
Hi everyone, welcome to the Technical Artists Boot Camp at
GDC 2012. I‟m Adam Pletcher, Technical Art Director at
Volition. You‟ve all seen the schedule, we have an awesome
day lined up. Our speakers should have time to do individual
Q&A after each talk, and we plan to have a panel-style Q&A
session with all the speakers at the end of the day. That was
popular last year.

1

Raise your hand if you were here last year. Another question,
how many of you feel like Tech Artists are fully understood
and utilized by your studio?

I‟m a Technical Artist and I‟m a misfit. Nobody knows what to
do with me. My project managers don‟t know how to schedule
my tasks. The programmers don‟t understand what I do, and
the artists really really don‟t understand what I do. I feel like
all I do is translate error messages for people. Do those
statements ring true to you? If you‟re at a larger or more
established studio it may not, and you should count yourself
lucky. But I bet it strikes a chord with anyone at smaller
studios.

In 2004, I was working on Volition‟s first Saints Row title. This
was a seriously difficult time of growth at our studio. Our first
open world game, on new console hardware, lots of new hires
and positions not just being filled but being crafted from thin
air. Positions we didn‟t know existed before.

2

I was lucky enough to have the title of Tech Artist at this point,
along with a handful of others. We were just turning a corner as a
discipline, however, learning new crucial skills and finding new ways
to be useful. Tech Art was no longer the “3ds Max workaround
department”. We were, without fully realizing it, carving out a new
identity as a discipline.

It was in that dark middle age when I had a conversation with one
of our programmers. He‟d recently been hired from a smaller
studio, and was working on our first pipeline for getting vehicles into
the game. With a harried look, he asked me how to get started with
MaxScript. I told him to just send me a list of parameters his
exporter required, and I‟d take care of all the UI details and make
sure the backend received the values it needed. I‟ll never forget the
look on his face, it was as if the clouds in his world had parted and
the sun just came out. “You can do that?” he asked. I put my hand
on his shoulder and said “yes I can”. We both shed a few tears.
Then we hugged awhile.

Fast forward a few years and our Tech Artists were transformed into
a crucial part of the development teams, not only designing but
actually implementing in the core of every content pipeline at the
studio.

Many of you might be wondering “how can I do that?” I know I can
do more important things for my projects, but that‟s not my studio‟s
culture. My advice is simple: Show them what a TA can do. Tech
Artists have a unique view into the two major worlds of game
development, and nobody is better equipped to bring change than
you. Find the slowest, most hated tool or pipeline at your studio,
carve out some time, learn what you need to and create something
better. Nothing sparks revolution faster than a working prototype.
Show it to your artists, have them show it to the art directors. If
you‟ve made their lives easier, you‟ve already won the battle.

Our Tutorial today is all about learning crucial skills TAs can use to
pull this off. Experienced industry TAs will cover a variety of
techniques and approaches necessary to increase Tech Art
involvement on your teams, and give it a solid foundation going
forward.

2

3

4

One day around two years ago, I was sitting in a sweet job at
with over 10 years of experience at Disney Animation when I
decided I needed a change from working with this gang of
characters. 2 months later I was the Technical Art Director at
Microsoft Studios working with this very different crew...

5

It was a big shock to the system.

6

Here‟s my happy kids before the move enjoying the hot LA
sun.

7

Here‟s the poor miserable kids several months later disgusted
by the Seattle weather.

8

Aside from drastic weather changes, I had to make the big
move from Linux to Windows…

9

Maya to Max…

10

And go from luxurious 24 hr renders to thinking about how to
render every frame in 16.67 ms…

11

The remainder of this talk is going to be in two parts. First, I‟ll
quickly talk about some of my experiences in my role, and
then I‟ll drop some technical material on you.

12

To start in my new role, I sat down and created enormous lists
of the tools and new topics I wanted to master in order to
succeed at my new role – hardware shaders, DirectX, 3DS
Max, Zbrush, real-time workflows, 60 fps rendering
techniques. I suppressed an initial instinct to cry – it was
overwhelming how much I “needed” to learn. In those early
days I sat down and read through the ShaderX and Real-time
Rendering books and hated all those guys for being too smart.
I flipped through 3D portfolios on conceptart.org and cursed
many people.

13

In a calm moment, I realized I needed to settle down, relax. I
was hired by Microsoft to define what a tech artist is at Turn
10, build a team, figure out how our artists want to produce
art, and help out with technically challenging problems. It
was the same thing I did at Disney, with a different set of
problems and inputs. There was no need to freak out.

Adam asked us to spend some time focusing on tech artists
who are a rare breed at their studios because they work at
smaller places or because their studio hasn‟t developed a
widespread appetite for tech artist work. I wanted to spend a
few slides describing how we built up that culture at Turn 10,
because we certainly fit that mold just a little bit ago.

14

The role of tech artist has no standard definition – in this
audience, there are tech artists who would identify themselves
as riggers, lighters, VFX artists, animators, or tools
programmers. Every studio has different constraints and
problems that need to be addressed by artists who can
program and programmers who can create art.

15

How do tech artists make an impact? Everywhere I‟ve been,
the successful tech art team makes useful stuff for artists over
and over and learn as they go. The unifying talent is the
ability to present simple and intuitive interfaces to complexity.

16

The first thing on my to-do list was to define what we needed
the Tech Art role to be at Turn 10. Across the board, I find
that Tech Artists with longevity are the ones who understand
the fundamentals of art, process/workflow, programming
fundamentals, and how to put any and all these pieces
together to solve problems. Tech artists look at artists with
hot laptops stuck in their pants and say “no, that is not OK.
We can give you an iPod”.

Because we make a racing game at Turn 10, we didn‟t have a
vast need for TA‟s with rigging skills. I spent the first several
weeks learning about how artists author cars and tracks and
this picture you see on the screen really rang true. Our artists
had “settled” for a clunky workflow because of a combination
of not having a voice that prioritized their needs and
sometimes just not knowing that there were better ways out
there. Above all, we needed a team that could serve both
those needs.

17

When I joined Turn 10, there was an issue I‟ve seen at many
studios where the dice were loaded so that all developer
resources were going to the game. Occasionally, a
programmer would pop his head up from the game muck and
create an artist tool and be hailed as the hero of the art team.
It‟s easy to see why this is. For our racing game, it‟s a simple
decision when someone says “listen, we can either make the
car wheels spin, or the artists can have a fancy tool that
shows heatmaps for textures that exceed a certain resolution
– choose one”.

18

In building the Tech Art team at Turn 10, I found that in the
battle between game features and artist tools, there is only
sadness to be had. It‟s tough to prioritize the two in the same
bucket.

19

Instead, it is much easier to justify the need for tech artists
when you present the fact that you can spend two weeks
writing a tool that would save a man year‟s worth of time over
the course of a project. Splitting up the problem by looking at
separate cost savings helped justification of my team vs.
arguing in the apples to oranges comparison of game features
to artist tools. It also helped that allocating some resources to
the Tech Art team enabled our studio to take artist support
and various existing art problems off developer plates.

In the end, presenting this information to our studio
management, we have a Tech Art team that‟s made up of
myself, 2 traditional tech artists and 2 tools developers. I‟m
sure there will be evolution of this balance, but the important
thing is that looking at things with this lens helped us
establish a tech art group.

20

In thinking about what I‟d talk about for a more technical
contribution, I thought about the diverse mix of skillsets I
knew would be represented here. What can a tech artist who
calls himself a rigger have in common with a VFX artist? As I
mentioned before and you‟ll hear throughout the day, the
common thread binding us all is our ability to solve a wide
range of problems with technical fundamentals. For me,
having been involved in numerous portfolio reviews for riggers
and other TD roles at Disney, what differentiates the great
from the mediocre is the demonstrated ability to dive into at
least basic programming to enhance your skillset or
productivity.

In our industry we have mediocre Batman‟s and awesome
Batman‟s. You become an awesome Batman by continually
adding tricks and new weapons to your toolbelt. In the spirit
of my topic, you have to “start somewhere”. For the
remainder of my section, I wanted to demonstrate how a
small investment in basic scripting can make you a more
powerful tech artist, regardless of what you consider your
primary focus. These fundamental skills are core to the

21

functionality of my team.

21

I‟m going to walk through some quick topics using a scripting
language built into the Windows OS called Powershell.

22

Before there is a riot, I wanted to point out that I love Python
a lot, as evidenced by this picture of me with my shirt off.
Python is definitely shaping up to be the universal language of
Tech Art. So, why Powershell today?

It is no bootcamp without some pain and misery, and this way
the Python experts in the room can‟t scoff at my pathetic
Python “hello world” snippets. In reality, I‟m going to give
some examples in Powershell because when I first moved to
Microsoft and prepared to dazzle the art team with some
amazing Python scripting skillz, I found to my dismay that
Python wasn‟t rolled out as a common install. On top of that,
the developers on the Pipeline team strongly “encouraged” me
to use Powershell.

23

When I was first directed to use Powershell, my first instinct
was this. After some calming down, I figured that since many
pieces of our pipeline were written in Powershell, I better at
least learn enough to tell the Powershell crowd to stuff it. So,
what is Powershell? Powershell is a scripting language built
into Microsoft Windows. I‟d literally never heard of it before
starting at Microsoft. I don‟t know why it‟s not publicized
more – I‟ve actually found it to be a viable substitute for
Python for those working in an all Windows environment. As
with anything, there are pros and cons involved.

24

To talk about some of the strengths of Powershell, I‟m going
to start by telling you why it really sucks.

This video shows the first user experience to Powershell. The
normal use case is to run a PowerShell window by searching
for PowerShell in the Start menu. Like Python, you can run
commands interactively in a shell, which works fine. For more
complex scripts, you can save files with the extension .ps1
and run them. In this video, I‟m so excited I can list files in
the shell. Look, I found a Powershell script, so let me see
what the script does… it looks amazingly useful. Now, try to
run it. OK, I get this error. It tells me to type something to
get more info, so I do. OK, I‟m not reading whatever it just
spewed, and… I‟m out. That is a tremendously horrible initial
experience to a scripting language that you actually want
someone to use.

I‟m going to save you all time and tell you what that long
message just said. It turns out Powershell is SO powerful that
you can pretty much write a script that mucks with the OS so

25

much that you‟ve destroyed someone‟s computer. So, the Microsoft
team added the ability to digitally sign scripts so that users by
default can only run signed scripts. To get folks to run scripts, you
can read all that and figure out how to digitally sign your scripts.
But, I‟m a TA and therefore lazy, so I skip all that signing junk and
do the easy thing… I can turn off signing for local scripts by running
a command buried deep inside that help message one time, and I‟m
good for that machine‟s life.

25

Here‟s the fancy command – run this once from the Powershell
shell (you may have to run this with Administrator privileges
by right-clicking on the Powershell entry in the Start menu
and selecting “Run as Administrator”). As you can imagine, it
is terribly inconvenient to send someone a script and have to
give them these painful instructions the first time someone
runs a script.

Luckily, to get around this for artists, you can also deploy your
Powershell scripts with a batch script wrapper that disables
the harsh execution policy just for that one script. This way,
individual artists never have to open up the PowerShell
window and step through anything lame.

As I mentioned before, this is a terrible way to expose
someone to a scripting language. Once you get over crying
about this inconvenience, let me introduce you to the next
painful thing I found.

26

Every command is verbose in Powershell and seemingly
contains a „-‟ character. Instead of using the universal “print”
statement to write something to the shell, the official
command to print lines is “Write-Output”, which really sucks.
Luckily, Powershell has built-in aliases so instead of using
Write-Output, I can use “write” or “echo”. If you use “print”, it
actually tries to print stuff to the printer, which puts you out of
the habit of typing “print” really quickly.

Instead of using the „>‟, „<„ and „!=„ conventions for
comparing values, you actually have to use „-gt‟, „-lt‟, and „-
ne‟. Actually forgetting and using the „>‟ sign actually doesn‟t
fail, but instead writes out the left hand side to a file named
whatever is on the right side. So, in the example above, the
value of the $value variable actually gets written to a file
named „4‟ without complaining. As a result, I have many files
named random integers all over my computer from when I
was learning Powershell.

Over and over again, I had to consult documentation for

27

seemingly easy things, but I guess that‟s pretty typical when first
picking something up.

OK, that‟s pretty much the big warts of Powershell. There is a third
maddening issue that has caused me to lose my mind several times,
but I‟ll point that out in the examples. From this point on, hopefully
you‟ll see why these warts are worth it when all is said and done.

27

The subject of why Powershell rocks is the topic of the rest of
my talk, but here‟s a high level view of why Powershell is
actually very useful:

• Built into Windows 7 and above – no worry about
environment management and deployment like you have to
with Python, i.e. what version, do you have the right
modules installed, etc.

• Complete first class integration into Windows OS and .NET.
– no modules to juggle to do regular tech art tasks –
shortcuts, permissions, services, file, and plenty more that
I‟ll show

• Pipes: If you‟ve ever used Linux or any UNIX derivative, you
get really used to the idea of piping commands together and
you miss that when you use almost any other scripting
language. Piping commands is the concept of passing the
results of one command immediately into another one on
the same line to do further processing or filtering. You get
that back with Powershell. I‟ll show some examples.

• Object-oriented: If you don‟t already know, don‟t worry
about it for this presentation.

28

• Try/catch for exceptions – robust error handling.

28

I‟m going to walk through some examples of the convenience
of Powershell against the backdrop of the greatest theoretical
game in the world: Ninjas vs. Homies.

29

For our theoretical game, let‟s say I‟ve chosen the directory
structure indicated above with a root directory and two
categories of characters. Each character has their own folder
underneath the character type, and each folder contains a
stats.txt file which is just a text file containing some character
info. Each character folder also contains a stats.xml file
(which is an XML file that contains the same info as the .txt
file – for later use), a thumb.jpg image of the character and a
.obj file representing the character model.

30

The stats.txt file contains some basic character data in a text
format. As our game gets more complex, we might turn this
data into an XML file such as you see on the right. I‟ve
formatted the XML in a number of different ways for when we
get to the XML section.

So with this game data, what are some things I might do with
Powershell to flex some Tech Art muscle?

31

Let‟s start out easy. The first thing you probably want to do in
any useful tool is to navigate the file system and see what
files exist in a directory. The Powershell command to do this
is “get-childitem”. Luckily, the developers also aliased this to
“dir”.

Here, I‟ve listed out some common things we can do with
“dir”. In its most basic form, you call “dir” on a directory or
file and you get a list of items in that directory or the file itself.
Without additional flags, this command will return
DirectoryInfo or FileInfo objects. I‟ll get back to this in a
moment. What might seem more immediately useful is just to
get back a list of strings with the directory contents; you can
do that with the –name flag. In the next example, we can
filter the returned file names with a cmdline switch that
returns a list of files that match the regular expression
specifying only files that end with the .jpg extension. I also
tossed in the –recurse flag that will walk the entire tree under
the specified directory instead of just the files one level deep.

32

Finally, you can get help on any command by prefixing it with “help”.

32

Here‟s what the results of those commands look like using our
data.

33

We can also stick the results of commands into variables,
which are denoted using the $ convention. Once we have the
results, we can get the first item using the common array
index notation with square brackets. We can also start doing
fancy loops that iterate over the results and do something
useful with them.

I wanted to point out the third reason why Powershell sucks.
It tries to be too smart. The dir command will always return
an array of items unless the results only have one item. In
that case, it returns a single object. In the top example,
$results is always an array of strings unless the directory only
contains one item, in which case $results will be a string.
That really sucks, because very easily, without realizing it,
your code might fail. In the first example above, the array
operation .Count that returns how many results are in the
array would cause your script to fail. You can test the return
type in your code, but it makes for ugly code.

In practice, I‟ve found that I have to wrap all my calls that

34

could return either type in the convention below that forces
everything to come back in an array, even if it‟s only one item.

34

As a final result, I wanted to talk about piping, which I
mentioned earlier as something awesome about Powershell.
Piping lets you hand the results of a command immediately to
the next command.

Here are some examples of varying complexity:

(1)Handing the results of a file listing to a “foreach”
command, which loops through each result and does
something to each of them. In this case, printing out the
name and creation time of the file. I‟ll speak a bit later to
how we know that each result has a .Name and
.CreationTime property.

(2)Handing the results to a “where” command that filters on
file size greater than 800 K, sorts all the objects by file size,
and then prints out file names and sizes to the shell.

(3)The next example gets even more crazy, where I have
nested pipe action happening. Here, I get the results of the
dir command (“homies” and “ninjas”), and for each of them
I print out the name, then get a directory listing for each of

35

those categories and print out the indented name below. This
command will list all the characters in game grouped by their
type.

(4)In the final example, I loop through the entire gamedata
directory looking for files that were modified in the past 2 weeks,
select a certain number of properties to display, and then call the
awesome out-gridview command that lets me visually see any
results in a grid table. This one‟s worth a video.

35

The nice thing about piping is that we can build up the
commands as we go and inspect the results at each stage.

At the last step, I make use of the out-gridview command,
which loads results in a visible grid. We can use this
command an any custom object with personalized properties,
so you can hopefully easily imagine places where you‟d write a
script that loads some sort of debug data into this grid with no
UI code. The grid view is pretty basic, but we can sort by
columns, filter to easily narrow down the results graphically,
or add custom filter criteria.

36

Of course, we also want the ability to read and write files.

The first example shows how we can search through files
looking for some particular text – we don‟t actually have to
open the files.

Next, we can just read the contents of a file, or add a line at
the end without cracking open the file. That little backtick n
indicates a newline character – in other languages it‟s typically
backslash n.

Finally, we can use the get-content command to return an
array of strings (one entry per line). Then we append to that
array, and use the out-file command to stream everything
back out.

This is basic ascii file manipulation; of course there are many
other techniques to crack open files and jump all around
them. There are also other techniques to write out more
special files, like XML and Excel files that I‟ll be poking into

37

later.

37

A lot of the previous examples have relied on a lot of piping
with crazy “select” and “foreach” statements. Here‟s an
example that might be more recognizable to the Python fans
in here. This snippet of code reads every string containing
“color” from every text file as a “MatchInfo” object, then loops
through all of them to print out a nicely formatted list of
characters and colors from the stats text files. Like the “dir”
command that output FileInfo and DirectoryInfo objects, I‟m
now talking about MatchInfo objects and using magically
conjured attributes like .Path and .Line to get at properties of
the object. It‟s time to clarify and talk about .NET quickly and
how useful a combination that is with Powershell.

38

.NET is a software framework on Microsoft Windows. It
exposes a core class library to numerous programming
languages. If you‟re using Visual Studio to write tools or apps
(basically anything but a rendering engine), chances are
you‟re using the .NET library. In the screenshots from the
documentation above, you can see the scope of what this
library contains. On the left is a high level view of the
different pieces supported, including some I‟ve clicked on to
show media support, XML files – there are numerous others
including math and drawing. On the right is a dive into just
one of those namespaces - the System.Windows namespace,
which shows a whole bunch of more useful libraries, including
all Windows UI components, 3D support, ink drawing,
threading, etc.

The best part of it is that Powershell is one of the supported
languages with first class .NET integration. What this means
is that with little effort, you can write tools that do really
useful stuff.

39

We started out this shallow dive into Powershell by looking at
the “dir” command, which lets you list the contents of a
directory. In there, I was able to get some file or directory
objects and access some properties on them, like
LastModifiedTime. It turns out that the objects returned by
the “dir” command are .NET objects that represent files or
directories. Using a command “get-member”, we‟re able to
inspect those objects and find out more about what we can do
with them – this is a concept in .NET known as reflection,
where we every object has discoverable methods and
properties.

In the snippets above, we can figure out that the commands
return a FileInfo, DirectoryInfo, MatchInfo and String objects,
respectively. The “get-member” command also lets us
discover properties we can access on each of them, as well as
functions we can call.

40

For example, running it on a output of a “dir” command of a
file shows us that the result is of type System.IO.FileInfo, and
that we can access Properties of that object like
“LastWriteTime” or “CreationTime”, as well as call Methods (or
functions) on the result, some of which look handy, like
“Delete()” or “AppendText()”.

We can also use the robust online .NET documentation to
learn more about these properties.

41

.NET includes a ton of useful libraries; here‟s an example of
using the basic image library to get some file size info on the
thumbnails we have in our game.

The System.Drawing.Image library isn‟t loaded by default in
Powershell, so the first thing we need to do is call the “add-
type” command to load that library, or assembly.

Now we can use it at will. I want to display a grid that has
image name, width and height for all character thumbnails.
The snippet provided finds all the thumbnails buried in the
gamedata folder. For each one it‟ll create an Image object
and get the size property (which includes width and height).
The “.Size” property only includes the width and height, but I
don‟t want to lose the filename as I continue passing data
down the pipe, so I call the “add-member” command which
lets me add arbitrary properties to objects. Here, I add a
Filename property with the correct value and specify the –
passthru command to indicate that I want to pass this data on
down the pipe. If you just run the command up to this point,

42

you‟ll notice there‟s an unnecessary property in there, so I get rid of
it by selecting specific properties of Filename, Width and Height.
Finally, the whole thing is piped out to a grid view and we get the
following…

42

You can use the grid view to filter and sort as before. Doing
this, I see that one of my thumbnails is sized differently.

At Turn 10, all of our automated testing tools for the game,
including all button presses and debug menu fiddling, are sent
to the Xbox are wrapped in a convenient .NET library. We can
write a Powershell script that simply loads our game library
and presses any button or sets any debug menu
programatically, which is really handy for artist tools.

You can even find .NET libraries written by third parties and
download and include those in your scripts if desired, sort of
the Python methodology. We recently worked on a tool that
needed a robust color picker that also accounted for alpha. If
you‟ve worked with the built-in Windows color picker, you
know how lame it is. I was able to find a great .NET color
picker that someone at Microsoft published open source, and
just use the .dll library in my tool without any misery on my
end.

