
Real-time Sound propagation
in video game
Jean-François Guay, Ubisoft Montreal
Jean-francois.guay@ubisoft.com

Realistic rendering can increase immersion of the player

But what about sound?

Agenda

• Physics of wave interaction

• What others have done

• Limitations of the game industry

• Our way of doing it

• Problems we faced

• Real examples

A bit of Physics

● Wave interaction effects

● Reflection

● Absorption

● Diffraction

● Refraction

•Audible sound is between 20Hz and 20 KHz

•Corresponds to a wave length between
17 m (low frequency) and 2 cm (high
frequency)

A bit of Physics

Specular reflection

Light

Reverb, echo

Sound

Wave interaction

Reflection

Semi-transparent
material

Light

Occlusion by a door
or window

Sound

Wave interaction

Absorption

Broken straw in a
glass full of water

Light

Rare: Sound that can
be heard farther over a
lake in the morning

Sound

Wave interaction

Refraction

Rare:

iridescent cloud,
color on a CD

Light

Hearing sound not
in line of sight

Sound

Wave interaction

Diffraction

Virtual source
method

Different way to render virtual
soundscape

Different way to render virtual
soundscape

Ray Tracing and
Beam Tracing

Limitations of game industry

Game wants to run between 30 and 60 FPS

Cannot “downgrade” the game for sound propagation

Limited memory (2 to 50 MB for audio)

Limited CPU (around 10% of the total CPU for audio)

Up to 64 simultaneous sounds playing

 At 60 FPS, that gives 250 ms per sound

Immersive result, not really interested
in a physically exact result

Goals we want to achieve

Immersive result, not really interested in a
physically exact result

Current reverb algorithm already correctly
simulates reflection of sound in the room

Wanted to focus on diffraction, absorption
and getting the general direction from
where the sound is coming

Goals we want to achieve

Diffraction

Our way of doing it

Edge
dist

1 2 3 4 5 6 7

1 --
-

2
10

3
10

2
20

5
23

3
17

3
27

2 -- 1
20

4
10

1
35

4
21

4
36

3 -- 4
10

5
13

6
7

6
17

4 -- 5
17

6
11

9
3

5 -- 6
10

6
20

6 -- 7
10

7 --

Our way of doing it

Edge
dist

1 2 3 4 5 6 7

1 --
-

2
10

3
10

2
20

5
23

3
17

3
27

2 -- 1
20

4
10

1
35

4
21

4
36

3 -- 4
10

5
13

6
7

6
17

4 -- 5
17

6
11

9
3

5 -- 6
10

6
20

6 -- 7
10

7 --

Edge
dist

1 2 3 4 5 6 7

1 --
-

2
10

3
10

2
20

5
23

3
17

3
27

2 -- 1
20

4
10

1
35

4
21

4
36

3 -- 4
10

5
13

6
7

6
17

4 -- 5
17

6
11

9
3

5 -- 6
10

6
20

6 -- 7
10

7 --

Edge
dist

1 2 3 4 5 6 7

1 --
-

2
10

3
10

2
20

5
23

3
17

3
27

2 -- 1
20

4
10

1
35

4
21

4
36

3 -- 4
10

5
13

6
7

6
17

4 -- 5
17

6
11

9
3

5 -- 6
10

6
20

6 -- 7
10

7 --

Edge
dist

1 2 3 4 5 6 7

1 --
-

2
10

3
10

2
20

5
23

3
17

3
27

2 -- 1
20

4
10

1
35

4
21

4
36

3 -- 4
10

5
13

6
7

6
17

4 -- 5
17

6
11

9
3

5 -- 6
10

6
20

6 -- 7
10

7 --

Edge
dist

1 2 3 4 5 6 7

1 --
-

2
10

3
10

2
20

5
23

3
17

3
27

2 -- 1
20

4
10

1
35

4
21

4
36

3 -- 4
10

5
13

6
7

6
17

4 -- 5
17

6
11

9
3

5 -- 6
10

6
20

6 -- 7
10

7 --

Zoning to remove irrelevant geometric data

Computation done in 2D + height

Optimization

Zoning to remove irrelevant geometric data

Computation done in 2D + height

Added a “microphone reception distance” that
results in ignoring walls outside this range

Frame rate of the algorithm is independent of
the game frame rate
 FPS between 5-10 is normally sufficient

 We first compute objects that have moved the most

Optimization

Not the same as AI Path finding

Discontinuity

Problems we faced

Dynamic loading
Had to reorganize data structure
for pre-computed shortest paths

Problems we faced

Data creation

• First version needed to flag walls individually

• Was hard to have a comprehensive, 100%
automatic solution

• Ended up with 2 automatic generation
algorithms

•One optimized for complex interiors

•One optimized for exteriors with small buildings

Problems we faced

Data creation

Data creation

Data creation

Data creation

Some real examples (diffraction)

Some real examples (absorption)

•Dynamic/destructible environments

•Improve automatic generation

Future developments

•Needs to be simple to use and fast

•Should not have discontinuity

•Audio designer needs to have control on how it
will be rendered

•Propagation is a good way to increase player’s
immersion

•Even possible to do game play with propagation

Conclusion

Questions ?

Contact email:
Jean-francois.guay@ubisoft.com

Thank you

