each tile is written to RAM as it finishes

(For illustration purposes only)

ImgTec Process

Vertex Frontend

- Vertex Frontend reads from GPU command buffer
- Distributes vertex primitives to all GPU cores
 - Splits drawcalls into fixed chunks of vertices
 - GPU cores process vertices independently
 - Continues until the end of the scene

Vertex processing (Per GPU Core)

Vertex Setup

Receives commands from Vertex Frontend

Vertex Pre-Shader

Fetches input data (attributes and uniforms)

Vertex Shader

Universal Scalable Shader Engine Executes the vertex shader program, multithreaded

Tiling

Optimizes vertex shader output Bins resulting primitives into tile data

Parameter Buffer

Stored in system memory You don't want to overflow this buffer!

Pixel Frontend

- Reads Parameter Buffer
- Distributes pixel processing to all cores
 - One whole tile at a time
 - A tile is processed in full on one GPU core
 - Tiles are processed in parallel on multi-core GPUs

Pixel processing (Per GPU Core)

Pixel Setup

Receives tile commands from Pixel Frontend Fetches vertexshader output from Parameter Buffer Triangle rasterization; Calculate interpolator values Depth/stencil test; **Hidden Surface Removal**

Pixel Pre-Shader

Fills in interpolator and uniform data Kicks off non-dependent texture reads

Pixel Shader

Multithreaded ALUs

Each thread can be vertices or pixels

Can have multiple USSEs in each GPU core

Pixel Back-end

Triggered when all pixels in the tile are finished Performs data conversions, MSAA-downsampling Writes finished tile color/depth/stencil to memory

Shader Unit Caveats

- Shader programs without dynamic flow-control:
 - 4 vertices/pixels per instruction
- Shader programs with dynamic flow-control:
 - 1 vertex/pixel per instruction
- Alpha-blending is in the shader
 - Not separate specialized hardware
 - Shader patching may occur when you switch state
 - (More on how to avoid shader patching later)

Rendering Techniques

How to take advantage of this GPU?

Mobile is the new PC

- Wide feature and performance range
- Scalable graphics are back
- User graphics settings are back
 - Low/medium/high/ultra
 - Render buffer size scaling
- Testing 100 SKUs is back

Graphics Settings

Render target is on die

- MSAA is cheap and use less memory
 - Only the resolved data in RAM
 - Have seen 0-5 ms cost for MSAA
 - Be wary of buffer restores (color or depth)
- No bandwidth cost for alpha-blend
- Cheap depth/stencil testing

"Free" hidden surface removal

- Specific to ImgTec SGX GPU
- Eliminates all background pixels
- Eliminates overdraw
- Only for opaque

Mobile vs Console

- Very large CPU overhead for OpenGL ES API
 - Max CPU usage at 100-300 drawcalls
- Avoid too much data per scene
 - Parameter buffer between vertex & pixel processing
 - Save bandwidth and GPU flushes
- Shader patching
 - Some render states cause the shader to be modified and recompiled by the driver
 - E.g. alpha-blend settings, vertex input, color write masks, etc

Alpha-test / Discard

- Conditional z-writes can be very slow
 - Instead of writing out Z ahead of time, the "Pixel setup" (PDM) won't submit more fragments until the pixelshader has determined visibility for current pixels.
- Use alpha-blend instead of alpha-test
- Fit the geometry to visible pixels

Alpha-blended, form-fitted geometry

Alpha-blended, form-fitted geometry

Render Buffer Management (1 of 2)

- Each render target is a whole new scene
- Avoid switching render target back and forth!
- Can cause a full restore:
 - Copies full color/depth/stencil from RAM into Tile Memory at the beginning of the scene
- Can cause a full resolve:
 - Copies full color/depth/stencil from Tile Memory into RAM at the end of the scene

Render Buffer Management (2 of 2)

- Avoid buffer restore
 - Clear everything! Color/depth/stencil
 - A clear just sets some dirty bits in a register
- Avoid buffer resolve
 - Use discard extension (GL_EXT_discard_framebuffer)
 - See usage case for shadows
- Avoid unnecessarily different FBO combos
 - Don't let the driver think it needs to start resolving and restoring any buffers!