43

For my next example, I wanted to talk about XML. XML is a
common way to store game data for larger games. The ascii
data on the left is showing the same data as we see in the
XML file on the right, so as tech artists we might be tempted
to come up with custom file formats like you see on the left.
For the love of game development, do not make that mistake!
It‟s OK for prototyping and reading files, but tough for the
scale of production.

At some point, people will hand-edit text files, whether ascii
.txt or XML. So, the first thing we want to do with our games
is have a data validator that makes sure that the format is
valid and that someone hasn‟t hosed an important property.
We‟ll probably also want the ability to add weapons or powers
to our characters at some point.

To do this with a custom ASCII format like on the left, you
need to write a lot of non-reusable code to make sure that the
file has a line that contains “weapon:” and that it has a
“powers:” line where expected. If you find the need to change

44

the file format, it‟s a huge pain. In contrast, almost all scripting
languages have libraries to easily do the same thing with XML files
because data is represented in a node object model. With Python
and XML, there are a lot of different modules that you can use, so
you download a bunch, test them out to find a comfortable style,
write code against it and make sure that the module is deployed to
all users. With Powershell, you just use the built-in XML objects and
there is no additional misery.

44

This is an example showing a Powershell function that
validates generic XML and how we might use it. The first
thing we want to do with XML files is make sure they
formatted correctly.

As you can see, validating our XML data is as easy as trying to
load the file. If it succeeds, it‟ll make it to the success print.
Otherwise, it‟ll throw an XmlException error before getting to
the success message and we can print out what the error
message is – this will point out the exact line where the
format is incorrect.

45

For further validation of specific XML formats, we can use the
SelectNodes or SelectSingleNode methods for an
XmlDocument object; if it finds results, you‟ll get those back,
otherwise the result set will be empty.

We can also get specific attributes of a node just by calling the
property name, i.e. .Strength. We can add attributes, like a
new one for intelligence.

We can also create new powers by adding a new “power” node
to the XmlDocument and parenting it to the “powers” node.

Before we lose the results, we can just save the XML file with
the handy “Save” method. As you can see, it‟s much easier to
generically modify XML game data than a specifically
formatted ASCII file.

46

We now know the various fundamentals of pieces required to
write some useful tools. When dealing with artists, that
counts for exactly nothing unless you can toss a snazzy UI on
top of things.

Luckily, again without having to research and purchase UI
packages like QT, we have the handy power of WinForms or
WPF (the old and new UI tech) that developers use to author
Windows UI‟s available to us in Powershell via .NET.

WPF is a good option because it‟s the direction that UI
programming is headed from a Windows perspective. It has
hardware acceleration and really powerful styling and binding
capabilities. The UI you see above is a WPF Powershell script
that James O‟Donnell and I wrote at Turn 10 to deal with
media capturing from the Xbox.

47

Before moving on, I wanted to mention that in the current
released version of Powershell (2.0), WPF UI‟s can only be
created in STA mode (single-threaded apartment). This is an
inconvenience because it means you can‟t just run this scripts
with powershell.exe; you need to launch powershell with the –
STA flag. You can do this by launching a Windows command
prompt and running “powershell –STA” before you step
through any script lines, or you can wrap your Powershell
script with a batch file that runs the script with the STA flag. I
will also mention that in the preview of Powershell 3.0, which
is publicly available with a quick search, you don‟t have to
worry about this at all so that‟s how I‟m running my demos.

48

I‟m going to quickly go through two ways of authoring UI‟s.
One is completely programatically, as those who might be
used to Python/Tk might be familiar with. I apologize for the
small font, but this is a complete Powershell script (lacking in
functionality due to space restrictions) that actually creates
the stunning WPF user interface you see on the right.

The first 3 lines of the script load the WPF .NET assemblies.
The two functions are handlers for events when the type
pulldown changes value and for when the Launch button is
clicked. Finally, we actually create a bunch of UI stuff and
load them into a new window. It‟s pretty self-explanatory.

The application of this for our Ninjas vs. Homies game might
be to have a pulldown to select a character type, populate a
list of characters that fit belong to that type, and then launch
them into our game. You can use what we learned about file
and directory management to actually fill in the functions with
something that works as expected.

49

The second way of creating WPF UI‟s is even more useful. If
any of you have played with UI development using Visual
Studio, you know there is a built-in drag and drop UI designer.
For WPF applications, this creates what is known as a XAML
file, which is an XML file that describes the UI. Through a lot
of banging around, we‟ve been able to author UI‟s using the
Visual Studio designer and use those XAML files directly from
a Powershell script to get away from having to generate all the
components ourselves.

In this quick clip, I go through the process of laying out a UI
using the WPF designer. As the UI is built, at the bottom you
can see an XML file being built-up – this is the XAML file that
contains all the info about a UI look and feel.

50

Here‟s what the XAML file looks like when done – pretty
compact compared to the previous method of generating
components with Powershell commands.

51

In order for us to use this in Powershell, you have to get rid of
the Class reference at the top (this is a helper for C# and not
applicable to Powershell). Also, the thumbnail image source
was a placeholder to make sure the thumbnail looked good.
Since this is also referencing something from the Visual Studio
project, we need to get rid of it or change the source to a
blank black thumbnail here. We‟ll fill this in depending on
what character is clicked in the app itself.

52

Now, to launch the app, this is the minimum set of code
needed. As before, we need to make sure the WPF .NET
libraries are loaded. We have a small snippet of code that
reads the XAML file we created in Visual Studio and loads it –
that‟s all you need to generate the UI.

The rest of the code I‟ve put in as placeholders to show how
you can now access specific UI components from Powershell,
add event callback functions and manipulate the thumbnail
image source.

53

To complete the app, we‟ll need to populate the types and
characters when appropriate (using skills we learned
previously). You‟ll need to parse some XML and possibly use
some image data using the XML and .NET skills we picked up
earlier. You can see how these seemingly idiotic skills pile on
quickly to create useful tools.

54

At many points during game development, you hit situations
where there is too much data. For our Ninjas vs. Homies
game, we keep detailed win/loss stats for every multi-player
match to make sure that balance is consistent. Because there
are 12.5 million matches played a day, we have a lot of data –
you can be sure this data isn‟t stored in text files somewhere.
If we have a load of data that we want to mine for info, we‟ll
use a database.

Database is hit or miss in Python depending on what database
you‟re using. Anyone who‟s looked for a database module to
work with MS SQL or any other flavor can testify that there
are too many solutions out there – it‟s like finding a good
contractor.

Once again, .NET to the rescue; in Powershell, we have built-
in DB access without installing anything. Disclaimer: since I
work at Microsoft, we use MS SQL and things just work out for
us with the built-in DB libraries.

55

In Powershell to talk to databases, first we open a database
connection in the first three lines. Then we create a
SQLCommand (SQL is the language to talk to databases) and
attach it to the database connection.

In the first command, we query the database to “select” a list
of all the winners from the database of all matches. Once we
have this, we can plot the data in a tool that shows win/loss
balance. We can generate a heat map of where players
commonly die on a level. There are many tool possibilities
with just reading from a database.

In the second instance, we aren‟t running a read-only query;
we‟re interested in modifying the database. So, we just
create the appropriate SQL command and run
ExecuteNonQuery() on it to update the database.

Obviously, this is merely scratching the surface of what we
might do with databases; the interest is in having you see the
tiny bit of code necessary to do the basics and you can

56

extrapolate that to larger tools or usage.

56

The last thing I wanted to cover is to show how Powershell
allows us to easily interface with other third party applications
that don‟t support native Python scripting. Many applications
that we touch peripherally as Tech Artists offer a COM object
interface to programatically drive the apps. In this example, I
wanted to show you how we might drive an application such
as Excel using Powershell – if any of you Tech Artists has to
work with Project Manager‟s or Producers, you‟ll know this is a
useful skill. Photoshop offers a COM interface as well, which
theoretically allows you to script Photoshop operations
externally from Powershell (as opposed to the built-in
Javascript or VBScript support from within the app).

I‟ll also note that this same COM object scriptability is also
available from within Python via the pywin32 module.

In this example, from a Powershell script I can open up Excel
in hidden mode, write progress info on our game character
development to a new worksheet, and then save the file as a
native Excel file instead of juggling comma-delimited text or

57

some other mess.

57

Wow, that was a lot to cover.

To conclude, I‟m excited to be a part of us folks covered by
the “Tech Art” umbrella. It‟s an exciting and challenging field,
and maturing quickly. We have such a diverse skillset, but I
am confident that as we progress on, more and more will be
expected of us technically. We‟ve gotten to a point where the
more effort we put into tools and workflow with the artist in
mind, the easier it is to become an “artist” with a few button
pushes. So, to stand out in the future and not just be a
commodity, you need to either be a tremendously talented
artist or a great technical artist, with emphasis on the
technical.

I hope the quick examples I tossed together using Powershell
have convinced you either to dive more into the technical side,
for those who are still getting by with strictly 3D chops, and
secondly that Powershell is worth a look as a tool for your tech
artist Batman belt.

58

My name is Rob Galanakis, I‟m a Lead Technical Artist at CCP
Iceland, I‟m also a founder of tech-artists.org, and today I‟m
going to talk about teaching Tech Art teams to build
technology.

59

Before I begin in earnest, before I tell you what and how to teach and train,
hell before I define exactly what I mean by “building technology”, I think you
all deserve a pat on the back. Since the Tech Art community has come into its
own over the past few years, I’ve seen the type of work we do change. The
type of discussions heard at the Tech Artist Roundtable and read on tech-
artists.org four or five years ago was a lot different from what I see now. A
few years ago we were asking about how to rig a knee, now we’re making our
own IK solvers. We were asking about half lambert shading, now we’re
writing our own graphics engines. We were asking about writing to text files,
now we’re setting up cloud clusters. I don’t think there’s a domain in game
development that I haven’t heard of a Tech Artist infiltrating. We’re no longer
holding things together from the shadows- we’re taking on mission critical
roles and features from start to finish.

60

This growth has been the product of a success I’m not at all surprised to
see. I’ve been, all of the speakers here today have been, loud and vocal
evangelists for Tech Art because we know you all can provide better. Better
tools, better pipelines, better workflows, a better type of development for
artists and all members of our teams. And over the last few years our efforts
have been a resounding success. I get the feeling for the first time that
studios are by and large starting to understand us. This is important. Part of
the reason Jeff Hanna organized the first TA Bootcamp last year was to
address this issue of developers in general not knowing what to make of this
uncategorizable phenomenon called Tech Art.

61

So I believe that management and our teams are starting to understand us,
but, do we understand us? The side effect of this success and growth has
been a very rapid change of roles and responsibilities. It’s a double edged
sword; I see more and more Tech Artists developing the types of hard
technical skills I’ve been advocating for, the type that make us an even more
effective weapon, but I’m not always sure we’re aware of the repercussions.
I’ve seen more than one otherwise competent Tech Artist fall victim to our
own version of the Peter Principle. Based on our success, we get more and
more responsibility until we are put in a position where we just aren’t able to
execute.

62

An analogy. Years ago, my brother and I remodeled a bathroom as a gift for
my mother for her birthday. We estimated it’d take 3 weeks and cost $1000
dollars. It ended up taking about 3 months and $4000. Now in hindsight this
is obvious. We had no idea what we were getting ourselves into. It was
ultimately the plumbing that killed us, because though my brother could fix
and replace pipes, laying the plumbing for an entire bathroom with a jacuzzi is
quite a different story. So we ended up with an overbudget construction,
rough edges, and nagging problems like horrendous water pressure. Now, we
did get those problems fixed, and many a bubble-bath has been taken, but to
finish it, we needed to call in professionals to redo a lot of our job properly.

63

Now, I learned something from this. If you need something plumbed right,
hire a plumber. We weren’t snaking a drain here, we were installing the pipes
for a new bathroom, and covering that with new walls and tiles and paint.
This wasn’t something we could afford to get wrong, but we got it wrong,
because it wasn’t our competency and we didn’t have someone to teach us.
We got it wrong and we paid dearly for it.

And this is just what worries me about the developments I’ve seen in Tech Art.

64

We’re developing software but we don’t know how to be software
developers. We’re using cutting edge tech to work on some great ideas and
we don’t realize, there’s a big difference between writing code and building
technology.

I’m not pointing fingers. You’re talking to the mother of bathroom remodeling
fuckups. See, I had these delusions that I was a software developer long
before I actually was, so I used to try to build technology. It took a lot of trial
and error, but I finally learned. But that was not the end of the screw ups. In
fact it was just the beginning. I thought because I knew how to build
technology, every Tech Artist knew how to build technology. But they aren’t
trained to do it. Some because they haven’t yet learned, some because they
think they should never have to learn. But the ability to build technology, like
a professional, as opposed to just hacking on scripts, is a skill every Tech Artist
needs to have. Whatever you think of my views on what a TA is or should be, I
think we can all agree that improving your programming skills improves you as
a Tech Artist.

65

When success makes you seem awesome, and no one notices failure, how
we’ve been doing things is fine. But we are working on bigger, more important
projects now and the flipside of the greater awareness and importance of our
craft is, we can no longer afford these types of failures. We get to build great
things and people notice. But it also means we can fail harder. And people
notice.

66

So that’s what ‘technology’ is for me. It is the stuff at the pointy top of the
pyramid. The exciting stuff we’re think we can swallow, but we choke and die.
It is the bathroom we don’t have the skills to remodel. It is the complex
systems we want to build, and we can either suffer through it, or we can train
ourselves properly.

Over the past couple years I like to think that I’ve finally gotten good at
creating technology and training teams to develop and maintain it. Like I said,
a lot of this comes from failing so hard at first. Some of it was the luck of
having great people to work with. But those things aside, I can pretty clearly
point to three distinct areas that are necessary to build a Tech Art team that
can build and maintain this sort of technology.

67

The first key is to get a process for support tasks into place. Unless your Tech
Artists can focus and have room to breathe, they are never going to learn any
of the other necessary skills.

The second key is to set up code review. I don’t think any subject has caused
so many headaches for me but it is absolutely essential, and I’m going to talk
about the how and why of reviewing code.

The last area is collaboration. Collaboration both in working on common
projects, and team cohesiveness. To develop those big tools and systems
effectively, you need to be able to apply more than one or two people to a
single problem.

And I’m going to close by going over some of the pitfalls and problems I’ve run
into while implementing these changes. Learning from my mistakes should
give you a head start in driving these improvements.

68

So let‟s start by talking about that process for support. Over
the years I‟ve learned that process is a dirty, dirty word.

69

Nobody likes process. In fact, lots of us hate process. I don’t want you to like
process. For most Tech Artists, ‘process’ as a concept goes against our very
core. We shouldn’t have processes because we want raw, direct access to the
people with problems. We shouldn’t have processes because we should write
a script for that. A process implies a workflow we can’t automate, and we
believe we can automate any workflow.

However I can’t simply ignore the fact that how TA’s handle support is broken.
I don’t think there’s a happy programming job in the world that works how we
work. To successfully build technology, you need to be deliberate. You need to
plan and have stability to execute. Tech Artists often get the role of firefighter
and garbage man. We have to understand this is part of our lot in
development, but we also need to aspire to minimize that role. To handle it in
a way so we can address larger issues and tools as well. We have great ideas
and we need to create an environment that we can build those ideas in.

Support process isn’t about creating something rigid and inflexible, it is about
making your development and support more deliberate. Process isn’t the
answer, but it does allow us to find an answer.

70

So let’s talk about how we think of our current process. This isn’t much of a
process- defects are found and feature requests are made by users, and fixed
or added by TA’s. This is a tight feedback loop, which is good. We want to be
able to get raw feedback from the user, and act on that feedback quickly. I
want to introduce process, but I want to keep the responsiveness of this type
of support.

71

But we actually have that process performed, in parallel, by each Tech Artist. A
tight feedback loop is great, but when we find every TA has his own feedback
loop and way of doing things, which is usually different from every other TA,
you create several problems.

72

Providing support has side effects. The codebase grows. It
grows much faster than it should, because code is rarely
shared properly and is often copied and pasted, or existing
code is unknown and unused. And the relationships TA’s
have with customers is different for every group. What we
develop when we work like this is not shared property,
and we never develop a shared identity. We don’t develop
cohesive practices, a unified style, a vision or architecture.
So every step further down the individualized support
path we go, the more redundant work we do, the harder
things are to unwind. The stack of debt grows and grows.

This works as long as your TA’s have time and success. But

I’ve seen it with every competent TA I’ve worked with. You build up this stack
so you can work effectively. And eventually it turns to shit, and takes all your
effort to support it. And now you can’t really develop new features properly.

Your truck factor becomes high. Your code becomes brittle. And

73

your genius and ethic can keep things together for a while. But
at some point, you run out of hours in the day. Until then, you
can give high quality support, which is expected- you’re a skilled
bunch and ours is a labor of love. But as soon as you hit that
wall, you start to stumble, you fail hard. The end goal of a
support process- what all the changes I propose hope to
achieve- is to have the most productive Tech Artists possible.

73

In order to do that, we need to start by collapsing the
stack (no pun intended, Max users). Putting a support
process in place is the first step towards understanding the
work we do, sharing it, paying down debt, developing
better. You’re not going to do that via a support process
alone. The real goal of whatever support process you end
up with is this:

74

Realize how much support you do, and trust others to do it.
That‟s it. Most people don‟t realize just how much time they
spend supporting artists and designers, answering
programmer questions, adding features, fixing bugs, twiddling
around with stuff. A support process forces a reckoning with
this behavior.

And the idea is, once you realize how much time you actually
spend in support, and once you have a process where other
people can actually cross over and help you, you can start to
breathe again. It is the first step down a long road to building
technology.

75

My recommended support structure is something like this. There is of course
the direct feedback, via face-to-face or other channels. That is not going
away. But important here are the technical mechanisms. Build a way to catch
when errors happen in your tools, and get those errors, along with callstack
and logs, reported to your team as emails, or into a bug tracker, or whatever.
I’d also suggest giving users a big shiny ‘HELP’ button when you can’t do it
automatically. These things are not hard to set up.

Everything goes into a single task list. Let the Tech Artists draw from this list,
and manage it internally. Do not involve management or gate tasks by
assigning them out in some bureaucratic fashion. And use daily standups and
the task list to keep track of what people are doing.

76

One reason I love this system is everyone on the Tech Art
team can see when things go wrong. You can see where
the problematic tools are because they generate the most
crashes. You can see who is not testing properly because
there are always a flurry of reports after they check in. You
can see who isn’t specing out work well because they
generate the most feature tasks. You can see the exact
errors in a tool and everyone can offer suggestions, or take
it on themselves, even if it isn’t their core responsibility.
For this to happen, you need automated reporting, and
processes that are simple enough for everyone to
participate.

77

On the other hand, I’ve seen people try to use project
management software like Hansoft, to manage tasks and
support. Don’t do this. Keep it simple, stupid. Don’t
require people to log into a chatroom, or send an email to
a special address they need to remember. Manage this via
familiar, simple tools, such as email or Outlook Tasks, and
automate, automate, automate.

78

Figuring out a support process is evolutionary and not a science. Keep it
simple, grow it organically. Try lots of things, throw out what doesn’t work,
keep what does, and sometimes you need to switch out what works just so
you can find something better. Those optimal mechanisms are unique for each
team and studio, but every team has them, and you just need to keep trying
until you find them.

So if support processes are designed to be flexible, helpful, and non-intrusive,
the next goal does not have the same fluidity and it is always disruptive.

79

Code review. I imagine a good number of you have tried out or at least read
about code review. There are lots of benefits of code review, but the best way
I can sum it up is this.

80

A successful culture of review creates a mind meld between
your team. You have shared domain knowledge, you feed off
of each other‟s skills, you develop a single cohesive set of
standards and idioms. There are a hundred benefits to code
review; and being here at GDC, at the forefront of the
industry, probably means these benefits are obvious.

More than that, pretty much all software development
houses, and game studios of any size, have some form of
code review on programming teams. Some do it better
than others, but everyone’s doing it. The benefit is without
question. But it took many years for code reviews to get
implemented, and usually there are lots of aborted
attempts because it causes so much friction and is seen as
adding a lot of overhead.

81

So if I were to stand here and just tell you why code review is
good and how to run effective reviews, I‟d be doing you a
disservice. Just saying „Huzzah! We‟re doing code reviews!‟ is
not good enough.

So not just any code review. Mandatory and thorough code review.

Mark my words: The road to effective code review is perilous and will cause
tension on the team. Which is sort of nice because you know if they’re not
causing tension at first, you’re doing it wrong. As opposed to support process,
which can be continually tweaked and be made non-invasive, there are some
absolutes with code review in a Tech Art environment that need to be set
down from the start.

But why are code reviews so difficult? Well, you’re basically putting two
competent people into an arena, often a public arena, and having the
reviewer attack the person being reviewed. Now, this is obviously not how
successful code reviews work, but it’s often how they can feel, especially early
on.

82

In this case, we Tech Artists shouldn’t have such a hard time seeing the ‘why’
of code review. Because code reviews are, conceptually, not much different
from art reviews. Let’s say creating art and writing code are no different, and
in the sense that they are activities we are paid to perform at a professional
level, they are no different. We’re very comfortable with the fact that when
artists create art, it adheres to some guidelines:

1. It follows some agreed upon convention in terms of naming, scene setup,
the program it was created in, what files are checked in, etc.

2. The art follows a certain style that is at the discretion of the Art Director
and existing art.

3. The art is of suitable quality as determined by the Art Director and other
Artists.

So just think about your code reviews as art reviews. When people throw a
fit, or drag their feet, or question why you are demanding they do code
reviews- as will inevitably happen- just give them that analogy. They are paid
to produce work at a certain quality, and code reviews are the most effective
way to ensure that.

