
Bringing AAA graphics to mobile platforms 

 
 
Niklas Smedberg 
Senior Engine Programmer, Epic Games 



Who Am I 

● A.k.a. “Smedis” 

● Platform team at Epic Games 

● Unreal Engine 

● 15 years in the industry 

● 30 years of programming 

● C64 demo scene 



Content 

● Hardware 

● How it works under the hood 

● Case study: ImgTec SGX GPU 

● Software 

● How to apply this knowledge to bring console 
graphics to mobile platforms 









Mobile Graphics Processors 

● The feature support is there: 

● Shaders 

● Render to texture 

● Depth textures 

● MSAA 

● But is the performance there? 

● Yes. And it keeps getting better! 



Mobile GPU Architecture 

● Tile-based deferred rendering GPU 

● Very different from desktop or consoles 

● Common on smartphones and tablets 

● ImgTec SGX GPUs fall into this category 

● There are other tile-based GPUs (e.g. ARM Mali) 

● Other mobile GPU types 

● NVIDIA Tegra is more traditional 



Tile-Based Mobile GPU 

TLDR Summary: 

● Split the screen into tiles 

● E.g. 16x16 or 32x32 pixels 

● The GPU fits an entire tile on chip 

● Process all drawcalls for one tile 

● Repeat for each tile to fill the screen 

● Each tile is written to RAM as it finishes 

(For illustration purposes only) 



ImgTec Process 

Software Command 
Buffer 

Vertex 
Frontend 

Vertex 
Processing 

Tiling Parameter 
Buffer 

Pixel 
Frontend 

Pixel 
Processing 

Frame 
Buffer 



Vertex 
Processing 

Vertex Frontend 

● Vertex Frontend reads from GPU command buffer 

● Distributes vertex primitives to all GPU cores 

● Splits drawcalls into fixed chunks of vertices 

● GPU cores process vertices independently 

● Continues until the end of the scene 

Software Command 
Buffer 

Vertex 
Frontend 

Vertex 
Processing 

Vertex 
Processing 



Vertex processing (Per GPU Core) 

Vertex Setup 
(VDM) 

Pre-Shader 
Shader (Vertex) 

(USSE) 

Parameter 
Buffer 
(RAM) 

Tiling 
(TA) 

Software Command 
Buffer 

Vertex 
Frontend 

Vertex 
Processing 



Vertex Setup 

Vertex Setup 
(VDM) 

Pre-Shader 
Shader (Vertex) 

(USSE) 

Parameter 
Buffer 
(RAM) 

Tiling 
(TA) 

Receives commands from Vertex Frontend 



Vertex Pre-Shader 

Vertex Setup 
(VDM) 

Pre-Shader 
Shader (Vertex) 

(USSE) 

Parameter 
Buffer 
(RAM) 

Tiling 
(TA) 

Fetches input data (attributes and uniforms) 



Vertex Shader 

Vertex Setup 
(VDM) 

Pre-Shader 
Shader (Vertex) 

(USSE) 

Parameter 
Buffer 
(RAM) 

Tiling 
(TA) 

Universal Scalable Shader Engine 

Executes the vertex shader program, multithreaded 

 



Tiling 

Vertex Setup 
(VDM) 

Pre-Shader 
Shader (Vertex) 

(USSE) 

Parameter 
Buffer 
(RAM) 

Tiling 
(TA) 

Optimizes vertex shader output 

Bins resulting primitives into tile data 



Parameter Buffer 

Vertex Setup 
(VDM) 

Pre-Shader 
Shader (Vertex) 

(USSE) 

Parameter 
Buffer 
(RAM) 

Tiling 
(TA) 

Stored in system memory 

You don’t want to overflow this buffer! 



Pixel 
Processing 

Pixel 
Processing 

Pixel Frontend 

● Reads Parameter Buffer 

● Distributes pixel processing to all cores 

● One whole tile at a time 

● A tile is processed in full on one GPU core 

● Tiles are processed in parallel on multi-core GPUs 

Parameter 
Buffer 

Pixel 
Frontend 

Pixel 
Processing 

Frame 
Buffer 



Pixel processing (Per GPU Core) 

Pixel Setup 
(PDM) 

Pre-Shader 
Shader (Pixel) 

(USSE) 

Frame Buffer 
(RAM) 

Pixel Back-end 

Parameter 
Buffer 

Pixel 
Frontend 

Pixel 
Processing 

Frame 
Buffer 



Pixel Setup 

Pixel Setup 
(PDM) 

Pre-Shader 
Shader (Pixel) 

(USSE) 

Frame Buffer 
(RAM) 