Texture Lookups

- Don't perform texture lookups in the pixel shader!
 - Let the "pre-shader" queue them up ahead of time
 - I.e. avoid dependent texture lookups
- Don't manipulate texture coordinate with math
 - Move all math to vertex shader and pass down
- Don't use .zw components for texture coordinates
 - Will be handled as a dependent texture lookup
 - Only use .xy and pass other data in .zw

Mobile Material System

Full Unreal Engine materials are too complicated

Mobile Material System

- Initial idea:
 - Pre-render into a single texture

Mobile Material System

- Current solution:
 - Pre-render components into separate textures
 - Add mobile-specific settings
 - Feature support driven by artists

Mobile Material Shaders

- One hand-written ubershader
 - Lots of #ifdef for all features
 - Exposed as fixed settings in the artist UI
 - Checkboxes, lists, values, etc

Material Example: Rim Lighting

Material Example: Vertex Animation

Shader Offline Processing

- Run C pre-processor offline
 - Reduces in-game compile time
 - Eliminates duplicates at off-line time

Shader Compiling

- Compile all shaders at startup
 - Avoids hitching at run-time
 - Compile on the GL thread, while loading on Game thread
- Compiling is not enough
 - Must issue dummy drawcalls!
 - Remember how certain states affect shaders!
 - May need experimenting to avoid shader patching
 E.g. alpha-blend states, color write masks

- Initially ported Xbox straight to PS Vita
 - Worked, but was very slow
- But for Infinity Blade II, on a cell phone!?
 - We first thought it was impossible
 - But let's have a deeper look

- Port to OpenGL ES 2.0
- Use fewer texture lookups
 - Worse quality
 - And still very slow

Optimizations For Mobile

- Move all math to vertex shader
 - No dependent texture reads!
- Pass down data through interpolators
 - But, now we're out of interpolators ⊗
- Split radial filter into 4 draw calls
 - $4 \times 8 = 32$ texture lookups total (equiv. 256)
- Went from 30 ms to 5 ms

Original Shader

```
void BlurLightShaftsMain(
   float2 InUV : TEXCOORD0.
   out float4 OutColor : COLORO
   float4 BlurredValues = float4(0,0,0,0);
   // Scale the UVs so that the blur will be the same pixel distance in x and y
   float2 AspectCorrectedUV = InUV * AspectRatioAndInvAspectRatio.zw;
   float2 BlurVector = (TextureSpaceBlurOrigin.xy - AspectCorrectedUV);
   float BlurLength = length(BlurVector) * 0.5f;
   // Shorten the length of the vector to limit undersampling
   BlurVector = BlurVector / BlurLength * min(sqrt(BlurLength) * .5f, BlurLength);
   BlurVector *= LightShaftParameters.z / (float)(NumSamples):
   float2 LinearWeight = 2 *(NumSamples.xx - float2(0, 1)) / (float)(NumSamples.xx);
   float2 LinearWeightDelta = -float2(4, 4) / (float)(NumSamples.xx);
   float4 SampleUVs = AspectCorrectedUV.xyxy + BlurVector.xyxy * float4(0, 0, 1, 1);
   float4 SampleUVsDelta = BlurVector.xvxv * 2:
   SampleUVs *= AspectRatioAndInvAspectRatio.xyxy;
   SampleUVsDelta *= AspectRatioAndInvAspectRatio.xyxy;
   // Operate on two samples at a time to minimize ALU instructions
   for (int i = 0: i < NumSamples: i += 2)
       // Use a weight that is linearly increasing away from the blur origin
       // This allows the tail of an occluder to blend out smoothly
       float2 Weight = min(4.0f * LinearWeight * LinearWeight, LinearWeight);
       // Clamp the sample position to make sure we only sample valid parts of the texture
       // Note: the result of the texture lookup is compressed to fit in the fixed point buffer,
       // But we don't need to expand it since we're just averaging and not compressing the result
       // Undo the aspect ratio scaling before sampling
       float4 ClampedUVs = clamp(SampleUVs, UVMinMax.xyxy, UVMinMax.zwzw);
       BlurredValues += tex2D(SourceTexture, ClampedUVs.xv) * float4(Weight.xxx, LinearWeight.x);
       BlurredValues += tex2D(SourceTexture, ClampedUVs.zw) * float4(Weight.vvv, LinearWeight.v);
       LinearWeight += LinearWeightDelta;
       SampleUVs += SampleUVsDelta;
   OutColor = BlurredValues / NumSamples:
```