83

Code reviews sound and work great in theory, and you
think you’re ready to do them, but reality of course proves
differently. The primary obstacle to code review is
commitment. Whereas art reviews are an accepted part of
life, code reviews are not. And while you can tell your
team they need to be done to ensure quality, if you don’t
want to have a morale problem you need to demonstrate
that the reviews have benefits.

And herein lies the problem. It takes at least a few weeks
for code reviews to start reaping benefits. It takes even
longer when you have a team that has never built
technology properly and, quite honestly, don’t care much
for software and project management theory. So code
review sounds great, people start doing it, but it takes
time, and causes tension. Because they cause tension,

84

someone decides to make them optional as a way to diffuse the
tension. Now because they’re optional, people don’t do them
thoroughly or at all, so they have much less benefit. And if they
have less benefit, they become more optional. This is a vicious
cycle that results in people not doing reviews at all.

84

And there is a cure but it is a hard pill to swallow. Code
reviews are mandatory, and a single Tech Artist has the
final word. Let me be clear about this and state in no
uncertain terms: I have never seen or heard of code
reviews being successfully implemented on a Tech Art
team without them being mandatory and without a single
arbiter of correctness. It doesn’t matter who the arbiter
is- it can be the lead, or a senior member, but there needs
to be a single person responsible for the process and the
quality of the reviews, at least at first. And it doesn’t
matter whether you do over the shoulder reviews, or have
software, or use email, you just need to make sure every
Tech Artist is getting their code reviewed, and reviewing
other people’s code. Just remember though that making
code reviews mandatory allows them to be successful, it
does not cause them to be successful.

85

So I’m not going to go deep into how you perform good code
reviews. The truth is the subject warrants its own lecture. I’m
going to have some links for you in the presentation notes,
which I hope you download. Read them. You need to do your
research, study, treat is as its own process and skillset. The
performance of the review can, must, be tweaked and adjusted-
how many people review, who reviews, what type of things are
flagged, etc. But these two things- a single arbiter, and total
compliance- cannot be negotiable.

85

This sounds like a harsh dictatorship, and in some ways it
is. And you need to get over it if you want effective
review. If you want to run things like Barney the Dinosaur,
you are going to fail. Very few people who haven’t been
part of a review culture want to submit to code review.
But very few people who have been part of a successful
code review culture regret it. The key is to figure out how
to make it successful, and just like support process, needs
to grow and change with the team. So you need to
establish a dictatorship, and inside of that box, you have
the ability to adjust your review process however you see
fit. No one is going to get it correct right away. It will
require constant revision, and the team will grow and
improve so what works now may not be optimal in six
months.

86

The ‘dictator’, so to speak, must be someone who can change
their minds and solicit feedback from the team. It needs to be
less a military dictatorship and more an open source software-
like Benevolent Dictator. We can definitely take some guidance
from open source project management. And as Guido van
Rossum was the original Benevolent Dictator for Life (BDFL),
we’ll use his picture. Now your review dictator is obviously not
‘for life’, but the roles are the same.

86

In open source, you tend to have a benevolent dictator, the
„father of the language‟, who at least initially is responsible for
all the code that makes its way into the main branch, and
often does all reviews to the core systems. He or she is a
„gatekeeper‟ of sorts. So if they don‟t like something, it
doesn‟t go in. In practice, BDFL‟s cannot afford to be fickle,
tyrannical, or anything less than excellent, because if they
are, contributors will just fork the code.

For better or worse, we don‟t have the option to fork our code
if our gatekeeper is not cut out for the responsibility. So we
need to choose wisely, and make sure she is honoring their
part of the bargain, by listening to the team and by educating
herself on her own time as well. She‟s not going to be an
expert out of the box- everyone will grow as time goes on.

And for those of us who have become the dictators of our Tech
Art codebases, a good way to judge is, how compelled are
people to hide away their own code where only they will see
it? How comfortable are people contributing to the core,

87

putting things where they should go, or are they really just forking
by carving out subdomains of the larger codebase?

87

And of course the best metric is, after a few months, are
people learning? Are their reviews better, do they have less
defects?

Everything about code reviews get’s back to being a professional, to being
able to develop software and build technology. There’s a difference between
just writing code, and writing code professionally. Anyone can write code that
does x or y. Slightly fewer can actually work with other people’s code. Many
fewer take their code seriously enough that they require it to go through peer
review. Just like a professional artist has his work reviewed and critiqued, so
must you as a Tech Artist have your code reviewed in the same way.

88

A support process will assemble you into a team. Code
review will allow you to gel, work, and grow together as a
cohesive coding unit.

Ultimately both of those things are working towards an
environment that fosters collaboration. Collaboration allows us
as Tech Artists to build technology. It is vital. Without tight,
effective collaboration between TA‟s we are simply not
equipped to develop the big projects we increasingly need to.

89

What specifically do I mean by “collaboration”? It doesn‟t
mean pair programming, though that‟s a good indication you
collaborating.

At its most basic it means, you need a coding buddy. You need
another person on the team who can not just read your code,
but understands the systems you are working in. You need
someone you can go to with ideas and who can give
meaningful feedback. You need someone who will come to you
with problems and you can provide solutions. You need
someone who you can sit with at a computer and pair
program together. Collaboration in all these forms is a way to
improve the effectiveness of all your team members, that is
the goal we‟re interested in.

90

These are the traits of successful programmers and successful
programming teams. It wasn‟t so long ago, though, that the
myth of the genius programmer was still prevalent and teams
didn‟t have the sort of collaboration and practices I‟m
encouraging you to emulate.

But over the past few years, this myth has largely disappeared
in the professional programming world. But we have our own
version of it in the Tech Art world. We have the animation guy,
the character guy, the environment guy. The guy that wrote
system A and the girl that wrote system B. Each of us love the
idea of being a badass Sherlock Holmes in our field of
expertise. We love having the freedom to do what we want to
do, to not really have to answer to anyone, to do amazing
things and get the silent glory. But as fun as it is, we need to
be the police force as well. We need to be clever like Holmes,
yes, but we also need to give out parking tickets and we need
to be able to respond to crises or operate in force. There is a
time and a place for us to act as a solitary genius, but it must
become the exception, and not the rule.

91

Why. Well it must be acknowledged that support is a large
part of the job of anyone that develops tools. And like I said
earlier, Tech Artists provide the best support in the business.
We pride ourselves on it.

But the support splits our focus- we need to provide support,
and develop new tech. And when it comes down to it, support
is going to win every time.

So we‟re stuck providing full time support, but we all love
doing those bigger things as well. So we work 50, 60, 70 hour
weeks, and develop those bigger things in our spare time. And
then something terrible happens. The new tech we develop
comes with its own support burden, and suddenly we‟re
working overtime just to provide support.

I‟ve been guilty of it and I‟ve seen it time and time again. So
not only is collaboration a requirement for building technology,
it is also a requirement for keeping your own sanity. Being
able to share responsibility means you can load balance your

92

team effectively.

92

So we come back to fixing our support process. Remember
this unique stack-per-TA? This is an impediment to
collaboration. So we need to get rid of it. Now we have
people that are actually sharing code. This is a form of
collaboration, to be sure, but it is a reactive, not creative,
form. It finds code that should be shared, and shares it.
When problems come in, they can be fixed or informed by
multiple people. It is collaboration for support. This is
important but this isn’t the creative form of collaboration
I’m talking about here.

But if we combine that sort of reactive collaboration with
code review, we reinforce the ability of the team to work
together, grow and learn together. In my experience, I’ve
found that it isn’t until a team establishes code review that
they establish a ‘team identity,’ where they turn from a

93

group of individuals who have the same job title, into a team
that can collaborate together to create new things, as a team,
and handle the burdens of tech art, as a team.

So we combine these two things- reactive collaboration, and
team unification- and something marvelous happens. We move
past the point where we can only load balance support, and we
can start to load balance new features, new tools, internal work,
everything. Suddenly we have the bandwidth to build
technology.

93

Collaboration is your ultimate weapon against the likelihood of
failing as your team succeeds. As you get higher on this
pyramid of responsibility, there is a rapid increase of the skills
and amount of work required in the tasks you are asked to do,
and want to do. And a Tech Art team, as a rule, rarely has the
experience with the sort of tasks that are at the tip of this
pyramid. These are studio-wide features and tools that usually
have very little to do with the specific expertise of Tech Art. Or
they are super-critical, paradigm-shifting, fundamental
changes to art pipelines, that can hose a team if not executed
properly.

94

We all know the analogy about the bundle of twigs, and it
works here. We‟re more effective in the long run when we
work together. The key to building technology isn‟t having a
team of programmers. It is to have experts that can program
who collaborate like a team.

95

I‟ve been through this regimen at three separate offices and
I‟ve learned a lot each time. Now I hope I‟ve stressed enough
how the specifics of the implementations will be unique for
each team, but there are some pitfalls to avoid. Now I say
avoid but what I really mean is, these things are going to
happen and you need to be ready.

96

I‟m going to be straight with you. Making the changes I‟m
advocating for is going to rub some people the wrong way.
Changing how they interact with artists, forcing them through
procedural hoops for code reviews, putting them into
collaborative projects where they feel awkward- there‟s no
way to get around the fact that this is going to have a
negative impact on morale. You have to go into this with the
belief that the suffering is temporary. Making these changes
has led to huge gains, but I can say personally they‟ve caused
hardships, for me and for others. I‟ll talk about some of those
difficulties in a bit, but in all cases, we came through it
together and were better off for it.

97

But we only got through it because we had the will to succeed.
We knew that we had to eat our vegetables to make us
strong, even if we hated the taste at first. We refused to
compromise on the changes we knew we had to make,
because if you aren‟t rigorous, the whole thing is going to fail
and you‟ll be far worse off. You need to follow through with
process improvements, rather than just letting bad habits
creep back in. You need to be absolute in your commitment to
reviews and not let whining throw them off track. You need to
create opportunities to collaborate, and not just wait for them
to occur. Find a way to address morale problems without
compromising the integrity of what you‟re doing.

98

If you are being rigorous, you can measure your success. This
doesn‟t have to be complex, or official. For me, it was simple-
the number of Perforce submits for the team and individuals
over time. Too many checkins, and it‟s clear we‟re crunching
or behind on work. Too few checkins, and we‟re not developing
effectively, either because we‟re not doing much or we‟re
doing too much without checking in. I wanted a stable line.
And without fail, a few months after you put a support process
in place, are doing reviews, are collaborating on projects- I
bet you‟ll get a stable line.

99

Now that said, don‟t expect changes overnight. I‟d suggest
doing these things in order- starting with improving your
support process, then implementing code review, then finding
collaborative projects. Do one at a time, but do not half ass
anything. Implement, and stick to it. Change won‟t happen
overnight but it doesn‟t mean you‟re doing it wrong, as long
as you‟re rigorous. Give it a month, then measure and adjust.
You‟re slowly evolving into the team you know you can
become. It takes longer than a month but should not take a
year. As long as the team makes some progress, every week,
be content and keep pushing.

100

But no matter how long you wait, there will be people who
won‟t change. This is the worst cause of morale problems.
This is what I have struggled with most personally.

There are two types of people who don‟t fit in, and yes I
realize the irony of that statement on this slide.

People of the first type are just not cut out for the level of
coding your team will be doing. You need to find them a place
in the organization where they can contribute. It cannot be
writing production code. It may change constantly- maybe it is
to plug a hole until the rest of your team can fix it properly.
But there is always a place these people can add value. Maybe
not as much value as the ideal employee you‟d want to
replace them with, but in the immortal words of Donald
Rumsfeld: “You go to war with the army you have, not the
army you wish to have.”

The second and more difficult type are people who don‟t want
to or can‟t add value in non-coding roles. Maybe they have a

101

software background or have been scripting for a while. There‟s no
easy way to deal with them. They need to be put into the first
category, or they need to assimilate, or they need to ship out. They
can quickly become an open wound for morale, or will compromise
the rigor these changes need. Give them the opportunity to change
roles, or offer the extra help for them to improve. But their poor fit
cannot be allowed to fester.

101

I‟ve made all of this seem a lot simpler than it is. We‟re talking
about significant culture changes. Cultural changes are the
hardest ones to make. Computers are easy to deal with.
People are not. This is a process, and a journey. The thing of
paramount importance for training your Tech Artists is that
you establish principles and stick to them.

Now I want to close with this.

102

I call myself a Tech Artist, but I am a programmer. I don‟t
have creative visual ideas anymore. I avoid Maya as much as
possible. I know, in skills and interests, I am on the fringe of
Tech Artists. This is a fact I‟ve come to be OK with.

So please do not take away from this presentation that I am
saying, being a programmer is the most evolved form of Tech
Art. It isn‟t. I have made myself a programmer because I
enjoy the tools and pipeline aspect of Tech Art most. Other
people enjoy different things.

I‟m not trying to ruin your life. I‟m trying to make it better.

But just because you do not want to write your own compiler
one day, does not mean you don‟t need to know how python
importing works. Just because you only write simple tools,
doesn‟t mean you don‟t need to know how to serialize UI
settings properly. If you are going to consider writing code
part of your job, it is incumbent upon you to write good code.

103

But the goal of this presentation isn‟t to encourage you to
become a programmer. We. Are. Tech Artists. We need to
respect that history and who we are. If you‟re uneasy with
these changes, I‟m not asking you to forsake what you love.
I‟m asking you to sharpen or relearn your programming skills,
so that you may become a better Tech Artist. You can know
how to program without being a programmer. And knowing
how to program well will allow you to get stuff done quickly,
which makes you a better Tech Artist.

104

And that makes everyone happy.

Thanks. Questions?

105

 Alright well, welcome to Tech Art bootcamp 2012,
for those of you who were here last year, welcome back, and
let me extend a personal thanks to all of you who upvoted us
on the review sheet, enough so that we get to do this again. I
know I don‟t speak solely for myself when I say it‟s been a
privilege, an honor, and just downright fun doings this, and I
hope we can keep doing this for years to come

(So Fill Out Your Review Sheets please, and same as last year,
bribes go out the day I get back from GDC)

 The thing I‟d like to talk to you guys about today
is sort of a hybrid of two things that have become near and
dear to my heart over the last couple of years, drawing on
some of the situations I faced and experiences I gained in my
brief stint as a Tech Art Lead/Manager last year.
Industrywide, it‟s safe to say, insert your platitude of choice
for change here, you know, change is on the horizon, winds of
change are blowing, OMG zombies are coming we‟re all going
to die, the sky is falling, you get what I‟m saying, but I think

106

that puts us in a really great position to step back for a bit, take a
look at what we‟ve been doing and think about how we can change
all that, and of course the logical place to start…

106

 …is at the beginning, and I definitely feel that Tech
Art is uniquely qualified to observe from this point. You know,
I remember a while back getting with my parents and looking
at some videos of Halo ODST, because, well Wes can back me
up on this now, you work on Halo and all of a sudden all your
little cousins, nieces, nephews who play video games want to
tell their friends, which is flattering, don‟t get me wrong, it
instantly moves you from creepy uncle who‟s only a head on
skype to cool uncle who plays video games all day!

 So anyway, as we were running through the level,
I was pointing out all the bits of content I had touched and at
one point my mom remarked “Wow, you do everything,
they‟re not working you too hard are they, I mean, are you
getting enough sleep?” As moms tend to do, and of course me
being the good son, I didn‟t have the heart to tell her that you
exchange your sleep privilege for the working in games
privilege, but the thing it really hammered home is that we
touch every discipline and most of the content that goes into a
game, in some form or fashion, and this gives us a really
unique and almost global understanding of how the production
got where it is, be that good or bad. So now it‟s time for us to

107

take that step back, start looking at what all the commonalities are
between the different phases of production and working paradigms,
abstract those into a set of general ideas and concepts, and figure
out how we can use those ideas to make us more efficient as Tech
Artists, and in turn make our productions much more solid, starting
from the beginning, because the reality is…

107

 …we need to work smarter not harder. We keep
hearing it, and from my recent experience, it‟s true, the
requirements and demand for content are increasing, cycles
are decreasing, and overall the workload is just getting bigger,
whether you‟re working on a small F2P online game or the
next big console FPS. No coincidence that I mention those,
because it‟s the disparity between those two projects that
really crystallized for me how important it is for Tech Artists to
be laying the foundation that enables this. There had come a
point in the development of said next big console FPS where
we were really starting to just be able to churn on Tech Art
tools, you know, we had this great set of python apis, we had
a really robust software warehouse, unit test suite, all these
things were we could just write code, everything from big
tools to one off scripts, and we knew it would work! To the
point where I almost forgot how hard Tech Art could be…you
know, got a little comfortable, put on some extra weight, you
know how it is…

 A few months later I found myself on the opposite
end of the spectrum working on a PC F2P online title and was
faced with that age old Tech Art task of batching every

108

character and animation in the game. SO of course I thought to
myself, well how hard can this be, hell I used to do this in my sleep,
actually still do sometimes just for fun, so I set off to writing the
same python script I‟d written a million times over you know import,
constrain, bake save, wrap that all up nicely in a batch, profit right?
Yeah so it was probably about 2 the next morning when I finally
decided that, maybe things weren‟t going quite as well as I had
imagined they were going to.

108

 And you can imagine my shock, I mean I‟d just
come from a pipeline where people would batch whole
animation sets of several thousand animations multiple times
a day, to spending a whole weekend trying to reliably batch
1600 files, you can imagine I probably wasn‟t feeling great
about myself…

 So the disparity between these two pipes should
be fairly obvious:

Good tools infrastructure, solid data and object models,
common frameworks, etc,

vs

Character rigs all outsourced

 But as I said, this was actually a big positive
because it did in fact cement the need for infrastructure and
how left unchecked, little oversights turn little issues into huge
unmanageable issues for Tech Art. Now therein lies the rub,
this sort of work that “only benefits” tech art immediately,
sure that‟s true, but this is the sort of work that will continue
to pay dividends throughout the project and in fact can

109

absolutely affect future productions. I feel like at this point in Tech
Art, we all know how to write code, we all know how to build tools,
we know how to setup the artist toolbox, but what seems missing to
me is that we don‟t talk about how we setup the tech artist toolbox,
and like I said, I feel like it‟s time to start stepping outside the
specifics of our production experience and start not just generating
abstract ideas and paradigms from that experience, but leveraging it
as well…

109

 …and the way we do that is by using those ideas
to set down a foundation for Tech Art to build the requisite
tools and tech for our production. Now, I don‟t want us to
confuse infrastructure with specific tools and pipelines, in fact,
I‟m not actually going to talk about much production code at
all. What I hope you guys all take away from this is some
ideas and tech that you can use to write your own code.

 The reason I feel like this is a valuable topic is that
well, everyone is writing foundation code in the Tech Art world
today, from students and jr Tech Artists, all the way up to old
men like myself, so I get the impression that everyone
understands how to write tools and build pipelines for artists,
but what I feel like we‟re missing is conversation around how
to build tools and pipelines for Tech Artists. This can be a bit
of an uncomfortable topic, because it really is the drab,
unsexy work that you can‟t really convince a producer to let
you do, and you‟re not gonna get that appreciative feedback
from artists for writing the Big Red Button, and I know as Tech
Artists, we like to dive in, we like to just get our hands dirty
and go. But having worked on both ends of the spectrum, I
can tell you right now that I don‟t think I could ever work in

110

an environment that DIDN‟T have a Tech Art infrastructure, and I
hope this is something we can all start to take to heart as a
discipline if we aren‟t already, because otherwise…

110

 …we‟re doomed to repeat the same production
missteps, but in a climate where mistakes are just continuing
to get more costly. Make no mistake, when I say Improper
Use, I‟m putting the onus to correct that on US, that is not a
statement of implied blame on production‟s part,
management‟s part, it‟s all us, and I don‟t say that too piss
anyone off too much, but just enough that maybe you‟re
saying to yourself by now, “Well look at the big brain on Seth,
fine smartass, what do we do?” Well, I‟m glad you ask…

111

 Flashback to about 2007 and you might remember
that this little technology called “cobra” or…”viper” or…Python
that‟s it had been introduced into to Maya a little earlier and
was starting to get a bit more uptake in games. I feel like this
sort of threw a bit of a wrench into the whole idea of what
Tech Art was as a discipline and for a little while there, it really
felt like there were going to be battle lines drawn between the
Art Tech Artists and the Tech Tech Artists, though that could
have just been my flair for the dramatic, but, I know Rob and
I have ranted to each other about this a lot, that whole idea
that “Oh I‟m a tech artist, not a programmer, so I don‟t need
to learn the Python standard library, I‟ll just write my own
string functions”…no seriously, this is a conversation I‟ve had…
 Jump back to today though, and I feel like things
like this have been pretty well settled and the idea of Tech
Artists as programmers is definitely not quite the foreign
concept it was back in those dark times. So That‟s the big
overarching premise here is that we are very much software
engineers nowadays, and we should start thinking, acting, and
working like software engineers.

112

 So my story about the character batching incident
is a good testament to the need for Tech Art infrastructure,
but as I‟ve mentioned, we need to broaden our FoV a bit and
look at how the lack of infrastructure can really affect
production at all stages and all levels. To be honest, not being
able to batch characters in a specific instance isn‟t horribly
egregious, and really I was just feeling sorry for myself, right,
but if we think about the implications of that, the issues
probably tend to manifests themselves in your minds, yeah?
For example, not having that infrastructure means we can‟t
quickly iterate on character rigs, which means if we need to
add features or recover animation, it‟s a time consuming
process, and what happens when we‟re up against a deadline
and we have a show-ish stopper? Not a situation people
aren‟t unfamiliar with, but certainly one that could be solved
by…proper infrastructure.