Pixel Back-end 

Receives tile commands from Pixel Frontend 

Fetches vertexshader output from Parameter Buffer 

Triangle rasterization; Calculate interpolator values 

Depth/stencil test; Hidden Surface Removal 



Pixel Pre-Shader 

Pixel Setup 
(PDM) 

Pre-Shader 
Shader (Pixel) 

(USSE) 

Frame Buffer 
(RAM) 

Pixel Back-end 

Fills in interpolator and uniform data 

Kicks off non-dependent texture reads 



Pixel Shader 

Pixel Setup 
(PDM) 

Pre-Shader 
Shader (Pixel) 

(USSE) 

Frame Buffer 
(RAM) 

Pixel Back-end 

Multithreaded ALUs 

Each thread can be vertices or pixels 

Can have multiple USSEs in each GPU core 

 



Pixel Back-end 

Pixel Setup 
(PDM) 

Pre-Shader 
Shader (Pixel) 

(USSE) 

Frame Buffer 
(RAM) 

Pixel Back-end 

Triggered when all pixels in the tile are finished 

Performs data conversions, MSAA-downsampling 

Writes finished tile color/depth/stencil to memory 



Shader Unit Caveats 

● Shader programs without dynamic flow-control: 
● 4 vertices/pixels per instruction 

● Shader programs with dynamic flow-control: 
● 1 vertex/pixel per instruction 

● Alpha-blending is in the shader 
● Not separate specialized hardware 

● Shader patching may occur when you switch state 

● (More on how to avoid shader patching later) 



Rendering Techniques 

● How to take advantage of this GPU? 



Mobile is the new PC 

● Wide feature and performance range 

● Scalable graphics are back 

● User graphics settings are back 

● Low/medium/high/ultra 

● Render buffer size scaling 

● Testing 100 SKUs is back 



Graphics Settings 



Render target is on die 

● MSAA is cheap and use less memory 

● Only the resolved data in RAM 

● Have seen 0-5 ms cost for MSAA 

● Be wary of buffer restores (color or depth) 

● No bandwidth cost for alpha-blend 

● Cheap depth/stencil testing 



“Free” hidden surface removal 

● Specific to ImgTec SGX GPU 

● Eliminates all background pixels 

● Eliminates overdraw 

● Only for opaque 



Mobile vs Console 

● Very large CPU overhead for OpenGL ES API 
● Max CPU usage at 100-300 drawcalls 

● Avoid too much data per scene 
● Parameter buffer between vertex & pixel processing 

● Save bandwidth and GPU flushes 

● Shader patching 
● Some render states cause the shader to be modified and 

recompiled by the driver 

● E.g. alpha-blend settings, vertex input, color write masks, etc 



Alpha-test / Discard 

● Conditional z-writes can be very slow 

● Instead of writing out Z ahead of time, 
the “Pixel setup” (PDM) won’t submit more 
fragments until the pixelshader has 
determined visibility for current pixels. 

● Use alpha-blend instead of alpha-test 

● Fit the geometry to visible pixels 



Alpha-blended, form-fitted geometry 



Alpha-blended, form-fitted geometry 



Render Buffer Management (1 of 2) 

● Each render target is a whole new scene 

● Avoid switching render target back and forth! 

● Can cause a full restore: 

● Copies full color/depth/stencil from RAM into Tile 
Memory at the beginning of the scene 

● Can cause a full resolve: 

● Copies full color/depth/stencil from Tile Memory into 
RAM at the end of the scene 



Render Buffer Management (2 of 2) 

● Avoid buffer restore 

● Clear everything! Color/depth/stencil 

● A clear just sets some dirty bits in a register 

● Avoid buffer resolve 

● Use discard extension (GL_EXT_discard_framebuffer) 

● See usage case for shadows 

● Avoid unnecessarily different FBO combos 

● Don’t let the driver think it needs to start resolving and 
restoring any buffers! 



Texture Lookups 

● Don’t perform texture lookups in the pixel shader! 

● Let the “pre-shader” queue them up ahead of time 

● I.e. avoid dependent texture lookups 

● Don’t manipulate texture coordinate with math 

● Move all math to vertex shader and pass down 

● Don't use .zw components for texture coordinates 

● Will be handled as a dependent texture lookup 

● Only use .xy and pass other data in .zw 



Mobile Material System 

● Full Unreal Engine materials are too complicated 



Mobile Material System 

● Initial idea: 

● Pre-render into a single texture 



Mobile Material System 

● Current solution: 

● Pre-render components into 
separate textures 

● Add mobile-specific settings 

● Feature support driven by artists 



Mobile Material Shaders 

● One hand-written ubershader 

● Lots of #ifdef for all features 

● Exposed as fixed settings in the artist UI 

● Checkboxes, lists, values, etc 



Material Example: Rim Lighting 



Material Example: Vertex Animation 



Shader Offline Processing 

● Run C pre-processor offline 

● Reduces in-game compile time 

● Eliminates duplicates at off-line time 



Shader Compiling 

● Compile all shaders at startup 
● Avoids hitching at run-time 

● Compile on the GL thread, while loading on Game thread 

● Compiling is not enough 
● Must issue dummy drawcalls! 

