
Hi, I’m Ben Sunshine-Hill. I’m a software
developer at Havok. I’m going to talk a
little bit about some work I did at Penn,
on “perceptually driven simulation”.

1

So a quick show of hands -- who here
makes AI for a living?
Who wishes they had more CPU time to
devote to running better AI?
Who thinks the games THEMSELVES
might be MORE FUN if those processor-
grubbing graphics programmers didn’t
steal every spare millisecond just to [X]
render the main character’s stubble
more realistically?
[X] Well, bad news, kids. The war of AI

2

versus beard rendering has
been lost.

2

I’m Sorry. I [X] can’t give you more
milliseconds.

What I can do, is help you get [X] more
computational power out of your current
timeslice than ever before.

3

The idea is to [X] figure out which
entities are currently important, and [X]
spend more resources on those entities,
giving them more detail, with all the [X]
other entities simulated with cheaper
techniques.

4

It’s not a new idea, of course; this is just
[X] LOD. The graphics guys [X] came up
with this first, back when you couldn’t
really afford to render more than, like,
eight triangles per frame.

5

And it’s established in AI as well; we [X]
run faraway characters with cheaper AI.
Like, we’ll use [X] cheaper, stupider path
following techniques, or [X] cheap out on
determining what some entity can or
can’t see, or like I talked about last year,
[X] destroy faraway characters entirely, as
they get outside the simulation bubble.

6

So as an entity gets closer to us, we
bump up the detail level, which of course
means we’re spending more on that
entity. And we try to pick this switchover
distance so that in [X] general we don’t
blow our framerate budget.

7

But there’s a couple of problems. First of
all, distance [X] sucks as an LOD chooser.
Seriously, it’s [X] so bad we don’t even
notice how bad it is. And we don’t
actually get any [X] guarantee that we’re
doing enough detail reduction, or that
we’re not doing [X] too much, [X] and
this is exactly what LOD should be giving
us! That’s what it’s for!

…

8

If we can fix these
problems, [X] AI level of
detail isn’t just a nice little
hac.
[X]
…
It’s something more.

8

Now, last year when I was here, talking
about alibi generation, I threw up a url
for an [X] 8-page paper which described
all the math and stuff, so I didn’t have to
go into complete detail during the talk.
This year, I’m afraid, it’s a [X] 136-page
PhD thesis. But fear not! Just for you
guys, I’ve put together an [X] annotated
version which tells you which parts you
do and do not need to actually READ,
with gems like [X] “this is just a

9

derivation”, and [X] “skip
this whole chapter”. I’ll [X]
stick the URL up there for
you.

9

So I said some pretty mean things about
using distance for picking level of detail.
Why? Well, basically, [X] it’s not the same
thing as importance. It’s not WHAT. WE.
WANT. If you’ve played Assassins Creed,
you know that the guy you’re most
interested in is often [X] way out in front
of you, and some random guy right next
to you, you [X] barely even notice. And if
you’ve played GTA, of course you [X]
KNOW what happens if you forget to

10

park your car in one of
those “Don’t delete this
car” parking spaces.

10

So if not distance, what’s the actual
NUMBER there? Because we NEED a
number. What’s the metric of
importance?
I say, it’s [X] the probability of the user
noticing a problem! The probability that
the actual player, sitting in front of the
game, will go “hey, that’s not right”!

Now [X] hold on a second, I see you guys
shaking your heads. [X] It’s not as

11

impossible as it sounds.
We’re [X] not actually trying
to compute an exact
probability. We’re going for
the [X] low hanging-fruit
here; we can do a pretty
bad job of calculating it, and
it’ll still be much better than
what we’ve got now.

11

Incidentally, for the sake of the math,
what we’ll measure is not actually P, the
probability, but [X] X, this log-scaled
thing, and the graph of it [X] looks like
this. And the nice thing about X is that
we can do things like [X] add it. Of course
we generally can’t [X] add probabilities,
the sum might not even be a valid
probability number. But if we [X] add
these log-scaled numbers for two low-
detail entities, what we get out of it is

12

the probability of noticing
either one. And likewise,
now we can say things like
[X] 2 times X! That’s now
the same thing as saying [X]
“twice as unrealistic”; it’s
the probability of noticing it
if we were to do it twice.