113

 At some point in your career you may have written
a really quick, dirty, one off tool, in the privacy of your own
cubicle and of course you washed your hands afterwards, all
the while thinking to yourself “ah, it‟s just a one off, we‟ll just
fix this content and call it good.” This in and of itself isn‟t a
bad thing, and it‟s not even a bad thing if you write a lot of
one-off tools and scripts. What differentiates between good
and bad one-offs is the underlying framework on which the
tools are built. Much in the same way that we like to think
of/design UIs in our tools to be layers on top of separate core
functionality, we can abstract that idea out to tools in general,
what we call tools should really just be layers on top of our
infrastructure and frameworks that manipulate content and
data, and it‟s bad infrastructure that keeps you from writing
those one-off tools while preserving process and data
integrity…

114

 …what ends up happening instead is that without
that roadmap of infrastructure to follow, each tool potentially
becomes its own little mini-pipeline with its own data model
and execution patterns, so as we write more of these little
one-off sovereigns, we end up diverging the content and data
paths so much that when we try and wrangle things back in,
we end up with these huge tools that are trying to account for
every one of those little forks in the content path we created
and so we get this thing that‟s more akin to a rube goldberg
device than…say a waterslide, we‟re standing at the top
dropping content into one end and hoping it comes out one of
the chutes that we can see the end of. And while that‟s all
well fun, or at least it sounds fun, the real tragedy here is that
we‟ve totally engineered flexibility out of the pipeline because
our content has to be conditioned so specifically, and likewise
scalability, because even small changes require massive
amounts of code, again to account for each one of these
diverging content paths from all of our pipelines-in-a-tool

115

 The worst case scenario is that we end up with
pre-pro content that we can‟t recover or otherwise use, which
isn‟t too terrible, you want to have that sort of flexibility in
pre-pro, but once we move into production sans
infrastructure, we get content that‟s a bear to debug because
we can‟t be sure of every thing each individual tool introduced
to the content path, and at the end of the cycle, we end up
with content we can‟t optimize because again, there‟s no way
to trace back through the steps other than to read the code,
and I know, none of this is a really huge deal for now, but
remember what we‟re facing, we‟re facing a new hardware
cycle where our ideas of what content is may completely
change, for example, suppose we do make the big jump to
procedural authoring. Now we‟ve got “content” that doesn‟t
exist in a state that remotely resembles what we think of as
content today, and if we try and wrangle that with a toolchain
that has no common frameworks, well…I‟d prefer not to
imagine what that might look like.

116

 Ok so now that we hopefully have a compelling
case for why we need Tech Art infrastructure, we should talk a
bit about what it is that we‟re actually trying to build, and I
think that can be best illustrated by talking about some of the
benefits. And I know, this is one of those things I feel like as
Tech Artists we all know, but the reason I want to touch on
this point is because having these conversations are an
integral of building Tech Art at a studio. You may at some
point have to sit down with Art Directors, production leads, etc
and talk about why it is that you need to go dark for a 3
month period wherein you‟re not doing anything immediately
beneficial to the art team.

 So that said, I‟d like to frame this more by
discussing some of the benefits versus trying to directly
answer the question, because ultimately we want to be able to
spin this not as a “what” but more as a “why” or a “how”, that
is why should we do this, how does this benefit the production
as a whole. Taking this sort of approach presents compelling
arguments versus simply saying “This is a thing, we need to
do it”, because when I present it like that, what‟s the first
thing you‟re asking? Why…

117

 So all the bad news, fire, and brimstone from the
repercussions of bad infrastructure behind us, now we can
focus on happier things, like how a good infrastructure can not
just make life for Tech Art, but can in fact affect the whole
production all the way through ship. This actually has to do
with how we think about/approach pre-production, as well as
what we actually end up implementing, and the way to think
about that is to never lose sight of production. One of the…I
don‟t want to say mistakes, but maybe one of the less
pragmatic approaches we tend to take in tech art sometimes
is to get caught up in that whole headiness of pre-production
along with our friends on the art team, so we do things like
create these amazing shaders for example that in no way are
going to run at frame rate, but it‟s cool because it‟s pre-pro
and it‟s throwaway…until it‟s alpha and we have to ship with it
so were stuck trying to optimize this thing that…really wasn‟t
built to be optimized. But if instead, we approach everything
with that infrastructure first mentality, sure we can build those
crazy shaders, but, we‟ll build them in such a way that we can
take it apart and reconfigure it when we need to get some
cycles back. The same high-level paradigm should apply to
our pipelines, and of course that starts with…good

118

infrastructure.

118

 Now, if we‟ve gone through pre-pro infrastructure
first, we set ourselves to go into production in such a manner
that we should have a pretty good idea of what kind of game
we‟re making, which means we know what content we‟re
going to be building and from this we should have an idea of
what the pipelines might look like, and while that might not be
enough for us to dive in and start building tools yet, it puts us
in a position where all the big questions should be answered
and we can at least start asking the smaller questions now,
like…what should the tools look like. And if we‟ve taken the
opportunity in pre-production to start putting down some very
rough infrastructure, that being gathering external libraries,
experimenting with different SDKs and patterns, I think we‟ll
find that developing our production infrastructure becomes a
fairly simple task, along with our tool and pipeline
development.

119

 And if we‟ve gone through production properly,
again with that infrastructure-first mentality, not only do we
Ship The Freakin Game, hopefully with minimal casualties, but
we leave ourselves in a position to hit the ground running on
the next game. Building a new pipeline and toolset just
becomes a matter of…writing more one-off scripts against our
battle tested infrastructure, and if our infrastructure was such
that our content pipeline wasn‟t the divergent, branching
nightmare from our previous conversation, we even set up art
and design to start in that same strong position, since they‟ll
have tons of content that they can easily strip down and re-
purpose for the next project.

120

 Alright so before we dive right in, there‟s one more
sort of…I guess we could call it a logistical issue we need to
address and that‟s where the accountability is going to fall.
Someone needs to be the go-to guy for all this development,
but more than that, someone needs to be a vision holder.
Vision is definitely not just heady stuff for artists and
designers, we can certainly benefit from having our own
visions of what not just what Tech Art should be, but again,
why we‟re doing it, and how it‟s going to help us ship the
game, see, there‟s that why and how again.

 The key point for all this is leveraging proper
experience properly. Now, I‟m not going to promise that this
going to guarantee that as Tech Artists, we‟re always going to
get to do all the work we want to do all the time, but I do
believe having an advocate in place on the team can help
foster proper advocacy outside of the team, so hopefully as
your team moves forward, you WILL be doing more of the
work you want to be doing more of the time.

121

 Now, this whole effort starts with the Technical Art
Director. From my own experience, Tech Art Directors is one of
the most understood roles in Game Development, evidenced
by the fact that a lot of studios don‟t have Tech Art Directors,
and a lot of studios hire junior Tech Artists before hiring a Tech
Art Director…which is a whole other point of contention, and I
don‟t mean to disparage anyone‟s experience or effort, like I
said, it‟s actually knowing some of the work that junior and
student Tech Artists are doing now that motivated me to move
away from a hard skills technical talk to more of a soft how-
to-deal-with-producers talk.

 But it‟s also my personal experience seeing how
the lack of a properly respected Tech Art Director can
adversely impact production. I‟ve certainly seen small
problems become large problems simply by virtue of the fact
that they weren‟t allowed to be addressed when they were
small and manageable by the people who were best suited to
address them…Tech Art.

122

 So what IS a Tech Art Director? Well, let‟s first
look at what a Tech Art Director shouldn‟t be. The biggest
fallacy I‟ve seen is putting the Tech Art “Director” in a role
that‟s really more akin to just a more experienced Tech Artist.
You tend to see this a lot at companies that start by hiring
junior Tech Artists to fill the gaps, not to disparage junior Tech
Artists at all, but the expectation becomes that a more
experienced Tech Artist is just someone who can solve bigger
problems faster, but is never really given that authority to set
down the parameters of those problems. The issue there is
that Tech Artists are suited to tackle a very unique set of
problems, which like Tech Art itself, doesn‟t fall entirely in the
domain of art or engineering, so what ends up happening is a
potentially production-changing resource is not leveraged
properly often times at the expense of the production. And
that doesn‟t make anyone happy.

123

 So we still haven‟t answered the question, and
sadly it‟s not as simple as just taking what a Tech Art Director
is not and flipping it around. A good place to start is with the
idea that Tech Art is a bridge, that Tech Artists have feet in
both the disciplines of art and engineering. That said, a good
Tech Art Director needs to be both production artist and
software engineer. Now, within the lower ranks, it‟s probably
permissible to be more focused in one direction, but by the
time one gets up to the directorial level, you really need to be
able to not just understand the conversations on both sides of
the fence, but you also need to be able to contribute and even
push back. The corollary to that is that the Tech Art Director
needs to be seen as an equal in management to both Art and
Engineering Directors, as opposed to this catch all for the
whims the two. Ultimately, the Tech Art Director needs to
understand that the needs of the many outweigh the needs of
the few, or in this case, sometimes art has to take a back seat
to the overall scope of production.

124

 As we‟re all probably aware, a solid foundation
begins with good construction materials, and a Tech Art
infrastructure is, of course, no different. It should go without
saying that one of the biggest points we‟ve gained from
moving to more widely accepted programming languages like
Python and C# is that now we can leverage both experience
and code from other developers. And I‟ll admit, I do sorta
miss those heady days of MEL development where we were all
writing our own big libraries and sharing stuff on highend3d,
not to date myself horribly, but overall I feel like what we‟ve
gained from no longer being a sovereign nation far outweighs
that old national pride, and certainly benefits our artists and
productions to a far greater degree than we ever could have
done by ourselves…(not to slag on anyone‟s individual abilities
or work )

 So let‟s take a look at some of the tools and tech
we can use to build up our infrastructure, and standard
disclaimer applies here, this is not the best way to build up an
infrastructure, these aren‟t the only resources you could use,
these are just a few things I‟ve picked up in my travels that I

125

think are useful, and in fact, I‟d love to hear from anyone else
during or after the conference who‟s got their own takes on
infrastructure, because after all, we get better as a discipline.

125

 So the first thing we need to consider is how we‟re
going to manage development. By this I mean how are we
going to keep multiple developers working on different tools
and features in sync with each other, and moreso, how are we
going to keep artists in sync with all those changes, or the
flipside, how do we keep them off the bleeding edge until
we‟re ready? The time honored pattern of just having a
custom folder somewhere in source control that we manually
point our apps and scripts towards has served us well, but
current software development practices and technology
certainly afford us better, and we shouldn‟t be afraid to
explore that brave new world. So let‟s take a look at some of
these technologies and see how we might be able to leverage
them to the construction of our dream infrastructure.

126

127

 Another advantage of sandboxing is that now we
can selectively push changes to one or several “trusted
partners” on the art team when we want to test changes or
iterate on a new tool. Rather than just submitting a big
changelist, hoping that our own personal testing covered all
the bases or at least the common use cases, and making the
whole art team drink from the firehose, we can choose to push
a file, a folder, or a whole sub-structure to any artist. Given
that, you can imagine how having multiple tech artists iterate
on multiple features in different parts of the pipeline now
becomes quite feasible, so this is absolutely an idea worth
exploring. There are several source control packages that
allow this sort of workflow, and in fact, if anyone wants to
take some of the ideas here and test them in perforce‟s new
sandbox tech, I‟d love to hear about your experience.

128

129

 Now that we have this pristine sandbox
architecture to start playing in, let‟s do that! One of the
major tenets of any infrastructure is that it should be flexible,
or it should scale, or it should be able to evolve with the needs
of the production, preferably all of the above. That means we
shouldn‟t be afraid to adopt new technologies or development
paradigms, and in fact in my experience, this sort of
sandboxing paradigm actually lends itself to that really well,
for example, it‟s no probably no surprise to anyone that I‟m
still a registered-card carrying Pymel user and I remember
when it first came out, the big argument against was its lack
of official support. Softwarehousing really lets you mitigate
that sort of fear, because it makes it very easy to pull in and
push off external libraries and tech.

 That‟s an extreme and specific example, but
there‟s definitely a high level gain we can take from this. As
my buddy Dana White likes to say, it‟s all about imposing your
will, don‟t leave it in anyone else‟s hands, don‟t let it go to the
judges, and that parallels this, the idea being that, don‟t leave
your development efforts in someone else‟s hands if you don‟t
have to, and this isn‟t NIH advocacy at all, what I‟m saying is

130

own your own bugs and fixes, and having a softwarehouse lets you
do that, so you don‟t need to be as apprehensive about polluting a
working environment with external code, and in fact, you‟re setting
your infrastructure up for growth.

130

 The most obvious way we can leverage
softwarehousing is by bringing the libraries we want to use in
development in house and maintaining them ourselves. Like I
said, we don‟t need to be writing XML parsers, or math
libraries, or string management functions, this all exists, but
at the same time, as I said, we want to put ourselves in a
position where we own our bugfixes and features. A fun side
effect of this is that it can be use as an educational practice as
well as being a good development practice, you know, one of
the things I like to tell people who are looking to improve their
chops in any programming language is to read other people‟s
code, or add features, or port stuff to between languages,
otherwise get your hands into code that isn‟t yours. And I‟ll
warn you in advance, it won‟t all be good code, but at least
it‟ll get you thinking. And as Tech Artists, we should always
be learning and thinking, maybe not in that order.

131

 Another benefit of softwarehousing is that we have
a good base of production tested libraries to build our own
libraries upon. This is that idea of scaling, customizing, and
otherwise adapting our infrastructure to the specific needs of
the project as we get further along, for example, maybe
there‟s a specific pattern you use a lot that you need to
optimize better, or maybe there‟s a specific feature in an alpha
or beta branch that you want to merge and build on. By
keeping your own cut of whatever libraries you‟re using,
you‟ve got that freedom now. And I won‟t lie, this is real
software engineer work, not necessarily for the faint of heart,
and again, this is some of that unsexy work you‟re probably
going to have to do on your own dime, but I feel that the
benefits to the production, the Tech Art team, and you as a
developer far outmatch the cost of adoption and upkeep.

132

133

 This next topic is a little weird because I almost
feel like at this point it should go without saying, but at the
same time, I can recall as little as 8 months ago trying to
convince people to use a full-blown IDE to write code. Of
course, therein lies the issue, in that, we all think that
everyone just knows why you should be using an IDE, but we
don‟t often explain compelling reasons. Things like
autocomplete and debuggers aside, there are quite a few
other features that really make modern IDEs attractive to Tech
Artists, and these are probably things you‟re already aware of
but may not have given too much thought to, but with careful
planning, your IDE can actually become your one-stop
development shop, so to speak…

134

Let’s be honest guys and gals, notepad is only useful because it’s simple and you know how to use it.

We provide specialized tools to art teams to create content, we should follow our own lead!

135

A proper IDE lets us shorten our code iteration cycle and do away with extra tools. Why not just test

your Maya code in the IDE instead of having to fire up Maya or deal with restarting it because of that

infinite loop you totally meant to take out before testing?

136

Project files, etc

137

 Alright, so continuing my clumsy use of
construction metaphors, now that we‟ve got our building
materials, it‟s time to start laying some foundation. In this
case, we have some sort of ecosystem that we can start
putting our infrastructure into, so similar to the preceding
topic, “foundation” can be thought of less as specific code and
tools and more like a suite of technology that we can use to
build said code and tools, in fact, I want to keep impressing on
you guys that when we think about “infrastructure”, we need
to be very careful to not confuse infrastructure with tools or
pipeline.

 I like to use the term foundation because in Tech
Art infrastructure land, the sort of ideas we‟re talking about
really do provide that layer for solid, unambiguous
development, but at the same time, it‟s the sort of thing that
can continue to evolve along with your infrastructure, while
evolving your infrastructure itself…

138

 Alright, so rubber meets the road moments here,
let‟s say you‟re the Tech Art Director, and you convinced your
peers in management that you need a few months of blackout
time to lay some pipe for the upcoming project, and you‟ve
got everything in place, so you‟re good to go yeah? You‟re
just gonna check a bunch of code in, get everyone set up on
the IDE project, and start assigning tasks! Well, hopefully it
really does go that simply, and with just a little more
forethought and work, you can ensure that happens.

 As I‟ve mentioned a few times, one of the things
we really want to try to do with our infrastructure
development is minimize ambiguity, and one of the first steps
to making sure that every developer who‟s going to be
working in our sandbox is on the same page is good
documentation.

139

 Now when I talk about writing documentation, I
don‟t mean putting it on the wiki or whatever other systems
that often get set up with the idea that people are going to
update it and of course people are going to read it, right?
Because everyone reads the freakin manual, and I‟m sure you
guys who have worked with Wikis or any sort of other
communal documentation know that they come with…let‟s say
varying degress of success. No, I‟m talking about dedicated
documentation systems like Robodoc, or doxygen, serious
documentation generators that use markup languages and
hook into IDEs and build processes but produce professional
looking documentation. As a Tech Art Director, lead, or
otherwise an infrastructure builder, writing documentation
should be a required task, if nothing else for the educational
benefit. I remember when I started writing a style guide
about 9 months ago, my thought was, “Oh this‟ll be easy, I‟ll
take some of the google style, some PEP-8, change a few
things that I don‟t like, and we‟ll be good to go”…and it‟s when
you actually step back and try writing code against your style
guide, you start to realize it‟s not that easy, so…you know if
you ever feel like you need some humbling and want to know
exactly what you don‟t know about a language, try writing a

140

style guide.

140

 The benefit to the Tech Art team is obvious, now
they don‟t have to read code if they don‟t want to, although
I‟m a huge proponent of the idea that good code documents
itself. Documentation however, is more than just function
signature, arguments, description, save that for the docstring.
Documentation ensures that everyone on the team is using
everything the same way, which means anyone can jump into
anyone‟s code if need be and maybe not own it, but at least
maintain it in a pinch. Another advantage of documentation is
that it smooths the introduction of new ideas and paradigms
to the team. I‟ve actually heard in really severe cases of
people who had formed poor opinions of whole paradigms like
markup schemes or metadata because they were forced to
work inside of a system that relied on a very cryptically
implemented feature with no documentation, and I‟ll admit
I‟ve been guilty of this myself in the last couple of months.
And therein lies the downside, once you invest in becoming a
good documenter, you have much less tolerance for poor
documentation, which sadly seems to run rampant in software
land…

141

142

 Now I‟ve written a lot of tools over the course of
my career and I‟ve debugged all kinds of code and content,
and I don‟t know about you guys, but given some of the
things I‟ve seen and had to deal with, there have been times
and pipelines in my life in which I was genuinely afraid to
release tools to the wild, I believe it was sometime month.

 In all seriousness, it can definitely be nerve
wracking to push tools out, and it seems like that grows along
with the size of your checkin, right? Well, fear not, because
we have another weapon in our arsenal aimed specifically at
alleviating this situation, especially when combined with some
of the other paradigms we‟ve already discussed, for instance,
we‟ve talked about how to keep external code from polluting
our working environment until it‟s been properly sanitized,
we‟ve talked about how we can keep test and iteration to a
limited number of trusted partners on the art team, so now we
can start thinking about how we keep error overall down when
we‟re developing, and like everything we‟ve talked about here,
we start at the beginning, we start when things are small and
manageable by testing our code little bytes at a time, or in
what they call units, hence the term…unittests, exactly.

143

 Ah unittesting…if there was one practice that I
could say changed the way I write software, it would
absolutely be unittesting, and the way I came to unittesting
was actually what really exemplified to me why you should
use unittest. You see, normally when you write
unittests, you do it at the beginning of development, where
you can use it to design your interfaces, prototype common
use cases, that sort of thing. I, on the other hand, started by
writing unittests for code that was already in production and I
had a good working knowledge of. So it was one day when I
was writing these unittests that I realized I was writing tests
that I knew would pass, because I knew the code worked, and
about an hour into writing a test, I realized exactly what I was
doing, that was I was writing my setup methods to create
specific environments in which the test would pass, and the
complexity of my test cases made me realize that…aha!…this
code is too complicated. So from an infrastructure standpoint,
this is one of the things we use unittests for, we don‟t
necessarily use it to catch bugs (well, not all the time), but
instead we use to keep our interfaces simple, and in doing so
we provide an extra layer of documentation, in the form of
common use cases.

144

 They say it‟s always good to end on a high note
and not leave your audience with negative thoughts, so I‟d
like to wrap this up by talking about what happens when
things go wrong. Best laid plans and all, you know the drill.
Reality of development is sometimes things just don‟t go the
way you think they should, it worked on your machine, you
checked everything in, but for some reason now the art team
is blocked and your only recourse is to roll back and go
through your change line by line until you find the proper
debug spew…

145

146

 They say it‟s always good to end on a high note
and not leave your audience with negative thoughts, so I‟d
like to wrap this up by talking about what happens when
things go wrong. Best laid plans and all, you know the drill.
Reality of development is sometimes things just don‟t go the
way you think they should, it worked on your machine, you
checked everything in, but for some reason now the art team
is blocked and your only recourse is to roll back and go
through your change line by line until you find the proper
debug spew…

 Or is it?

 Well hopefully it isn‟t. Everything we‟ve discussed
up to this point feeds into the idea that when accidents
happen, we can move through them very quickly, because
we‟ve set ourselves up to build tools in a known environment,
and part of that known is knowing what‟s going to go wrong.
I know that sounds crazy, but think about what we‟ve done up
till now, we‟ve effectively wrangled our development effort
such that we‟ve made it very easy for use to isolate bugs to
code or content by using things like unittesting and sandbox
development, so the last little thing we need to do is setup

147

some infrastructure to funnel errors properly and make sure that all
the issues we‟ve worked so hard to suppress up till now remain little
issues.