● Remember how certain states affect shaders! 

● May need experimenting to avoid shader patching 
E.g. alpha-blend states, color write masks 

 

 

 



God Rays 



God Rays 

● Initially ported Xbox straight to PS Vita 

● Worked, but was very slow 

● But for Infinity Blade II, on a cell phone!? 

● We first thought it was impossible 

● But let’s have a deeper look 



God Rays 

● Port to OpenGL ES 2.0 

● Use fewer texture lookups 

● Worse quality 

● And still very slow 



Optimizations For Mobile 

● Move all math to vertex shader 

● No dependent texture reads! 

● Pass down data through interpolators 

● But, now we’re out of interpolators  

● Split radial filter into 4 draw calls 

● 4 x 8 = 32 texture lookups total (equiv. 256) 

● Went from 30 ms to 5 ms 



Original 
Shader 



Mobile 
Shader 



God Rays 

● Original Scene 

● No God Rays 



1st Pass 

● Downsample Scene 

● Identify pixels 

● RGB: Scene color 

● A: Occlusion factor 

● Resolve to texture: 

● “Unblurred source” 



2nd Pass 

● Average 8 lookups 
● From “Unblurred source” 

● 1st quarter vector 

● Uses 8 .xy interpolators 

● Opaque draw call 



3rd Pass 

● Average +8 lookups 
● From “Unblurred source” 

● 2nd quarter vector 

● Uses 8 .xy interpolators 

● Additive draw call 

● Resolve to texture: 

● “Blurred source” 



4th Pass 

● Average 8 lookups 
● From “Blurred source” 

● 1st half vector 

● Uses 8 .xy interpolators 

● Opaque draw call 



5th Pass 

● Average +8 lookups 
● From “Blurred source” 

● 2nd half vector 

● Uses 8 .xy interpolators 

● Additive draw call 

● Resolve final result 



6th Pass 

● Clear the final buffer 
● Avoids buffer restore 

● Opaque fullscreen 

● Screenblend apply 
● Blend in pixelshader 



Character 
Shadows 



Character Shadows 

● Ported one type of shadows from Xbox: 

● Projected, modulated dynamic shadows 

● Fairly standard method 

● Generate shadow depth buffer 

● Stencil potential pixels 

● Compare shadow depth and scene depth 

● Darken affected pixels 



Character Shadows 

1. Project character depth from light view 



Character Shadows 

2. Reproject into camera view 



Character Shadows 

3. Compare with SceneDepth and modulate 



Character Shadows 

4. Draw character on top (no self-shadow) 



Shadow Optimizations (1 of 2) 

● Shadow depth first in the frame 

● Avoids a rendertarget switch (resolve & restore!) 

● Resolve SceneDepth just before shadows* 

● Write out tile depth to RAM to read as texture 

● Keep rendering in the same tile 

● Unfortunately no API for this in OpenGL ES 



Shadow Optimizations (2 of 2) 

● Optimize color buffer usage for shadow 

● We only need the depth buffer! 

● Unnecessary buffer, but required in OpenGL ES 

● Clear (avoid restore) and disable color writes 

● Use glDiscardFrameBuffer() to avoid resolve 

● Could encode depth in F16 / RGBA8 color instead 

● Draw screen-space quad instead of cube 

● Avoids a dependent texture lookup 



Tool Tips: 

● Use an OpenGL ES wrapper on PC 

● Almost “WYSIWYG” 

● Debug in Visual Studio 

● Apple Xcode GL debugger, iOS 5 
● Full capture of one frame 

● Shows each drawcall, states in separate pane 

● Shows all resources used by each drawcall 

● Shows shader source code + all uniform values 

 



Next Generation 

ImgTec “Rogue” (6xxx series): 

20x 
 



ImgTec 6xxx series 

● 100+ GFLOPS (scalable to TFLOPS range) 

● DirectX 10, OpenGL ES “Halti” 

● PVRTC 2 

● Improved memory bandwidth usage 

● Improved latency hiding 



Questions? 