12

So for something like the probability of
noticing that we’re not doing [X] real
collision avoidance for a character, that
they’re walking right through people, we
might [X] calculate that as the product of
these three numbers, where [X] A is how
visible and observable the entity is (and
this is where distance still figures in, in
some small way), [X] B is how much
attention the player’s paying to it, and [X]
C is some constant expressing just how

13

crappy it is to have people
walking through people
instead of around them. So
[X] A and B are a measure of
importance of that entity,
no matter how we’re
simulating it, and [X] C is for
that LOD and is the same for
any entity with that LOD,
and their product is the
answer.

13

So whenever the [X] A and B go up, the
probability of the user noticing our
cheap-ass tricks goes up, [X] until we pick
an LOD with a lower multiplier, so the
total probability stays low.

14

But there’s not just the one rectangle,
because a single entity has [X] more than
one kind of LOD; we can pick how it [X]
does locomotion, and how it does [X]
goal picking, and [X] how often it
updates, all separately, and there might
be some levels that [X] require other
levels, like you can’t do high-quality
pathfinding if the guy doesn’t have a
goal.

15

And not everything fits the “observation
times attention” model. I mean, the [X]
disappearing parked car I mentioned isn’t
something we see out of the corner of
our eye, it’s unrealistic even if it happens
offscreen. The probability for THAT is
based on [X] how much we remember
the car, and [X] how much we’ll STILL
remember it if and when we get back. Or
if the guy in front of us is actually doing
some [X] goal driven thing or is just

16

turning randomly, and that
depends on [X] how much
attention we’re paying, and
[X] how long we’ve been
watching him. The paper at
that [X] link up there goes
into simple models for all of
these factors.

16

And so we’ve identified these three
categories, these three “dimensions of
unrealism” – You might disagree with
how we broke them up, this stuff is
definitely open to interpretation – and
most of the ways we ratchet down AI
detail, and there’s a lot of them, cause
one or more of these three, in varying
amounts. And an entity, depending on
his relationship to the player, is prone to
each of these in varying amounts – An

17

entity who just came
around the corner and he’s
right in front of us, we might
not notice if he’s [X]
wandering randomly, but
we’ll sure notice if he has
[X] foot-skate. So he has this
[X] multidimensional
importance based on those
different factors I
mentioned, and his various
LODs, added together make
a [X] corresponding vector
of simulation quality. And
the cool thing about that
log-scaled probability is, all
we have to do is find the [X]
dot product of those two

17

vectors, and the result is the
[X] total probability for that
entity.

17

Oh, and just to make things harder,
maybe we don’t want to keep just [X]
CPU under control. We might want to
make sure we don’t blow our [X] RAM
budget too. And there are [X] other
things that maybe we care about
limiting, depending on what sort of a
game this is and what our requirements
are, and [X] the limits might go up or
down when other things happen in our
game. So, like, some background

18

recalculation starts, and all
of a sudden we have to
spend less CPU, and we
need to adjust for that.

18

So to sum up: [X] we want to pick: a [X]
combination of levels for each entity so
that the [X] resources fit all our CURRENT
limits, and we want as [X] much realism,
as low a probability of the player noticing
a problem, as possible. Oh, [X] and we
wanna do it really fast.

19

Which brings us to the LOD trader. I call it
the LOD trader because it’s kind of like a
stock trader; it has [X] computational
resources as its money, and a [X]
portfolio of how all the entities are being
simulated. It can [X] spend resources to
increase the LOD of valuable entities, but
if it runs out of money it needs to [X] sell
off less valuable LODs to get back under
budget.

20

So what do I mean by “value” of an LOD
change? Basically [X] the benefit divided
by the cost. There’s different resources,
remember, and we [X] weight them by
how scarce they are currently. For
upgrades, we want [X] high benefit, and
only spending a little bit more, and for
downgrades, we want [X] to only lose a
bit of realism, and get a lot of resources
back.

21

The basic strategy is, [X] we come up
with a hypothetical set of trades. As [X]
long as we have resources left, we [X]
buy the most valuable upgrade, and then
[X] to pay for our excesses, we [X] sell
the least valuable downgrade. And [X]
then we see if this set of trades made
things better or worse, and if it’s [X]
better we actually make the trades and
then loop back, and [X] otherwise we
discard the trades and we’re done for

22

this run-through.