147

 The easiest way to know for sure how to handle an
error is to setup a system wherein you always know exactly
what the error you‟re handling is. Sorcery? Blasphemy?
Well, not quite. By coupling a good logging API with custom
exceptions, we can pretty much catch, handle, and redirect
any undesireable results in such a manner as to be able to
provide USEFUL feedback to both the user and the developer.
Since we went to the lengths of setting up unittests, we
should also be able to pare out the more common cases of
built-in exceptions, which we could also handle ourselves. So
for instance, we have a bit of functionality that we know is
going to raise a ValueError sometimes in situations that may
be beyond our control (just for the sake of this conversation),
based on our unittest. Since we know what the case is that
raises that exception, we could create our own subclass of
ValueError that handles our specific case and returns useful
data. Obviously this is a very naïve and ideal situation, but
you get the idea.

148

 …And with all that in place, we‟ve now created an
error reporting structure that starts with a user knowing
exactly what‟s happened, and maybe even how to talk to Tech
Art about it. Once Tech Art steps in, we can very easily look
at the traceback and know that we‟ve caught one of our own
exceptions. Couple this with our carefully built development
sandboxes, and we can iterate with the affected artist directly,
off-line, to resolve the issue while the rest of the team
continues to work. We fix the problem, we merge that fix into
the head branch, and production rolls merrily along.

149

150

 So to wrap things up, we‟ve talked about a lot of
different ideas today, but the reality is, all the specifics of
infrastructure building and whatnot really don‟t carry the
weight they should if we don‟t keep our overarching premise
in mind ,so let‟s never forget that the main impetus to all this
is to do more work with less effort, and I don‟t mean to keep
bringing up the spectre of 4th gen, next-next gen, 720land,
whatever you know it as, to scare you guys, but the reality is,
more content, more production, less time, but if we as Tech
Art get in front of this at the right times in production with the
right ideas, that idea of more content in less time doesn‟t
necessarily have to translate to more work for more bodies
with more crunch…

151

 And that‟s really where it needs to hit you guys, in
Tech Art departments all across the industry. I hope if
anything I‟ve put the seed in your minds that, we really can
be the keepers of production and we really are in the best
place to start or continue to affect change in our pipelines and
productions, by stepping back and taking a look at the
pipeline as a whole and figuring out those big high-level points
we need to address, and really, we do that by…

152

 …going back to square one if need be, and
hopefully we aren‟t afraid to do that, hopefully we‟re not
afraid to say, “No, we need to pull this up by the roots”, and
hopefully we have some ideas about why we need to do this,
and how it‟s going to affect our production and how we‟re
going to do it better. This way when we go to our peers in
development and management, we can instill in them the
same confidence we have in why we‟re trying to do what it is
we‟re trying to do, and then maybe just maybe, that idea of
beginning at the beginning so we can come out of it by
working smarter not harder won‟t just seem like a clever
statement full of silly middle-management buzzterms.

That‟s all I‟ve got, thanks for listening, questions?

153

154

For the last couple of years at GDC, I’ve given

talks that focused on technical challenges that

the team at Bioware faced as we created Star

Wars: The Old Republic. Last year I talked

about the Cinematic Lighting in our game, and

the year before that I talked about our

automated system for facial animation and lip

sync. Technical talks like that are really exciting

to give and they’re also exciting to listen to.

This year, I’ve chosen to talk about a different

kind of challenge that we faced at Bioware -

and this is more of a social problem than a

technical challenge. While a talk about

relationships between people may not seem as

cool at first, I hope that you’ll stick with me and

appreciate by the end that what I’m going to talk

about this year had just as big an impact on our

project - if not greater - than some of the technical

hurdles we faced.

155

So we were a couple of years into our project

and we had several problems. First of all, the

performance of our game was pretty poor.

The frame rate was low

and the memory usage was high.

Compounding that technical problem was the

trickier issue that our artists and our

programmers both considered these issues to

be the responsibility of the other department.

Our programmers considered the art in the

game to be the main cause of the performance

issues because it was implemented in an

inefficient way.

The artists, on the other hand, felt that getting

the frame rate up was the job of the

programmers, and they were frustrated at the

programming department for delivering tools

that were difficult to use and that caused a lot of

headaches and lost time.

As you can probably imagine, this type of a

relationship

between departments

was not very conducive

to creating a triple A MMO.

166

So, what was our solution to fix these

problems?

 We joined the dark side! Two technical artists

were chosen to move their desks into the room

where the programmers worked and to work

together with them in adding new features and

tools, and in optimizing the game. In this talk,

I’m going to share my experiences as an artist

living and working among the programmers on

our team - and show how this simple act of

moving into the programmer space was a major

part of the solution to our social issues.

As a technical artist, you might think that this

type of change - sitting with the programmers

instead of with the artists - would be easy. After

all, we’re supposed to be able to speak the

same language as the programmers and it is

often said that our role is to act as a bridge

between the two groups. However, after mostly

sitting with artists for the past ten years, it did

take a little getting used to. I often felt like “One

of these things is not like . . . ” especially after

listening to long conversations about quantum

physics or arguments about the relative merits

of Common LISP over Scheme. It’s pretty

amazing how distinctly different it is to listen to

the casual conversation among coders vs. artists.

The cultural differences are very real - and I had a

bit of culture shock.

169

170

Let’s get back to the problems that we had.

The main problem that the artists had was with

tools. Frequently, the artists would run into a

problem that they needed to solve. They would

envision a tool to solve the problem, write up a

document describing the tool and pass it along

to the programming team. After a long wait the

tool would be completed. While the artists had

originally envisioned something like this

what they would get back ended up being more

like this. This was a pretty major source of

frustration for the art team. This is a pretty

common problem. Designing and building

complex systems requires constant

communication and collaboration between art

and programming.

With tech artists embedded with the

programmers, we changed this process around.

First, I would collaborate with the artists to

create a prototype tool that met all of the artists’

requirements. Through this collaboration with

the artists, I would become familiar with what

they really wanted and how they intended to

use the tool. I was also able to control (to a

certain extent) the size and scope of the system

to make sure that it wouldn’t hurt the

performance of the game and that the artists’

expectations for the tool didn’t get so high that

the concept would be too complex or require

too much programmer time.

Once the artists were happy with the prototype, I

would document the requirements for the tool and

show it to the programmers.

Once development started, since I was sitting with

the programmers, it was a very natural for me to

watch and guide the process, ensuring that the

original vision was maintained. Often, the

programmer would come up with his own ideas

about what the tool should be. Sometimes these

ideas were improvements, but sometimes they

changed the nature of the tool. We would discuss

changes to the original prototype and I would make

sure that the original intent was maintained and that

the artists would get the tool that they asked for.

Once the tool was nearing completion, I wrote

documentation for the tool and helped the artists

learn how to use it. Since I had been involved with

the original prototype of the tool and involved during

the tool’s development, I was the best qualified to

write the documentation and it was easy for me to

teach.

173

I’d like to stress that this step - educating the

artists - is important. It needs to be more than

just an email that says “Hey, we have a new

tool. Go read this document that I wrote about

it.” You really need to sit with the artists and

show them the tool, and then watch them use it.

By doing this, you can make sure that the tool

is doing what the artists need AND that the

artists are using the tool correctly.

No matter how well a tool is designed, if you

don’t teach the artists how to use it properly,

they’ll find a way to make a mess with it - and

it’s always easier to teach first than to clean up

the mess later.

Having an art representative in the programmer

area helped the artists in a couple of other

ways too. When the programmers wanted to

make an optimization to the game that might

make an impact on the art, I was there to stand

up for the artists and help the programmers

know when an optimization was going too far or

when the performance benefit out-weighed the

small loss in quality.

Also, since I worked with the programmers

every day, I was aware of all of the projects

they were working on to improve performance

and quality. When new builds of the game

engine went out, I sent out an email to the art

team to help them understand the new

improvements in the build that would impact

them. This increased visibility helped the artists

to see that the programmers were working hard

to improve the game.

As a result of these changes, the artists got

tools that matched and sometimes exceeded

their expectations and their ability to create

game art was improved. hey also had more

information about what the programmers were

doing to improve the game. Their trust in the

programmers increased.

179

Now I’d like to switch gears and talk about how

the programmers benefited from having

embedded tech artists join them. As I

mentioned earlier, the major concern that the

programmers had is that the artists were

creating art that was wasteful and inefficient.

They believed that the main cause for the low

frame-rate was that the art was too heavy. One

thing that I had noticed before moving into the

programmer area was that the programmers

often found specific examples of bad art and

said things like, “Man, this texture is huge.

They need to fix this.” or “This model is super

dense and you only ever see it from a distance.

There are a lot of wasted triangles here.”

180

Since no one from the art department was

present, these off-the-cuff complaints were

basically just getting thrown out there with no

one to respond to them. The programmers had

a lot of built-up frustration at seeing in-efficient

assets and no one seemed to be fixing them.

After moving in with the programmers, I made it

a point to jump up and respond when ever I

heard a programmer complain about the art. I’d

make a note about the asset in question and

either fix it myself or pass it along to the right

artist to optimize.

I basically become the programmer’s complaint

department. Even if things didn’t get fixed right

away, the programmers at least felt like

someone was listening and responding to their

complaints. This served to ease a lot of the

tension that the programmers felt toward the

artists.

We went several steps beyond just responding

to off-the-cuff complaints. One of our major

initiatives was a full audit of all the assets in the

game.

We created frame-rate and memory usage heat

maps of all of the planets, created lists of

textures that were too large, and models that

used too many triangles. We put a lot of effort

into gathering all of the information that the art

team needed to make the game run faster

using less memory. Some of the items we were

able to go in and fix ourselves but most of the

time we would create a report of actionable

items and pass it along to a lead artist so that

the work could be divided up among his team.

185

With the right information in hand, the art team

was able to reduce texture memory usage

significantly and increase frame rate.

Beyond texture size and triangle counts, we

also investigated other resource drains such as

the density and clip distance of terrain details,

the complexity of our cloth simulations, and

LOD settings on our character skeletons. In

one case, I found that reducing the draw

distance on the grass by about half raised our

frame rate by 10 frames per second with no

noticeable visual difference. It’s pretty exciting

when you can find that kind of improvement.

I once saw that the tech artists at Crytek

created t-shirts for themselves that said “Digital

Janitor” on them. I think this describes this

project pretty well.

After all of our work optimizing the game’s art,

we wanted to make sure these optimizations

would remain that way and that future assets

would be created in an optimal way. Basically

we wanted to avoid having to do this type of

clean-up project again.

The first thing that we did was to educate the

artists. This mostly took place during the

optimization process. As we passed list of

assets along to artists to optimize, we would

also take some time to explain the metrics that

we were hoping to improve. We would show

them the heat maps and help them understand

what it was that caused the problem. Teaching

the artists how to make efficient art, and how to

check the on-screen metrics to make sure that

their work was within budget was half of the

solution.

The other half of the solution was to build

smarter export tools. Our tech art team is

responsible for the tools that export all assets

into the game including models and textures.

This means that we have a point in the pipeline

where we can add checks to see if assets are

optimal. We took advantage of this opportunity

mostly with texture maps. Our exporter already

had some context for how each map would be

used, so we taught it the dimensions that a

texture should be for each usage case. When

a texture is exported, the size defaults to our

optimal size or the original size, which ever is

smaller. We also have a maximum size built

into the exporter. This prevents textures from

getting exported at insane resolutions.

190

In addition to optimizing the art assets, I was

also given the task of writing the low-end

shaders for the game. In the options, the

players can select to use low or high quality

shaders. The low-end shaders are mostly for

people that have weaker hardware. This was

an ideal task for me, for several reasons. First

of all, as an artist, I had a strong understand of

what features of the shaders were core to the

look and style of the game, so I could remove

the right set of things without the art team going

up in arms against me. Second, I was able to

off-load this large task from the programming

team and free them up to do other

optimizations.

191

Finally, on a personal note, I had a laptop at

home that barely met our minimum hardware

requirement and I wanted to be able the run the

game on it. I set a personal goal to improve

performance enough so that the game could

run on my laptop, but without losing the distinct

artistic style that we had defined.

After working on the project for awhile, I was

able to reduce many of the shaders to around a

quarter of their original instruction count by

removing optional features, moving some math

into the vertex shaders, and simplifying core

functions. On our low-end target hardware, the

game ran an average of 20 frames per second

faster when using my optimized shaders. And

most importantly, it ran well on my laptop.

Here, I want to pause for a minute and talk

about the importance of measuring things.

Your worth as a tech artist is determined by

your ability to solve problems. Making the

game run faster and making the artists’ work

more efficient are two examples of the types of

problems we solve. If you want to show your

worth - and thus build the value of tech art as a

discipline within your studio, you need to be

able to put a number on it and use cold, hard

facts. Before you start any project to solve a

problem, try to measure the results as they

currently stand. Figure out how long it takes

the artist to accomplish his task with his current

tool. Make a list of how much texture memory each

level is using. Write down what the instruction

counts are on all the shaders. Once you have this

initial data, go to work to make things more efficient.

When you’re done, take your measurements again.

With this data in hand, you can show the team and

the company - hey, I saved a week of artist time. Or

- I increased the frame rate by 50%. Or - All of the

levels are now within the memory budget - and the

visuals still look as good as they did before. Having

this type of fact-based information to share goes a

long way toward increasing the respect that your

company will have for the tech artists.

194

I believe that the programming team learned to

respect the art team more when they saw all of

the effort that we were putting in to optimize the

art and the shaders in the game. The artists

earned the respect of the programmers by

being an active part of the solution.

In summary, moving technical artists in to work

with the programers had several key benefits.

First of all, the artists gained direct

representation on the programming team. This

was beneficial because we were able to

participate in and guide the development of

new tools, help the artists see what the

programmers were doing to improve the game,

and protect the interests of the art team from

over-optimization. As a result of these

changes, the artists now have a greater respect

for the programming team and are more willing

to work together and collaborate with them.

Second, the programmers gained direct access to

the art team. Since I was sitting right there with

them, whenever they had a question about the art,

they could just ask. As we worked to improve the

efficiency of the art assets and optimize our memory

usage, the programmers saw the work that we were

doing and experienced the performance gains that

we achieved. I was also able to complete a couple

of shader projects that the programmers would have

had to do and free them up for other tasks. These

changes helped increase the level of respect and

trust that the programmers had for the artists.

196

This increased level of confidence and trust that

the teams had for each other is important -

because it means that they are more willing to

work together. I’m not going to say that the

relationships between the teams are perfect.

We still have room for more improvement in

some areas. But we have made significant

progress - and that progress shows in the

product that we shipped.

I also don’t want to take the credit for these

improvements. I was in the middle of the

process, but it was really the willingness of the

programmers to allow an artist to be a part of

their team, and the willingness of the artists to work

hard to improve performance that made this

happen.

So unlike in the movies where joining the dark side

leads to hate, misery, and suffering, in our case

joining the dark side led to greater trust, confidence,

collaboration, and in the end - a better game.

197

So, after sharing some of my experiences

working together with the programmers for the

past two years, I’d like to leave you with four

key ideas. The first is guide. When working to

design a new tool or solution to a problem, you

need to guide the artists so that their

expectations for what the tool will be able to do

don’t get out of control. Then you need to

guide the process of creating the tool so that

the end results matches the original vision and

so that the tool accomplishes the intended task.

The second is teach. As a tech artist, it’s your

job to make sure that the artists on your team

know the pipeline, know the tools, and know what’s

acceptable and what isn’t - in terms of creating art

that will perform well. If you end up with a mess to

clean up at the end, you can only blame yourself for

not being a better teacher.

Next - measure. Capture data both before you

begin a project and once you have completed it so

that you can show the company - in hard facts -

what benefit your efforts have achieved.

And finally, build trust. This one is the most

important. Artists and programmers that trust each

other, will work together and collaborate to build

incredible games. Artists and programmers that

don’t trust each other, won’t work together - and

your project will suffer. Do all you can to help each

team see what the other is doing. Bring the teams

together and help them collaborate.

198

199

Hi everyone, my name is Jason Hayes. I am a Technical Art Director at
Volition working on Guillermo Del Toro's Insane video game. Just to give a
little bit of history on myself- I've been in the video game industry for over
14 years, and have worked on a bunch of titles: Madden NFL franchises,
Lord of the Rings Online, Saints Row series and the Core Technology
Group at Volition.

200

Today, I'm going to give a talk about lessons in tool development. These
aren't all of the lessons I'd like to talk about today, I could go on for hours
and this talk is probably the least sexy out of all of the talks you will and
have seen presented today. I also think your mileage will vary since the
role of a Technical Artist varies from company to company. At Volition, we
don't license a game engine or editor, we primarily build everything
ourselves, which keeps our Tech Artists pretty busy.

A lot of what I will present today is probably common sense to many of
you, however in a lot of cases, common sense doesn't always prevail
during the development process. My talk primarily stays at a high level in
terms of software and pipeline development for Technical Artists. I'm not
going to get into the level of detail of how to write a for loop, or best
practices on code optimization-there is a ton of literature out there already
on the subject. Instead, what I'm going to talk to you about today are
some of the principles I've experienced and learned over the years that
have helped guide me and the team at Volition when building tools and
content pipelines. My target audience for this talk is primarily geared
towards Technical Artists who are new to the industry and companies who
are trying to grow their Tech Art departments.

201

To help frame the discussion, I thought it would be useful to start off by
talking about something we've all experienced during game development:
bad tools and pipelines. Why and how in the world does this happen? In
my experience, a lot of the time we end up doing it to ourselves because
we are under pressure to meet a deadline and just need to crank a tool
out. Sometimes we can't always avoid these situations. But, most of the
time it happens because we enjoy building tools and typically skip a lot of
planning and just jump right in. So we don't stop and take the time to
really think things through, because that's boring! Or if we did stop and
look, we didn't have the right information because we asked the wrong
questions.

Today, I'm going to present some basic and fundamental lessons in tool
development. When approaching tool development, I tend to think about
it in two different ways: Strategic and Tactical. Let me explain.

202

Strategic is the high-level vision of a tool. At this level, you should be
looking at the big picture of how the tool fits into your overall pipeline, and
how it affects the user workflow. This is also the most effective point at
which you can save your company money and increase the productivity of
your team. As our industry moves into another cycle of next generation
hardware, I believe pipelines will become larger and more complex, so we
need to build things that are scalable and most importantly, save your
company money. I don't know how common it is for Technical Artists to
think about the tools they write in this way: your company is paying you
to write tools to make the content pipeline an efficient machine, and so
you must look at the best way to spend that money.

203

Tactical is the low-level view of a tool. This is where the architectural
design, implementation and code reviews of tools happen.

I'd like to start the presentation by talking about the Strategic level of tool
development, and the first part of that process for us is what I call Tool
Briefs.

204

Tool briefs are short documents, typically one page or less that describe
the need, criteria and scope of the proposed tool. They are a strategic
document, and don't delve into the details and logistics of how the tool will
be implemented. At Volition, tool briefs are written and approved prior to
any technical spec being drafted.

The primary purpose of the tool brief is to make sure that everyone is on
the same page about what will be delivered. They give your Manager the
opportunity to assess the cost of implementing the tool, and they also
provide an easy point to make course corrections early in the design
process. Moreover, it gives everyone involved an opportunity to ask
questions, and provides your Director a window into how you are thinking.

At Volition, our tool briefs are made up of three simple questions. These
questions are intentionally designed to be kept short and focused to make
the person writing the tool brief really think and question what they are
about to build and write it in such a way that it communicates the tool to
a wide audience.

205

The Description (What is it?)

This one is pretty straightforward. Here, you describe the needs, criteria
and scope of the tool.

The Function (How might the end-user use the tool?)

Sometimes it's easy to overlook how the tool might affect the end-users
productivity. It's important to keep this in mind and how the tool fits into
the big picture of the overall process. It's very easy to add new tools to a
pipeline, but it's very difficult to keep it running smoothly for your team.

The Justification (Why does it need to exist?)

This is the part of the brief that provides the rationale for why we should
be creating the tool. The following is a quote that I feel fits the bill of a
Tool Brief perfectly:

206

 "The penalty for failing to define the problem is that you can waste a lot
of time solving the wrong problem. This is a double-barreled penalty
because you also don't solve the right problem." - Steve McConnell, Code
Complete

To illustrate the importance of a tool brief, I'm going to talk about a
scenario at work that happened several months ago. I was talking to one
of our Technical Artists for a little while about a system where we would
allow artists to define what I was calling a "lighting diorama". The basic
premise was that we would allows artists to setup different lighting
situations in which to test their content against on the console. I'm not
going to go into all of the details of the system, but suffice to say, leaving
the conversation, I thought we were both on the same page, and asked
him to write up a tool brief. What I got back was a tool brief that talked
about how the material pipeline would be leveraged to verify content on
the consoles. So there was a complete disconnect there. How did this
happen? Well, in this particular instance, it was because we had a similar
system on Red Faction Armageddon (albeit a different engine and
codebase), but that system primarily focused on material tweaking. It
illustrated how easily things get missed or misunderstood in a
conversation where you say one thing, but the other person hears
something else and vice versa. Having the tool brief written probably
saved the company a lot of money by not allowing the TA to start heading
down the wrong path. At the end of the day, that's what we are really
talking about-saving your company money.

207

Take the story I just gave you as an example. In that story, the TA and
myself were on two different pages, and if I just let him start going to
work, he very well could have spent a month writing the wrong tool. If the
employee overhead of your company has a burn rate of $10k per month,
and miscommunication like this happened 5 times over the course of
development for that one person, that's a potential loss of $50,000.

208

On Insane, I have a team of 5 Technical Artists, and if each of them had
the same issue 5 times over the course of development, that's a loss of
$250,000.

The tool briefs are the one tool in our arsenal as Technical Artists that can
turn a $250,000 loss into a $250,000 savings.