Mobile Shader

```
// BlurLightShaftsMain
void main()
{
    vec4 BlurredValues = vec4(0,0,0,0);
    BlurredValues += texture2D(SourceTexture, TexCoord0.xy);
    BlurredValues += texture2D(SourceTexture, TexCoord1.xy);
    BlurredValues += texture2D(SourceTexture, TexCoord2.xy);
    BlurredValues += texture2D(SourceTexture, TexCoord3.xy);
    BlurredValues += texture2D(SourceTexture, TexCoord4.xy);
    BlurredValues += texture2D(SourceTexture, TexCoord5.xy);
    BlurredValues += texture2D(SourceTexture, TexCoord6.xy);
    BlurredValues += texture2D(SourceTexture, TexCoord7.xy);
    gl_FragColor = BlurredValues / 16.0;
}
```

- Original Scene
- No God Rays

1st Pass

- Downsample Scene
- Identify pixels
- RGB: Scene color
- A: Occlusion factor
- Resolve to texture:
 - "Unblurred source"

2nd Pass

- Average 8 lookups
 - From "Unblurred source"
 - 1st quarter vector
 - Uses 8 .xy interpolators
- Opaque draw call

3rd Pass

- Average +8 lookups
 - From "Unblurred source"
 - 2nd quarter vector
 - Uses 8 .xy interpolators
- Additive draw call
- Resolve to texture:
 - "Blurred source"

4th Pass

- Average 8 lookups
 - From "Blurred source"
 - 1st half vector
 - Uses 8 .xy interpolators
- Opaque draw call

5th Pass

- Average +8 lookups
 - From "Blurred source"
 - 2nd half vector
 - Uses 8 .xy interpolators
- Additive draw call
- Resolve final result

6th Pass

- Clear the final buffer
 - Avoids buffer restore
- Opaque fullscreen
- Screenblend apply
 - Blend in pixelshader

- Ported one type of shadows from Xbox:
 - Projected, modulated dynamic shadows
- Fairly standard method
 - Generate shadow depth buffer
 - Stencil potential pixels
 - Compare shadow depth and scene depth
 - Darken affected pixels

1. Project character depth from light view

2. Reproject into camera view

3. Compare with SceneDepth and modulate

4. Draw character on top (no self-shadow)

Shadow Optimizations (1 of 2)

- Shadow depth first in the frame
 - Avoids a rendertarget switch (resolve & restore!)
- Resolve SceneDepth just before shadows*
 - Write out tile depth to RAM to read as texture
 - Keep rendering in the same tile
 - Unfortunately no API for this in OpenGL ES

Shadow Optimizations (2 of 2)

- Optimize color buffer usage for shadow
 - We only need the depth buffer!
 - Unnecessary buffer, but required in OpenGL ES
 - Clear (avoid restore) and disable color writes
 - Use glDiscardFrameBuffer() to avoid resolve
 - Could encode depth in F16 / RGBA8 color instead
- Draw screen-space quad instead of cube
 - Avoids a dependent texture lookup

Tool Tips:

- Use an OpenGL ES wrapper on PC
 - Almost "WYSIWYG"
 - Debug in Visual Studio
- Apple Xcode GL debugger, iOS 5
 - Full capture of one frame
 - Shows each drawcall, states in separate pane
 - Shows all resources used by each drawcall
 - Shows shader source code + all uniform values

Next Generation

ImgTec "Rogue" (6xxx series):

20x

ImgTec 6xxx series

- 100+ GFLOPS (scalable to TFLOPS range)
- DirectX 10, OpenGL ES "Halti"
- PVRTC 2
- Improved memory bandwidth usage
- Improved latency hiding

Questions?