22

Now we want this to be really fast, so we
[X] don’t actually generate all the
possible transitions for all the entities,
that’d be millions of them. We [X] use a
heuristic to find entities which probably
have valuable upgrades or downgrades,
and we [X] refine our set of trades as we
look at the most promising entities, and
[X] at a certain point we find that we
don’t need to look at any other entities
so we can stop.

23

In this improved algorithm, we [X] pop
off the next promising entity, we [X] look
at its transitions and pick the best one,
and then we [X] undo transitions we
picked before, so that we [X] don’t
overspend by too much. And we [X] keep
looking at entities until the ones that are
left can’t possibly have better transitions
than the ones we’ve chosen already,
which in practice happens quite quickly.

24

We prototyped these methods out in a
simulation of an outdoor marketplace,
with [X] about five hundred people,
roaming around [X] ten thousand square
meters of level, with the target being [X]
30 frames per second. So it wasn’t huge,
but it was large enough that LOD makes
a difference. We tested out [X] two LOD
picking strategies: The [X] LOD trader, as
well as [X] conventional distance-based
LOD picking.

25

So how well does it work? [X] well, we
tested it out on a bunch of people [X]
through Amazon’s Mechanical Turk
service (which is really great for these
sorts of experiments, by the way), [X]
showing them videos from the
simulation with either LOD picking
method – it would have been better if
they could play the game, but we didn’t
want to have to worry about system
requirements – [X] and they reported

26

how often they noticed low-
detail events in the
simulation. And what we
found [X] was that the LOD
trader did better across the
board than distance-based
picking.

26

And it wasn’t just realism that got better.
[X] Our distance based selection was fine
at maintaining an AVERAGE framerate,
but in crowded areas the framerate really
suffered, and in sparse areas it still
ratcheted down realism for faraway
agents, even when it didn’t need to. The
[X] LOD trader was a lot better at staying
under the minimum frames per second,
and in sparse areas, basically everyone
was being simulated at highest quality,

27

because there was ROOM
for that.

27

So, but what are you paying for all this?
[X] We don’t want all this sorting and
trading to use up the performance gains.

28

Well, in our simulation? [X] 56
microseconds. That’s MICROseconds. As
in, [X] less than one percent of our CPU
budget if we’re doing it sixty times a
second. [X] And really, that’s a silly thing
to do– if we need it even cheaper, we
can just run it every N frames. And we
can even [X] stick it on an SPU if we
want, it’s great for that because it
doesn’t do much communication with
the rest of the game. This is for five

29

hundred agents, but we
found that [X] the time
grows sublinearly in the
total WORLD population,
the faraway entities are
controlled pretty much for
free. It’ll scale [X] well into
the millions of entities.

29

Another reasonable question to ask
about a doctoral thesis work is, how
difficult would it be to actually make
this? Because let me tell you, the alibi
generation stuff I talked about last year
had some really complex math backing it
up. Well, good news this year. [X] The
most complicated data structure you’ll
need? [X] A standard priority queue. The
[X] longest algorithm involved is only [X]
sixteen lines of pseudocode. And the [X]

30

number of new Greek
letters you’ll need to
memorize? [X] One. … [X]
This is an upper-case
gamma. There you go.

30

And what you really want to know is,
how risky is it to try this out? What if it’s
useless and you’ve wasted your time
implementing it? Well, most of the [X]
work is implementing the LODs
themselves, [X] and you’re doing that
anyway, you can always [X] replace the
LOD trader with a distance based system
if it turns out not to meet your needs.
When we did that for testing, it took us
like [X] ten minutes of coding to switch

31

over.

31

You don’t have to try out this LOD trader
stuff, but if you take away one lesson, let
it be this: [X] LOD has ALWAYS been
about maintaining framerate, and about
predicting what the player will and won’t
notice. Developers have largely ignored
this fact, because it’s scary to think of it
as a global optimization problem we
need to solve, and it’s definitely scary to
think about trying to predict the player’s
thoughts. But this is still what we’re

32

trying to do. It’s [X] time to
own up to the fact that this
is the objective. It’s time for
you to [X] solve it.

[X] Thanks, everyone. We’ll
take any questions you
might have.

32