For the next strategic topic, I'm going to talk about understanding the user
and their workflow.

209

Seems obvious, right? This is one of the most important parts of the job
of being a Technical Artist, and one that is the easiest to overlook. A lot of
the time, we are building tools that support or expand existing pipelines.
But what happens over time is the pipeline gradually becomes more
complex and ultimately slows down the artists.

There are several methods to understanding the end user and how they
work.

210

Mapping out the workflow as a flow chart is a good way to get a high level
perspective on the end users process. If your pipeline is creating
bottlenecks for your users, then mapping it out should reveal where the
problem areas are, then you can create a plan of action to address the
issue. A good approach to how to map out the pipeline is to associate how
long they spend on each part of the process.

211

Another way to familiarize yourself with the end-user is to sit down with
them and watch how they are working. It's very important to build those
working relationships with the people we are supporting. They need to
feel confident that the tools we are developing are there to make their
lives better. Besides, if the person you are watching doesn't get creeped
out over this, it can be an eye-opening experience for a lot of Tech Artists.
Sometimes, you'll see artists using your tools in ways you didn't expect
and would have probably only surfaced by watching them work.

212

Something I like to do is hold bi-weekly dependency meetings with each
art discipline on the team. The meetings are fact-finding missions to
discover what the artists are working on and what they have coming up.
At Volition, we use Hansoft to manage the project's tasks and backlog, but
trying to determine dependencies in that software is nearly impossible, so
I avoid it altogether and meet for 30 minutes to talk.

The meetings are also great opportunity for the artists to bring up any
other issues they are having and have become my most valuable
meetings. I would encourage you guys to implement these into your
process if you don't already.

For the next strategic lesson in tool development, I'd like to talk about
overengineering.

213

Just like art, overengineering is really subjective. It's a term that's widely
used, but very difficult to define. My definition of overengineering is when
you are making things more complex rather than simplifying them. In a
lot of cases, overengineering a tool or pipeline happens because we want
to make the code we are writing able to work with any other piece of code,
and that we want to make it the greatest thing since sliced bread. Or,
while we are in some other code, we see something we don't like and want
to refactor it to make it "better". As long as the set of requirements are
clearly defined, this is okay and there is nothing inherently wrong with
trying to make things better and shareable, but if not careful, it can easily
lead to situations where the code ends up getting too complex and some
other person trying to use your code doesn‟t really understand what's
going on. One reason why this can be bad is it typically leads to
dependency issues for other disciplines who are depending on your tool or
system. This usually results in delays and can have a cascading effect on
the schedule and ultimately cost your project and company money.

So how do we know when a tool is being overengineered? As a Technical
Art Director, these are the warning signs I look for of a system or tool
that's being potentially overengineered:

214

Running behind schedule doesn't always mean that something is getting
overengineered. In most cases, we just underestimate how long
something will take, usually because we discover things over the course of
development. But it is a warning sign and if the person is running behind
schedule, it's probably a good time to step in and take a look at what's
going on.

215

Making the code too generic is another one of those tricky and subjective
aspects of software development. One way to tell if something is being
too generic is to look at the set of requirements. If you are expanding a
focused set of requirements into something that can be a "jack of all
trades", you are probably overengineering something. For example, say
you are tasked to build a simple tool that is supposed to track how shaders
are used on content. Well, you decide that you want to turn it into a
generic system that can track how any piece of data is being used on
content. It would become incredibly complex and stop being good at
showing how shaders are used on your content.

216

Another indicator of when something is being overengineered is when the
code has become difficult to follow, which usually means it has also
become difficult to maintain. A warning sign for this is when someone who
is using your code is frequently asking questions about how it works.
When this happens, the best method I've found to surface overengineering
is to go to a white board and have the TA(s) write out what they are trying
to do. Sometimes this takes the form of a flowchart, sometimes it's
pseudo-code. I've had countless situations like this with TA's over the
years where they started to get lost in their code and only realized it when
I put them in front of a white board.

217

Probably the best way of detecting
overengineering is when someone is
designing too far in to the future.
The problem with this is that it can
lock you into a particular design
without knowing if it's really the right
solution. I'm not saying you
shouldn't design for the future, but
keep the design at a high-level. This
will give you the flexibility to course
correct over the course of the tool's
development.

218

Overengineering doesn't always have to happen in big stages either. More
often than not, overengineering occurs in tiny little stages, function by
function. Before you know it, you've got a mess on your hands. This
usually happens when someone is working on a tool and sees a snippet of
code that looks like it could be abstracted out. This is a fine practice, but
it's just something to conscious of.

The reverse of what I'm talking about is also true, you can underengineer
a tool or pipeline by not architecting it in such a way that it allows for later
expansion.

219

 But at the end of the day, good design practice equals code that is easy to
follow and maintain. Bad design practice ends in code that is too difficult
to understand and maintain, and ends up costing you time and money.

220

Developing in phases is just common sense, but you'd be surprised at how
often it gets overlooked-at least in my experience. The reason why
working in phases is important is it allows you the ability, at a high level,
to make course corrections in the design process and set of requirements.
While developing anything, you always discover new things that impact
what you are going to do in the future. In a sense, you answer what you
didn't know. Obviously, it's easier to make these course corrections in the
earlier set of phases. If you have to make a major course correction in
later phases, then something earlier in the process broke down.

One distinction we make at Volition about phases is that they aren't tied to
any particular milestone. A phase can expand multiple milestones if
necessary.

How many phases are appropriate? Well, it really depends on how you
operate, but we've found that breaking things down into four phases is a
good place to start. The general framework looks like this:

221

Phase 1 - Basic design and implementation.

At this phase, the basic system is functional. Verification takes place
based on the goal/task lists and associated expectations. The system is
not polished, but sufficiently fleshed out to allow iteration work to start.

Phase 2 - First pass of iteration.

In this phase, the system or tool is sufficiently fleshed out that a decision
can be made as to whether it fulfills its promise or exhibits fundamental
issues. Validation is focusing on whether the feature is "on track". It's
also the point where the determination is made as to whether this is a tool
or system that could potentially be cut.

Phase 3 - Second pass of iteration.

This is the first polish phase and the tool or system should be fully
implemented. Features at this point are locked down and only minor
additions are acceptable (subject to approval). An evaluation is made to
assess whether or not the tool is successful and whether it should be kept
or cut. You can only enter the final phase if the tool or system is being
kept.

Phase 4 - Final polish pass.

Here, the features of the system or tool are locked down and it's
essentially production ready.

222

In this next section of the presentation, I'm going to talk about what I
consider to be the tactical approaches to tool development. Primarily, I'm
going to talk about approaches for Interface and Architectural Design.

To illustrate the lessons in this part of the presentation, I'm going to use
two tools that I designed and help write at Volition.

223

This is a tool that myself and Adam Pletcher wrote with Python over the
course of several months. View Master is based off of a tool that Will
Smith wrote on the Red Faction: Armageddon title. The tool has three
primary goals in life:

• Allow the team and QA to easily record bugs directly from the game.

• Provide art an easy way to provide direction.

• Allow the team and QA to easily navigate to bugs in the game.

Adam developed all of the Hansoft integration and database backend, and
I created the rest of the framework including the GUI and OpenGL
renderer. In fact, this tool has become so valuable to our process that
other THQ internal studios have begun integrating it into their pipelines.

224

The other tool I'm going to use to illustrate some of these principles is our
Visual Scripting Editor. This is a node-graph based editor, similar to
Unreal Kismet, that we use to do the scripting in our games and is a fairly
new tool. I developed the framework and initial implementation, as well
as the OpenGL renderer for the tool, using only Python.

225

From an architectural point of view, separating core functionality from the interface allows
you to work in a non-destructive manner to the rest of your program. When done well, you
should be able to completely change around the design of your interface and the program
still work. Architecting your code in this way also opens the door for your tool to be run in
headless mode, i.e. as a command line tool.

For example, in the Visual Scripting Editor, I have a bunch of mouse event handlers in the
OpenGL viewport. I could have written something like this in the interface's mouse event
handler to select a node in the graph:

def on_mouse_left_down(self, event):

screen_pos = event.GetPosition()

self.selected_node = None

nodes = self.graph_manager.get_nodes()

for node in nodes:

if node.hittest(screen_pos):

self.selected_node = node

node.select()

break

226

Instead, I have a graph manager class that handles node selection. So all I do is call that handler
function from the interface while passing in the current screen position of where the user clicked.

def on_mouse_left_down(self, event):

screen_pos = event.GetPosition()

self.graph_manager.handle_left_mouse_down(screen_pos)

Not only does it reduce the code complexity in the interface, but this allows me to completely change
around how the interface looks, what functions are bound to event handlers, etc. and the program will
still function-because the core functionality hasn't changed.

226

In order to make the end-user more productive, keep the number of clicks
in your interface to a minimum. Using keyboard shortcuts are also good,
but just be careful that they aren't the only way to do something. I've
actually used editors and tools in the past where this was the case and
certain functionality of how to do something became lore of the tool,
absent in any documentation.

227

Having consistent icons is a good way to keep things clean in your
interface. What I mean by consistent is that the icons should look like
they exist in the same world. Inconsistent icons can make the user
interface feel unprofessional and cluttered.

228

Intelligent grouping and keeping alignment of controls in mind and
consistent will also make your interface appear clean and simple.

The image here showcases part of the design of Volition‟s Material Editor.

229

Provide a polished interface that makes the user feel creative

Out of all my years of designing user interfaces, this is in my opinion, the
most important thing to keep in mind in terms of visual representation.
Regardless of what the tool does, it should make the user feel creative
when they are using it. Take for instance the following tool:

 Image 1

With this tool, the user can do their job just fine. But replace it with this:

 Image 2

Even though the functionality of the tool is the exact same, the user might
feel more creative while using this version of the tool because of it's visual
design and more intuitive controls. This simple approach can lead to more
productive end users and higher quality results.

230

Next, I'm going to talk about one principle I've learned over the years
when it comes to designing the architecture of a tool or pipeline. This
principle lesson I'm going to discuss is about managing the complexity.

Software design is inherently complex, and in order to develop successful
software we must build a solid foundation. If you were constructing a
house, it would be a very bad idea to jump right in and start building the
walls without first building a solid foundation, because the consequences
would be dire. This same fundamental principle applies to software
construction.

Just as a house is complicated to build, so is software. Like a construction
manager who needs to manage the complexities of a construction site, we
have to do the same in the tools we develop. When designing software,
it's important to start by keeping the design at a high level, minimal in
complexity, and easy to maintain.

231

I've found that designing at the subsystem level is a good first step to
managing the complexity. If it isn't clear, subsystems are the components
that make up a system.

232

For Viewmaster, the tool's subsystems are broken up as follows:

Database: Read and write bugs to a database

Hansoft: Communicate with Hansoft, create new bugs and retrieve bug
information

Devkit: Create bugs from the game and navigate to those bugs in the
game

OpenGL: Viewports to view bugs on a game map and display screenshots
with the ability to add annotation.

Interface: The gui needed to be flexible enough for each user to
customize their layout as well as the projects adding in their own views.

Those are the major subsystems of the tool. As you can see, these are
some pretty major and broad systems for a tool. But where to go next?
Communication between the subsystems is a critical step in the design
process, and one that should never be skipped. If I designed the inter-
communication of the subsystems while coding them, I could easily get
into a situation where each subsystem was trying to communicate to each
other because I'm not sure how it all fits together. I could end up in a
mess and get lost.

It's important to keep the communication between subsystems simple,
clear and straightforward. If it isn't, you open yourself up to code paths

233

that become confusing to follow, you make it more difficult for extensibility and
maintenance becomes more of a headache.

233

In Viewmaster, to make sure communication was kept simple and in clear
paths, I created a Management layer.

The Management layer is how subsystems interact with each other. It
becomes important at the Class or Object level of the code. Instead of
having to pass every subsystem to each other, I only need to pass the
primary manager class.

234

The management layer becomes important at the Class or Object level of
the code. Instead of having to pass every subsystem to each other, I only
need to pass the primary manager class.

So instead of this:

class Devkit(object):

def __init__(self, Hansoft, Database, OpenGL):

pass

I can simply do this:

class Devkit(object):

def __init__(self, Manager):

pass

This keeps your Class design simple and straightforward. It also allows
maximum flexibility and extendibility. The only issue you have to be
aware of in a design framework such as this are circular dependencies.

235

With View Master, whenever the interface subsystem needs information, it
has to go through the manager to get the information it wants. For
example, when the tool first loads up, it asks the database manager which
project the user has set, and then populates and caches the entries
manager with all of the entries for that project. It was designed this way
for performance reasons of hitting the database. The Viewmaster
database stores screenshots and annotation data which can cause
performance problems for our remote users. It also gives a nice interface
for each view of Viewmaster to simply ask the entries manager for the
entries to display, based on the users current set of criteria.

236

In the Visual Scripting Editor, the subsystems were set up as follows:

• Interface

• Node

• OpenGL renderer

• Graph Management

Once you've determined how the general framework of your tool works at
a high level, then you can begin to design your classes and so on.

The take away here is that as long as you can manage the complexity of
your design by keeping things simple and straightforward, put restrictions
on how subsystems communicate with one another, your tools and
pipelines will improve.

237

238

239

240

Hello my name is Wes Grandmont III. I‟m Senior Technical Art
Director at Microsoft Studio‟s 343 Industries. The talk I‟m
giving today, Shady Situations: Real-time Rendering Tips &
Techniques is meant to be a spring board for those of you
looking to add shader development to your skill set. It collects
a bunch of really useful techniques into one place so that
you‟ll have a set of building blocks that you can use in your
own work.

241

Before we get rolling, here‟s a little about my background. I
was at EA for nine years. Was co-owner of an animation studio
for three years and the last two and half years I‟ve been at
Microsoft Studios, first with Goodscience Studio, helping
launch the Kinect and now with 343 Industries working on
Halo 4. The last ten years I‟ve been primarily focused on
technical art, which for me has meant everything from content
creation, to pipeline design and implementation to rendering
and game engine development.

242

The first part of this session will be focused on some big
picture concepts. It‟s really important to understand what‟s
going on inside the GPU when writing shader code so we‟ll do
a very quick overview of how the GPU pipeline works. After
that it‟s essential to understand the basic code structure of a
high level shader, so we‟ll briefly discuss the different parts of
an HLSL shader. Finally, I‟ll dive into a series of techniques and
go over how they are implemented.

I‟d like to note that this talk is not a discussion of techniques
being used in Halo 4. Everything I‟ll be presenting today is
based on projects I worked on prior to joining 343 Industries
and my current role at 343 is not focused on maintaining the
shader portion of our pipeline.

243

This is the GPU pipeline as it looks for GPUs that support
Shader Model 3. The more recent Shader Model 5 has some
more components that I‟ll discuss very briefly.

Shader code flows through this pipeline in order to become a
pixel in a render target. The only parts we touch directly are
the shader code and material, everything else is handled by
our application and the graphics hardware.

244

The first step is having some shading code written in a high
level shading language (HLSL). For this talk, I‟ll be using
Nvidia‟s Cgfx language. The Cgfx runtime supports OpenGL
and DirectX and more importantly for this talk, it‟s supported
in Maya via the cgfxShader plugin. Cgfx as well as the .fx file
format allow us to encapsulate multiple rendering techniques,
embed GUI parameters, create multipass shaders and specify
render and texture states in one file.

245

The application (3D program using the shader code) will have
some sort of material implementation that will point to your
shader code. In Maya this is an instance of the cgfxShader
node. The shader code is referenced by the material which
supplies instance specific values for various inputs in the
shader (colors, texture paths, scalars). The shader code is
compiled by the shader compiler and uses the material
parameters as inputs that are passed to the GPU.

246

The GPU front-end receives data from the application which
includes compiled shader code, vertex positions, normals,
tangents, binormals, uvs, vertex colors, matrices and material
parameters. These are all the ingredients the GPU needs to
proceed with rendering.

247

The GPU processes the vertex data before passing it to the
primitive assembly stage. At this stage, the shader code has
the first opportunity to alter the data coming from the
application at the vertex level. This could include moving
vertices, changing vertex colors, or changing transform
spaces. It‟s usually much cheaper to do things at this stage
since there‟s usually far fewer vertices to process than
fragments that need to be processed further down the pipe.

248

At the Primitive Assembly stage the vertices are assembled
into triangles, points or lines and clipping and culling
operations are performed to limit the primitives being
processed to only those that are needed.

In modern GPU‟s that support DirectX 11 this stage is replaced
by the following:

 Hull Shader: Performs operations on sets of patch control
points, and generates additional data known as patch
constants.

 Tessellator: Subdivides geometry to create higher-order
representations of the hull.

 Domain Shader: Performs operations on vertices output by
the tessellation stage, in much the same way as the vertex
shader.

 Geometry Shader: Processes entire primitives and allow
them to be discarded or to have new ones generated.

 Stream Output: We also have the opportunity to write out

249

the previous stage's results to memory so we can use it again
later

249

Next, the primitives are “rasterized” to produce a set of pixel
locations and fragments (“potential pixels”) in the framebuffer.
At this stage we call them fragments because the GPU hasn‟t
decided whether or not the fragment will actually get written
to the framebuffer. Vertex colors, UV and depth information
are interpolated at each fragment location.

250

The fragment processor (pixel shader) Determines the final
fragment/pixel color to be written to the frame buffer or
render target and can also calculate a depth value to be
written to the depth buffer.

In modern GPU‟s that support DirectX 11 this also includes
passing data from the pixel shader to a compute shader for
additional processing.

251

Raster operations are performed to determine if and how the
fragment should be added to the frame buffer/render target.
This includes things like alpha test, depth test, and what
blending operation to use.

252

If the fragment passes all the raster operations then it is
promoted to a final pixel and is written into the frame buffer /
render target.

And that‟s the whirlwind tour of what‟s happening inside the
GPU. Now let‟s take a look at the anatomy of a high level
(Cgfx) shader.

253

This diagram shows an abstract view of the order in which
blocks of code are defined in the shader. Each block depends
on the ones above it so the order is very important! Variables
need to be defined first so that the functions and shaders can
refer to them farther down in the code. The following
examples will show what each of these blocks look like in a
Cgfx shader text file for Maya.

254

Our top block of code includes all the matrices, structures and
variables we‟ll want to use in our functions, vertex and pixel
shaders. The first part of this input data that we‟ll discuss are
the matrices that are passed from the application to the GPU.
We can access these through identifiers called SEMANTICS.
Using the colon operator (:) we can map these keywords to
float4x4 matrix variables that we can use later.

255

Matrices allow us to evaluate vectors from different points of
reference (transform spaces). It‟s very important to perform
shader calculations in the right transform space. Using the
mul() operator, a vector can be multipled by one or more of
the transform matrices in order to move it from one frame of
reference to another.

When performing math operations between vectors, always
double check to see whether they are both in the same space
and that that space is the most efficient place to be doing the
calculation.

256

The next bit of code is the data structures that will be used to
pass data from the application to the vertex shader. We use
keyword semantics to help fill out our data structure. The
struct has been given the name “a2v” which is shorthand for
“application To vertex shader”.

257

We also need a structure for passing data from the vertex
shader to the pixel shader. Here we‟ve called it “v2f”,
shorthand for vertex shader to fragment shader”. We have up
to 8 TEXCOORDs that we can pack values into (TEXCOORD0-
TEXCOORD7). Since there‟s limited TEXCOORDs available for
passing data to the pixel shader, it‟s common practice to pack
smaller values together. In this example we‟ll be packing two
sets of UV‟s into the float4 called “TexCoord”. TexCoord.xy will
be UV1 and TexCoord.zw will be UV2.

258

Next we define one or more variables that can be modified on
each material instance. With Cgfx we can also specify how we
want the UI widget to be created by supplying additional
parameters within the <> braces. Finally we can specify a
default starting value.

259

Texture samplers are the last piece of input data that we need
to define in this top section of the shader code. A texture
sampler consists of two parts. A texture resource that
references a texture file and a sampler that we can use later
to access values from the texture resource.

260

Once all the input data has been defined, the next big block of
code are the function declarations that we want to use in our
vertex and pixel shaders. Functions are small re-usable bits of
code that make our shaders easier to maintain by allowing us
to use the same code across multiple shaders. This is an
example of a simple fog function that returns a fog value
based on an input world position.

261

Once all the functions are defined we can add our vertex
shader code. The vertex shader allows us to alter the vertex
data coming from the application before it gets sent to the
pixel shader.

262

After defining our vertex shader we can now define the pixel
shader. This is a very simple example that doesn‟t use any of
the incoming data from the vertex shader. It simply returns
the color red as the final color for the each fragment. Usually
there‟s a lot more happening here.

263

Finally we get to the very last section of code which is where
we define one or more techniques. A technique is recipe of
sorts where we can setup various render states and tell the
GPU what vertex and pixel shader to use for each render pass,
and what profile to use when compiling. With techniques we
can do rendering in multiple passes as well as supply different
fallback rendering methods.

And that concludes the super quick overview of the GPU and
HLSL. If you have questions, check out the recommended
reading slide at the end of this deck to get more information
on these subjects. Now let‟s dive into the techniques!

264

For the remainder of this talk I‟ll be covering six applied
techniques. Each one touches on a set of core concepts that
can be used as building blocks for meeting a variety of
rendering goals. I‟ve sequenced the order to ramp from the
simpler to the more complex.

265

This technique can be used to reduce texture memory while
maintaining visual fidelity. It will touch on some basic topics
including texture packing, swizzling and linear interpolation.

266

The technique starts with surveying the game‟s content to
identify assets whose diffuse maps are primarily mono or duo
chromatic. In practice this technique works the best on things
like plants and rocks, since these tend to consist of two main
colors. We then pre-process the textures of those assets and
do the following:

267

1. Convert diffuse to greyscale by de-saturating and then
expand the histogram to get a full black to white range.

268

2. Copy greyscale diffuse into the B channel of the normal
map

In most cases the B component of the normal maps is all or
mostly a value of 1.0. We take advantage of this and throw it
out so that we can use that channel to store a simplified
version of our diffuse. Once the packing is done we can throw
out the original diffuse, resulting in a significant memory
savings.

269

3. Setup a shader that will re-construct the normal and
diffuse.

In this example I‟ve created a plant in Zbrush knowing that I
intended to use this technique. I sculpted the plant, used
cavity masking to darken the crevices and extracted that into
a monochrome diffuse map. I then extracted the normals and
performed the previously described packing in Photoshop.

270

In the pixel shader we sample the diffNormPack map to get an
RGB value, then reconstruct the normal by combining the R
and G components with 1.0 for B. There is some loss of
normal precision, but it‟s usually not too noticeable.

271

We then use the B value to lerp between a user defined start
color and end color. This allows us to add color back into the
diffuse and also means that we have an easy way to make lots
of material variations!

272

This technique setup in UDK looks something like this. The
Texture2D node should be set to use Default texture
compression (not NormalMap) and should have sRGB
unchecked. The resulting normal ends up being very subtle so
after reconstructing the normal we multiple the RG
components by a constant and then use a power function and
re-normalize in order for our normal map to be more visible.

273

The diffuse reconstruction as a node network is fairly straight
forward. A lerp between two vector parameters using the B
component of our packed texture.

274

Here are some examples of the visual variety we can get with
this approach and as you can see in the surface shading, the
normal hasn‟t been noticeably degraded.

275

In this section I‟ll show a quick method for adding
brightness/contrast, saturation and color tint controls to any
shader. I‟ve found this to be a useful addition in the past since
it‟s allowed me to help the Art Director make quick
adjustments without editing textures.

276

First we declare the user controllable parameters. To fit these
on the slide I‟ve removed the UI part of their declaration
(you‟ll want to add that back in if you want the parameters to
appear in Maya).

For example: float Brightness <string UIName =
"brightness"; string UIWidget = "slider"; float

uimin = 0.0; float uimax = 2.0; float uistep

= 0.01; > = 1.00;

There‟s different ways to calculate brightness/contrast, but
I‟ve gotten a lot of mileage out of the simplicity of the
following approach. I treat brightness as just a scalar multiply.
For contrast I use pow(), with the user tune-able “Contrast”
variable as the exponent input.

277

If you aren‟t familiar with what the pow() function can do for
you visually, it‟s basically taking your incoming value and
raising it to some power. This has the effect of either eroding
or dilating your values depending on whether you use a value
greater or less than 1.0. The combined result of the multiply
and pow() gives us a final brightness/contrast result. The
values don‟t match what you would use in Photoshop, but by
tweaking them together you can have good control over the
brightness and contrast range.

278

For the saturation control we use length() to get the overall
intensity of the brightness/contrast corrected color. This works
because we can treat our RGB value like any other vector
(such as normal), the shorter the length, the darker the color
is. Since length is a single float value, we swizzle the result to
get a greyscale float3 value. We can then lerp() between the
greyscale version and the original brightness/contrast
corrected color to allow varying degrees of saturation. As a
side note, the length() command is equivalent to dotting a
vector with itself and taking the square root of the result.

For more great color correction approaches, check out Chapter
22 of the Nvidia‟s GPU Gems. For example you could replace
the length() approach above for calculating greyscale with the
weight-based approach described in 22.3.1 of GPU gems.

279

As you can see in the images above, this gives us good control
over the saturation level. You can even overdrive the values
past 1.0 to boost saturation.

280

Finally we take the output of the saturation operation and
multiple it by a user controllable color tint. This allows us to
cheaply adjust the hue. The combination of these four tweak-
able parameters gives plenty of control for making variations
on base diffuse textures and for giving your Art Director knobs
to tweak that can vary asset to asset.

281

As a node network in UDK this technique looks similar to the
following example. The main difference is that I used Unreal‟s
built-in desaturate node instead of rolling my own in a custom
node.

282

For this example, I‟m going to demonstrate how to add a rim
light that fades on as the camera‟s view vector faces the same
direction as the key light and fades off as the view moves
towards the back-side of the model. While not physically
correct, this is a useful tool for helping to separate characters
from dark backgrounds. Since it‟s view-dependent, the
rimlight won‟t look blown out when the character is viewed
from behind. The technique can also be adapted to achieve
other view dependent effects.

283

Demo Movie

284

Understanding basic lighting calculation is essential in order to
control the look of your shaders. Central to the standard
lighting model is the dot product operator which tells us how
much one vector is facing towards another vector. It returns
this comparison as a value between 1 and -1.

1 means the first vector is facing the second vector, -1 means
it is facing away. In the case of a simple directional light, we
want to compare the surface normal at the point we are
shading to the light vector to determine how much it is facing
the light and shade it accordingly.

In this example we have a sphere with a surface normal at
each point we will be shading. Normals are vectors whose
length is always 1 and that are orthogonal (perpendicular) to
the surface at each point. Here we‟ve got three of them each
facing in a slightly different direction based on the curvature
of the sphere.

285

Here‟s our sun light vector. The light vector also has a length
of 1.0. In dot product calculations all participating vectors
must be normalized (meaning they must have a length of 1.0
in order to get an accurate result from the dot product
calculation). You can use normalize() to insure that your
vectors are 1 unit in length.

286

At each point that is to be shaded, we use the dot operator to
compare the normal to the light vector. As you can see,
Normal C is almost facing the light vector so the result of that
dot product calculation is close to 1.0. The other normals are
starting to face away from the light vector so they have
started to go towards -1.0.

NOTE: By drawing this as a picture the math has become
more “fun”….really.

287

We can do a lot of interesting things with the result of the
dot() operator. For example we can clamp the value so that
anything below zero is just zero (standard lighting math) or
we can do a “wrap light” where we add 1.0 to the result and
then multiply by 0.5 so that instead of a value between 1 and
-1 the value will range from 1 to 0 (or any variation on these).
Once we have the clamped result of our dot product
calculation we can either immediately apply it via a multiply
operation or use it to drive something else such as
interpolating between two colors.

288

So now that everyone understands the role of the dot product
lets look at how we can use this great bit of math to add a
rimlight to our initial lighting calculation. First we‟re going to
need a few vectors to work with. The ones we‟re interested in
are the light vector, surface normal and the camera view
vector. As I previously mentioned these need to all be in the
same transform space or the math won‟t work out.

We get the normal and key light vector from the application,
but we need to calculate the view vector. We do this by
subtracting the world position of the point being shaded from
the camera world position. We passed the world position of
the point in from the vertex shader so we just need the
camera world position.

We can get the camera world position from the
ViewInverseTranspose matrix which is passed in by the
application. This is a 4x4 matrix. In OpenGL this means that
the last column of the matrix contains the camera‟s world
space translation values. (0 would be the first column, so the

289

fourth column of the matrix is found at index 3).

289

We subtract the camera position from the world position and
normalize to find the view vector.

290

We‟ve got all the vectors we need so now we can proceed with
the lighting calculations.

First we calculate the lighting contribution for the keylight
using the standard lighting I described earlier and color tint it
with a user-tunable keyColor parameter.

291

Next we‟re going to calculate the clamped dot between the
view vector and the light. This tells us how much the camera
is facing in the same direction as the light. As the camera
moves around the object, this value will dynamically change
which will cause the rimlight to fade off as we face toward the
light and back on as we face away from the light. We‟ll be
inverting the result of this value to get the result we want

292

Finally we‟re going to calculate a fresnel term which tells us
how much the surface being shaded is facing the camera. We
do this by getting the dot product between the view vector
and the normal. We then use the pow() operation. As I
mentioned in the last technique, the pow operation acts as a
contrast function, which will allow us to control how fast the
fresnel effect falls off. This will help isolate the rim light to the
edges of the surface.

293

We can now use vDotL to interpolate between a minimum and
maximum intensity for the rim light. When the camera is
facing towards the light the max value will be used and as it
faces away the rimLight value will fade towards the minimum
value. I try to keep the minimum value greater than 0.0 to
prevent it from completely disappearing, but you can of
course tune this to suite your needs.

Normally when filling in a lerp(A,B,C)

A=min

B=max

C=interp value

In our case we‟re switching A and B since when we are in
shadow we actually want the rimlight to be at full brightness

Finally we multiply by a user tune-able rim color to tint the
final light.

294

We finish up by adding our rim to the initial keylight contribution we
calculated at the beginning.

294

For those of you who work in the land of material networks,
here‟s what this setup looks like in Unreal. This network is
plugged into the custom lighting input on the material block.

295

Many times in order to achieve subtle gradients, flares and
other effects you get better results if you use a procedurally
generated gradient rather than a texture map. In this next
section we discuss how to use some simple math to create a
variety of procedural texturing effects that will give you great
results, real-time interaction and zero hit to your texture
memory.

296

Demo Movie

297

Okay so we know how a lerp() works and that if we have a
value between 0.0 and 1.0 we can use that to blend between
two colors. We also know that UV coordinates are often
normalized between 0.0 and 1.0 in UV space (and even if the
aren‟t we can normalize them so that they are). Armed with
these two bits of information we can easily write shading code
to render a gradient on any polygons that have UV‟s.

We can create a simple horizontal gradient by using the U
component of the incoming UVs as the blend value in a color
lerp(). We can also add a power function to allow the user to
adjust how quickly the color ramp falloffs as it blends to the
second color.

298

Here‟s what that looks like as a material network

299

Similarly we can use the V component of the incoming UVs as
the blend to create a vertical gradient.

300

And we can make a diagonal gradient by adding U and V
together and then multiplying by 0.5 (averaging them).

301

Here‟s what that looks like as an Unreal shading network

302

We can extend the diagonal gradient example further and
create a tartan or diamond gradient. First we shift where the
origin of UV space to the center of the quad by subtracting -
0.5 from both U and V. We then take the absolute value of the
U and V components and add them together. This gives us
four diagonal linear gradient that falloff in each of the four
quadrants.

303

Here‟s what that looks like as an Unreal shading network

304

From the tartan example we can make a minor change and
we‟ll have a spherical gradient. Instead of adding the U and V
components together we dot() it with itself. Getting the dot
product of a 2D or 3D vector with itself returns the length of
the vector squared. In this case we‟re going to skip the square
root operation and instead rely on our pow() function to allow
us to contract the radius of the spherical gradient.

305

Here‟s what that looks like as an Unreal shading network

306

Let‟s take quick break and talk about the sin() function. Sine
returns a value that ranges between 1 and -1 and repeats
every 2PI (~6.28). Half the time the value we get back from
sin() is negative. If we want it always to be a positive value
we can do the following:

307

First we add 1.0 to whatever we get back from the sin()
function. This shifts the entire graph. It now ranges from 0.0
to 2.0 instead of from -1.0 to 1.0.

308

Then we multiple the value by 0.5 which scales down the
graph by half which means it now ranges from 0.0 to 1.0. Now
we have a normalized value from the sin() function that we
can use for rendering.

309

So to create a simple animated radio beacon or shockwave
effect we can use a sin() in our spherical gradient calculation.
First we use the TIME semantic provided by our application to
get a time value that will drive our animation. We do our
previous spherical gradient calculation to generate a blend
value.

We then create a wave value by adding time to our blend
value, scaling that with a frequency value to control how many
rings we‟re going to get and then pass that to the sin function.
We then normalize the value we get back from sin() using the
two step process I just described: Add 1.0 and then multiply
by 0.5.

Final we do our lerp() with the wave to get the final color.

310

Here‟s what that looks like as an Unreal shading network

311

Creating a radial gradient requires the use of the atan2()
function. The atan2 function returns the angle in radians
between the +x axis of a plane an input 2D vector. Our input
vector is our offset UV value. The radian angle is returned as a
value between -PI to PI. In order to normalize this value, we
perform steps similar to what is needed to normalize the sin()
value. In this case we add PI and then divide by 2PI to get a
value that ranges from 0.0 to 1.0.

312

Here‟s what that looks like as a material network in Unreal.
Unreal doesn‟t expose the atan2 function, but we can do the
calculation in a custom node.

313

Similar to the way we used the sin() function to add waves to
our spherical gradient. We can use sin() to create radial noise.
In this case we‟ll use two sin calculations to create wave
interference which will give us some organic breakup to the
repeating sine pattern. Our gradient starts and ends at the
same vector as it sweeps around the quad. We don‟t want to
see a visible seam where the start and end match up. Recall
that sin() repeats every 2PI. So if we multiple our frequency
values by 2PI we can guarantee that end of the sin graph will
match up with its beginning.

314

And again here‟s what that looks like as a material network…

315

As I mentioned at the beginning you can combine these
gradient techniques to create a range of effects. One example
is a lens flare. If we combine the spherical gradient, radial and
radial noise gradient we can get a high quality animated lens
flare effect without using a single texture.

316

Ambient environment animation is quick to implement in a
vertex shader. In this section I‟m going to discuss techniques
for achieving controllable deformations via the creation and
setup of a cartoony bulging pipe example. This example will
cover mesh pre-processing, sine wave manipulation and
vertex deformation.

317

To begin we need to author our model in a way that will allow
us to control the deformation in the shader. After creating the
model, we need to parameterize the vertices so that we can
control how the deformations are applied. There‟s two ways to
add parameterization. We can use one or more UV sets and/or
we can make use of the vertex colors. I‟m a fan of using
vertex colors for a number of reasons:

 Easy to visualize

 Can be painted

 Can be more easily edited

1.) So as a first step I‟ve modeled this bendy piece of pipe
with couplings and rivets and setup UV‟s

2.) As a second step I apply a surface shader with a red to
black ramp and bake this color into the vertices of the pipe.
This coloring represents and 0.0 to 1.0 parameter range
across the surface.

3.) I then hand apply green to the areas around the couplings.

318

Later I‟ll use the green channel of the vertex colors to act as a mask
to prevent deformation from occurring in these areas.

The model has now been pre-processed with all the built-in
information that we‟ll need to help control our animation.

318

Now we need to setup the vertex shader that will create the
deformation effect.

First we‟ll need to declare some constants to use in the vertex
shader. We‟ll be using both PI and PI2.

Next we define some variables that the user can tweak to
control the bulging effect:

Flow = This value will range from 0.0 to 1.0 and will
represent the flow of liquid from the start to the end of the
pipe. This is the animation control.

BulgeLength = This value represents the length of
the bulging area in relation to the length of the entire pipe.

BulgeScale = This value represents how far the points will be
displaced away from their original position as the deformation
passes through the pipe.

319

In the vertex shader we remap our user-defined Flow
parameter to a range that will allow the bulge to travel outside
the bounds of the pipe. This allows us to present a more
intuitive min/max range in the UI and then adapt here in the
vertex shader.

Next we calculate a new center point that will allow us to place
the bulge anywhere along the length of the pipe. We do this
by subtracting our flowcontrol value from the red vertex
channel parameterization we setup on the model. This moves
the zero point of the parameterization to where-ever our
flowcontrol value is (see image above).

320

We now need to calculate a mask so that our bulge only
effects vertices that are less than BulgeLength distance from
the center we calculated. We do this by first getting the
absolute value of center , then subtracting the absolute value
of center from BulgeLength. Finally we use a ceil() function to
push any non-zero values to 1.0. This gives us a hard mask
that we can use later to isolate our deformation effect.

As an aside this technique is great for doing all sorts of effects
in the pixel shader as well!

321

Next we need a bulge gradient that has smooth falloff so that
we will get a nice center belly to the bulge and a falloff to the
non-deforming areas. The sine function will come to our aid
(you can also use the cosine function as an alternative).

Sine waves have a smooth ease-in and ease-out at the crest
and trough of the wave. We need to calculate a sine wave
whose crest is centered over our bulge center and whose
distance from crest to trough matches out bulge length. We
want to end up with something like what‟s pictured above.

322

When we feed a gradient value (that is a value that changes
over a range of pixels) to the sin function (in this case it‟s our
red vertex color) we get smoothly repeating wave. What we
want is to determine the right value to feed the sin function so
that this wave pattern repeats at the right frequency and is
aligned to our center. In order to do this we are going to need
to tile and offset the sine wave to get it positioned correctly.

323

We need to determine the desired distance between repeats in
the sine wave. We‟ll call this variable “tile”.

Recall that in order to determine the mask we subtracted the
absolute value of the center from our BulgeLength. This
means that we were using values on both sides of the 0.0
center line which means that the total length of our bulge is
actually 2.0 x BulgeLength.

In order to determine the tiling we need to know how many
times the 2.0 x BulgeLength repeats inside our parameter
range which is 0.0 to 1.0. So we divide 1.0 by the
2xBulgeLength to determine the tiling.

324

We want our parameter range to tile within the 0.0 to 1.0
range so we multiply the center variable by our tile variable.

A sine wave repeats every 2PI, so if we multiple our tiled
range by 2PI we‟ll see the sine wave repeat that many times
within the parameter range (similar to how we made the radial
gradient repeat in the lens flare example earlier).

The sine wave doesn‟t start at the crest or trough of the wave,
but one half PI to the left. If we want to align the crest to the
center then we need to add half PI to our sineInput. Now that
we have our calculated sineInput we pass it to the sin()
function.

Finally we use the two step process described earlier to
normalize the sine value (add 1.0 and multiply by 0.5)

Alternatively, you can replace the HLSL in this slide with the
following:

325

float cosInput = (center*tile*PI2);

float falloff = (cos(cosInput)+1)*0.5;

The cosine wave starts with the crest already centered over the
center (0) line so we can skip the addition of halfPI

325

Now that we have our bulge falloff we multiply it by our mask
value to get our final bulge. We then multiple the bulge by our
BulgeScale to get the finally offset value for the vertices.

326

We multiple our offset by the vertex normal and add that to
the local position to get the final displaced position of our
vertices.

And then finally we transform the vertex into
worldviewprojection space.

We can also transform the normals depending on how we are
doing our lighting. It‟s important to note that our normals are
not getting deformed by this process, but when this effect is
animating it‟s hard to notice.

327

Here‟s the Unreal version. Note that the result of this network
is going into the WorldPositionOffset input of the material
block.

328

This is a psuedo-liquid technique. I call it a psuedo-fluid
because it behaves similar to a more expensive fluid sim, but
cheats much of the math. It demonstrates some key concepts
including:

• Use of render targets

• Post-process materials

• Offset mapping

Because Maya‟s cgfxShader doesn‟t support rendertargets this
demo was setup exclusively in UDK in order to illustrate the
concepts.

329

Demo Movie

330

The setup for this pseudo-fluid consists of 6 main ingredients:

1.) Off-screen sprite-based particle system

2.) PSysRT: Particle System Render Target (1024x1024)

3.) Scene Capture Actor that writes to the PSysRT

4.) AccRT: Accumulation Render Target (512x512 with Linear
Gamma)

5.) Scene Capture Actor with Custom Post Process Material

6.) Output Material Applies to Mesh in camera view

331

Off-screen sprite-based particle system. This defines the initial
behavior of the fluid. The shape of the sprite, size, rotation,
rate all effect the final look. This particle system exists out in
space away from our main scene so that we can capture it in
isolation.

332

Next we create a 1024x1024 render target. We‟ll refer to this
as the PsysRT (Particle System Render Target). Next we add a
Scene Capture Actor to the level that focuses on the particle
system. The Scene Capture Actor will take a snapshot of the
particle system each frame and write the result into the
PSysRT.

333

We‟ll create a 512x512 render target with Linear Gamma that
that we‟ll call AccRT (Accumulation Render Target). And we‟ll
add a second Scene Capture Actor.

This second Scene Capture Actor is just there to act as a
compositor. We‟ll use it‟s ability to specify a custom post-
process chain to allow us to do some texture processing in a
special compositing material.

The compositing material will combine the AccRt and the
PSysRT and then write the result back out to the AccRT.

334

Most of the magic for this effect happens in the post-process
compositing material so lets drill down a little deeper there. In
this material there are a few different things happening to
simulate various fluid properties.

Fluid Convection is the combination of both advection and
diffusion.

Advection is the transport of a scalar quantity in a vector field.
Basically, how stuff gets pushed around as it moves through a
medium. We‟ll approximate this by combining several texture
samples to create a non-periodic animated 2D vector field
(just a fancy way of saying we‟ll make some red and green
channels that will act as uv offsets). We‟ll combine these
offsets when reading the AccRT texture so that every frame
the AccRT will continually evolve and change.

For the diffusion portion of our convection solver we‟ll read
from our higher resolution PSysRt and write to the lower
resolution AccRT. Thanks to bilinear filtering we‟ll get a some

335

free diffusion as the pixels blur while being downsampled.

Finally we can optionally dissipate our fluid (you might want to keep
it around in which case you can skip this step) by slightly darkening
the AccRT each frame. This will cause the accumulated samples to
fade out over time.

335

So let‟s take these concepts and show how they are
implemented in the composting material. Here we see the
advection implementation. We‟re sampling two textures. Both
textures are tiled and panning at different rates and
directions. These are combined in order to create a final float2
value that can be added to the base texture coordinates in
order to create a final offset UV that we‟ll use to sample the
AccRT.

I‟ve noted the dependent texture reads here because these
are usually something to be avoided. You can modify this
portion of the algorithm to suit your performance needs. The
important thing is that you end up with compelling set of
offset values since these will make or break the perception of
the final effect having fluid-like movement.

Another note about authoring the vector field textures is that
the values in the R and G channels range from 0.0 to 1.0. If
you want vectors that face in all directions you‟ll need to
subtract 0.5 from the values so that they range from -0.5 to

336

0.5. It‟s not necessary to normalize the value because we multiply
the final combined texture samples by a viscosity multiplier. The
viscosity value is very small because we only want really small offset
from the vector field each frame so that the fluid doesn‟t move too
fast.

336

HACK WORK-AROUND WARNING: Unreal initializes it‟s render
targets with a green background. We want a black background
for the render target. We can do this in the composite material
by multiplying by 0 for the first few frames of time and then
afterword just multiplying by 1.0. This can be done by driving
a lerp with a clamped TIME attribute so that the render target
gets cleared out when time is 0.0 and then quickly lerps to
1.0.

(It would be better and cleaner to change the initialization
color for the rendertargets, but I‟m not aware of a way to
access this value in UDK).

337

Here‟s the last part of our compositor, where the
“compositing” actually happens. We take our advected AccRT
sample, darken it slightly to create the dissipation effect, then
use a lerp to alpha blend the higher resolution non-advected
PSysRT on top.

The final result gets written back to the AccRT. This feedback
loop is possible because we are using this material in a post-
process chain that is being referenced by a scene capture
actor, that is writing it‟s results to the AccRT.

338

The final part of this setup is pretty straight forward. We take
the AccRT and use it in a material that we apply to a surface
in our camera view and we‟re done!

339

Demo Movie

Some cool highlights of this technique are:

-You can mix different colored fluids together

-You can animate the emitter position

-You can combine the animated vector field with a static
vector field to have fluids flow around obstacles

340

Before we wrap things up, here are some resources that I‟ve
found helpful over the years.

341

As I mentioned at the beginning of this talk. All of these
techniques contain building blocks that can be used as-is or
adapted and combined to solve various visual problems. I
haven‟t really talked too much about performance, but it‟s an
important thing to consider when deciding whether or not to
use any technique.

We want our games to run at least 30 fps, so we have to
make sure everything we need to render each frame can finish
in under 33ms. Profiling tools like PIX for the Xbox 360 are
essential in this process. In the end, game development is a
delicate balancing act so it‟s important as technical artists that
we measure and evaluate the impact of any solution in
context with everything else that needs to be render before
we decide whether it‟s a good choice for our game.

In closing, I wanted to tie back into the rest of the day‟s talks
and say a brief word about technical art. For me, being a
technical artist is all about enabling the team to do their best
work. Whether it‟s tools, pipelines, rigs, shaders, optimization

342

or just plain firefighting our job is to identify the things that slow the
team and the project down and make them better. I‟ve found that if
you approach everything with the spirit of a sincere desire to help
you can‟t go wrong.

Thanks for listening and I hope you found something useful to
incorporate into your own projects!

342

Hi I‟m Will Smith. I‟m a technical artist at Volition, where I‟ve
worked on a variety of titles over the past four years.
Technical Artists at Volition are usually generalists, so I‟ve had
the unique opportunity to get to work on nearly all of Volition‟s
more recent titles, including Saints Row 2, Red Faction, and of
course Saints Row the Third. I had the opportunity to work on
SR3 for the last 8 or so months of production, and we shipped
last year with a huge effort from the entire team both at
Volition and THQ. So it‟s a real pleasure to be here today to
present, and I hope to provide an informative lecture to finish
off the boot camp – especially after hearing my colleagues
present who are in every way extremely tough acts to follow!
So without further ado: Unusual UVs – Illuminating Night
Windows in Saints Row: The Third.

But first – Tech Art:

343

I tried to draw a diagram of what the responsibilities of a
technical artist at Volition are, but I think this picture sums us
up a little better. As we‟ve heard from the preceding
presentations today, we know tech art covers a wide range of
skill sets and capabilities, all geared towards an
interdisciplinary approach to problem solving. Since technical
artists help resolve such a wide variety of problems, it
becomes difficult to traditionally define what a technical artist
actually does. Some Volition TAs prefer working on
environment art, others cinematics, others shaders or tools
programming. Thankfully I don‟t want to attempt to define
what technical art is for this presentation, merely to confirm
that its breadth is wide and varied.

What we do know is that tech artists help resolve a variety of
problems.

344

We‟ve seen a range of clever solutions to many common
development issues presented today. Still, there‟s no way to
predict the intricacies and caveats of future game
development problem cases. It‟s always going to be difficult to
formulate an approach to a new and unique problem. It‟s
especially difficult to imagine how a tech artist might go about
solving a particular problem without any idea of the eventual
solution in mind.

Often a good solution isn‟t obvious.

345

Often what‟s involved in defining the problem can be tricky
too. The end product may be the result of intense
collaboration, or a single-handed fix. It may be a quick
update, or require investigation into entirely new features,
tools or pipelines – all of which may force tech art to
interleave with associated development disciplines.

346

So it‟s the process I‟m interested in conveying.

347

Instead of providing a finished product or finished solution,
this presentation is going to be a generic overview of a
process – the steps I took (for better or worse) to resolve a
fairly simple example of a real-life game development
problem. I don‟t mean this as a caveat - my hope is that by
conveying my thought process and experimentation, I can
show a solution within the context of the steps taken to arrive
at it – which I hope ends up being even more useful than the
solution by itself.

Maybe Tech Art is a little like rock climbing:

348

…there are infinite routes, and it‟s not obvious what‟s best.
I‟ve never actually been rock climbing. So I hope that analogy
makes sense.

Anyway I guarantee that you‟ll never find presentation slides
that exactly solve the problem you‟ve got in front of you.
You‟re going to have to make up some of the rules as you go.
You‟re going to have to fly a little bit by the seat of your
pants, no matter how much you plan. And when you‟ve got
something working, it‟s a cruel reality that you‟ll dream up ten
better, more efficient, or more robust ways to do it over again.

349

But that‟s also kinda the point. A Technical Artist‟s job is
essentially to learn, and with more experience comes a
greater capability to apply learned lessons to current
problems.

350

Welcome to Steelport, the seedy criminal centerpiece of Saints
Row The Third. The brand-new city of Steelport is the sole
setting and haven for all the nefarious over-the-top activities
that occur in Saints Row The Third. It‟s like Detroit, if you
smeared eight more Detroits on top, then perched it all on a
lonely island, then made every inhabitant criminally insane.

351

Steelport is an open-world sandbox for the player, a living city
that exists solely for the player to explore and conquer.

352

The city needs to intrinsically convey that importance, it needs
to be immediately relevant and central to the player‟s interest
– and it needs to look worthy of that interest; therefore it
needs to look populated, alive, and most importantly: it needs
to look worth conquering.

The trouble is, we‟re two thirds through production at this
point, and at night Steelport looks like this:

353

It‟s not a living mega-city yet. Much of the city is still in
placeholder form at this point, and the night window system is
no exception. This is the reality of commercial game
development, and it‟s often difficult to assess priorities for
work on game systems without doing enough investigative
work to effectively build or create the systems in question
themselves. This is another area of Tech Art specialty.

It may look like the buildings in this image haven‟t been set
up for any kind of night window system at all, but that‟s not at
all the case. While the city appears at first glance to feature
stark repeating textures, there are a number of reassuring
components at work that we can use to make some
preliminary assumptions. It looks like most of our buildings
feature explicit UVs, and whatever placeholder night window
system is in place is global enough to be apparently affecting
the majority of the city at once, both of which are excellent
criteria to confirm when we get to the stage of assessing the
problem in earnest.

354

It‟s a rare case for any discipline, Tech Art included, to build a
system of any kind from the ground up. This is a classic example of
a partial solution that‟s been waiting for some Tech Art love and
attention – which should probably happen sooner rather than later,
in case some important potentially workflow-altering discovery
about this system might affect the team as a whole and risk
shipping quality.

354

This pre-emptive step is also where Tech Art can make a huge
difference. And by that I mean I volunteered for the job. This
isn‟t to say that a “make the windows not horrible” task
wasn‟t somewhere in the production backlog, but I knew I
personally had a little time to take a shot at the problem.
Sometimes it‟s scary to take the initiative and crack open an
unfamiliar system, especially when schedules are already tight
(and they always are), but that‟s exactly what Tech Art is for.
So I said if nobody was already on this – I‟d be happy to
tackle it. The last thing I wanted was to leave the windows in
the state they were up to the last hours of production.

I checked up with my art director and leads, and got all the
night-window-related tasks crammed onto my to-do list for
the next couple days.

Before I planned or arranged anything, before I even planned
to plan, I wanted to understand the status quo beyond the
cursory visual evaluation of the existing city. I needed to
break apart the placeholder shader and at least understand

355

how the building window glow effect was currently working.

355

Here was some great news. The existing shader was arranged like
so – a set of masks: A reflection mask called out the areas of the
diffuse texture that were specifically meant to be reflective, and a
separate time-of-day mask indicated the areas of the map that
would glow at night using a night-time color value. I‟ve arranged
the component pieces here so you can see what I mean.

This greatly simplified my job. It meant that time of day information
was already accessible in the form of an explicit mask applied to
each diffuse map. The existing system wasn‟t optimal, of course,
since the time of day mask was obviously tiling in correspondence
with the associated diffuse map, and therefore resulted in the
repetitive tiling effect we were seeing in-game. But to me it was a
huge relief – since there was a precedent for the time of day
information to exist separately from the diffuse map, I could
imagine a system to affect the time of day mask alone, maybe
somehow breaking up that tiling pattern without affecting the
diffuse information at all. Maybe that was a good place to start.

I might have gone in, tech art guns blazing at that point – but I
understand the risk of underestimating the complexity of even a
simple task.

I was getting too technical too fast. It‟s very tempting just to start
fiddling with shaders. I needed to step back again, and re-assess
what I was doing from a more informed perspective. I needed to
bring a little Art to bear on my Tech. That brought me back to our

356

SR3 production mantra: “exaggerealism”.

356

SR3 is „exaggereal‟, in a variety of ways. We intentionally
pursued larger-than-life looks and attitudes in our character
concepts, and it seemed sensible to me that our city should
reflect the same kind of mood or expression. I interpreted the
buildings in Steelport as included in the philosophy of
exaggerealism, and almost as characters in and of
themselves.

Characters in Saints Row 3 are exaggerated; nearly cartoons.
I was aware that by building a solution for the night window
lighting problem I‟d be affecting the „look‟ of the city
significantly, and I wanted to make sure to adhere to the
philosophical and artistic intent of the environment. In this
way, Steelport is really a giant, exaggereal character.

357

I didn‟t want to do anything to dampen that idea.

358

The character of SR3‟s buildings vary from the mundane to
the ridiculous. From tiny trailers to warehouses to what we
called “super-scrapers”. At this point in production, Steelport‟s
geometry was already larger-than life.

Several of our buildings topped out at more than 200 stories,
comfortably as tall as the Burj Khalifa in Dubai. Some were
easily taller than the city was wide.

It‟s not explicitly stated in-game, but each gang owns a
distinct tower in the city. While the evil Syndicate gang holds
the iconic red tower, both the Deckers and Luchadores have a
super-scraper stronghold of their own to dominate the skyline.
The Luchadore‟s green octagonal extruded wrestling-ring
evokes the squat stature and volume of the wrestlers, while
the Decker‟s neon blue obelisk has a more technical, corporate
feel. Each are obscenely massive, with a frankly stupid
number of floors and windows each.

359

With the exaggereal character of the buildings in mind, I have some
idea of a goal. It‟s not just a matter of making the city windows
NOT look like corn cobs. The process I have to examine is more
accurately defined as adapting the exaggereal look and feel of
Saints Row to the buildings via the building night window lights.
This may seem like a trivial distinction – but it‟s a good practice to
get into. Defining the goal of a task in context of the artistic
requirements of the project is always a good idea. Plus you‟ll make
great friends with your art director and design team. If nothing else,
it means that the „how‟ and the „why‟ of your work become more
closely intertwined.

360

With a wider perspective of my goal, I can focus on the process of
achieving it. But in order to plan an attack to accomplish that goal, I
still need more information.

More information requires investigation. I knew I needed to identify
the constraints I‟ll be working with. I needed to figure out how best
to apply my time and resources to the problem, so I could focus my
efforts most effectively. I needed reference material to guide me,
and I needed to reconcile that reference material with the existing
assets I had to work with. My guess was this would probably mean
cracking open buildings in max and seeing how they‟re constructed
in addition to prototyping custom shaders. But for now, that was
just a hunch.

Only once I have more information can I even think about

361

implementation, let alone

362

iterating on any hypothetical implementation.

363

Everyone works under the constraints of time, resources and
feasibility. The specific problem of the building night windows
potentially affected every building in the game, all of which
were authored to a variety of standards, artistic and technical
parameters, and of course stylistic differences.

An ideal resolution would be a system that covered the most
assets as possible with a unified solution. Since all window
materials in the game (super-scrapers and residential houses
alike) referenced a small set of placeholder window shaders, a
shader-based initial approach seemed like it‟d have the most
benefit. I should be able modify the shader and a small
number of materials and hopefully affect the look of every
window in the game.

This would be far preferable to a solution that would require
modification of every building asset. There are nearly
hundreds of unique buildings in Steelport, and the more
general and geometry-agnostic my solution the better.

364

But to visualize the potential „look‟ of the city at night, I needed to
gather reference material.

364

I primarily referenced our SR3 concept art, which had some
great views of a stylized Steelport at night, from various
perspectives.

365

366

367

Real-life reference helped ground the concepts in my mind,

368

and I even cursorily examined other games to see how they
light their cities.

Even as a gamer I was surprised at the range of looks and
moods that different night window systems conveyed that I
hadn‟t really noticed before. The look of Deus Ex‟s desaturated
yellowy dystopia, for example, worked to evoke a far different
feeling than Steelport‟s towering super-scraper concepts – and
that uniqueness was something I wanted to maintain.

369

I set myself some criteria to distill the components of an
„exaggereal‟ look for the night windows:

370

Steelport required (and already featured) lots of dense,
brightly-lit windows.

371

Specifically the concepts called for high local contrast at near
distances,

372

But overall consistency at far distance – still uniformly lit and
occupied.

373

At this point I felt ready to begin an initial implementation. I
needed to promote the exaggereal character of the city,
preferably through a small set of updates to the window
shaders and materials to be most efficient. I also needed to
stay true to the concepts in terms of contrast and uniformity.

My working plan was to build a global mask map that would
be applied procedurally via the window shaders. I‟d tile the
map enough to appear consistent at a distance, but it‟d
contain enough noise to contrast across individual windows
when closely inspected.

My next step is to create a visual mock-up.

374

The idea here is to distill a kind of pseudo-algorithm for the
effect I‟m looking for. I don‟t want to necessarily write the
shader math outright, but just get a basic idea. I‟m hoping I
can mask the time-of-day mask, for example. I‟d like to see
what kind of effect that might have – and speed of iteration is
key.

Different prototyping tools have varying strengths. Personally
I lean pretty heavily on photoshop to flesh out effects I‟m
looking for, then fall back to python and the python imaging
modules for more complex results outside of Photoshop‟s
toolset. This takes a little set-up time, and there are infinite
alternate ways to get an idea for what kind of result you‟re
looking for.

FX Composer, and even Rendermonkey might map more
directly to an eventual end-result, since you can mock up
results directly in HLSL if you want. I find processing is a little
cumbersome for the job, but if you‟re a java whiz then it
might work great for you.

375

Suites like Houdini are also a possibility, but I haven‟t yet had an
opportunity to play with that toolset myself.

375

Starting out in photoshop my first step is to tile a portion of an
existing diffuse map and align it with a tinted version of the
existing time-of-day mask. I‟m hoping to retain as much
information from these masks as possible. I want to break up
the monotony of the time of day mask, so I drive it through
an additional noise map. This should break up the glow effect
that is applied back onto the original diffuse. Unfortunately,
the result is less than perfect. Splotchy yellow shapes don‟t
read as illuminated windows, and I‟m not sure this idea is
going to work.

376

Adjusting the noise mask scale seems to help. More windows
are hit fully by the noise map, and the monotony of the time-
of-day mask is still not as noticeable. Some windows are still
very oddly partially lit though.

377

Adjusting the noise mask scale even more seems to help
more. Windows are more likely to hit a full noise mask pixel,
so they look well illuminated, but most windows are still only
partially lit.

378

It‟d be cool if I could clamp the noise map to align with the
windows themselves, that way there wouldn‟t even be any
partially lit windows. Unfortunately I can‟t just arbitrarily
clamp the noise map, otherwise I‟ll get the visible pixilated
effect you see here. To line up windows with the noise map I‟d
need to make some assumption about either the layout of
existing building UVs or the overall world-space height of
window heights in the world, and I‟m not sure either of those
are constant across our assets.

379

I notice something unusual as soon as I start looking into how
many of the buildings in the world are constructed.

380

In particular, building wireframe geometry seems …unusual for
the silhouette shapes the buildings are ultimately conveying.
Since I‟m interested in potentially taking advantage of
standardized UV mapping to align a glow map to the windows,
I need to find out exactly why the buildings are constructed
the way they are.

381

Here‟s an example window texture, one of a huge library of
textures used on SR3. It‟s painted in modular strips, so
different kinds of windows are contained on one map.
Unfortunately, this means that in order to use one section of
the map but not others, buildings require geometry cuts to
support Uving that texture information appropriately. This
makes it difficult for me to align a potential window mask
horizontally in world-space, not to mention raises efficiency
issues for general world asset construction I didn‟t know
about.

382

Here are three more random SR3 window textures. I‟ve
highlighted the vertical breaks where windows are defined on
these textures. In keeping with general SR3 building
construction, they are typically explicitly UV‟d by artists onto
varying building geometry to use some, all or a portion of
their texture, depending on what the artist and asset require.

383

Here I‟ve extended the lines that define the windows on these
textures. Unfortunately, these textures don‟t share any
horizontal or vertical consistency for a potential masking rule.
Which means I won‟t be able to rely on hard-coded guides for
my clamped mask in UV-space either.

384

Unfortunately the same problem exists in world-space.

385

Building floors don‟t necessarily correspond to their neighbors,
so the „floors‟ of this building highlighted in red…

386

Don‟t align with the floors of it‟s neighbor, highlighted here in
green. There‟s also no rule defining the height of individual
floors within a single building. This makes sense – these
buildings are of two distinct architectural styles. So it‟s looking
pretty tricky to align a window glow mask in pure world-
space. First and second floors in particular appear to vary
greatly in relative height. At this point I‟m not so sure if I can
easily clamp the noise to make some windows fully illuminated
and others dark without directly modifying asset geometry.

387

I might return to clamping the TOD mask map, but for the
time being I‟m going to switch gears and move my mock-up in
a different direction. This isn‟t something I anticipated
encountering, and it‟s raised further concerns about asset
construction that I wasn‟t even aware of before. I haven‟t
even begun to apply a solution for window glow maps and I‟m
already wondering if our structure construction methods don‟t
need an invasive overhaul. At this point I‟ve convinced myself
that partial window lights don‟t really look that bad after all,
and I should try colorizing the different masks instead.

388

Getting back to the mock-up. The next step I try is to colorize
the time-of-day mask, and visualize that effect on the
potential output. This provides some much-needed variation to
the windows themselves, though it‟s still potentially a source
of visible tiling. The time-of-day mask tiles along with the
diffuse map; I‟m assuming they will share the same UV
information after all. So I think I need to break up the TOD
color information using the noise map, just like I‟m breaking
up the luminance values of the time-of-day mask using noise.

389

It‟s starting to look pretty colorful – maybe too colorful. At
least it‟s not visibly tiling, and that‟s a plus. At this point I
think I have a viable idea to translate into HLSL and attempt
to hook up in the game. I‟m going to try and map the noise
map on building geometry so that it covers the TOD mask in
much the same way as the photoshop mock-up. At least,
that‟s the plan.

390

Here‟s some ultra-basic HLSL that should push our world-
space coordinates out into color information.

391

The idea is just to plug the X and Y world-space coordinate
into the R and G output color, and we should see vertical
gradient lines all over the world.

392

In specific HLSL syntax, this just means we construct a new
float3 color using world position X and Z. Since values in
world-space aren‟t within the zero to one range,

393

I modulo the values against 1.0, so I should see the vertical
lines I‟m looking for.

394

And that‟s pretty much what we get! This is good – these
might be good values to use as UV coordinates to map a mask
texture onto all these windows.

395

So let‟s plug it in and try. Let‟s stick some world positions into
our texture sampler and see what comes out.

396

Of course, just passing two values of a position into a UV look-
up naturally doesn‟t just work. The effect is a tiled noise map
that‟s effectively extruded through the world on one axis. On
one axis buildings look fairly decent, but the mask streaks
horribly along the other. This makes sense, I‟m throwing away
the world-space z position, after all. Faces along the z axis
need that value to be mapped appropriately.

It occurs to me that most building faces in the world are
aligned generally towards North and South, or East and West.
My idea is to pick the closest axis to the normal direction of
each face and then use the appropriate world-space
component for the horizontal value of the UV lookup. So
depending I should be able to map the mask onto any face in
either the North-South or East-West directions, automatically.

397

Here‟s some HLSL I used to do it. I extract a bias from the
vertex normal. Dot the vert normal against North,

398

Take the absolute value,

399

And step the result against 0.5.

400

Then lerp between x and z of the world pos. This way I can
pull the more relevant of the two horizontal world position
values, X or Z,

401

into the single horizontal value of the two-dimensional UV
lookup,

402

And use that as the „UV‟ coordinate to sample the noise
texture.

403

Here‟s what we had before. If we apply that adjustment…

404

…with the north-south / east-west bias in place, the mask
map maps mostly correctly onto the faces of the buildings
using world-space values. It‟s still being effectively extruded
through the world, but the angle of each face now dictates
which „extrusion‟ so to speak, it takes part in. This is the
„unusual‟ part of the UVs I‟m talking about. Unlike traditional
UV coordinates, there‟s nothing on the buildings that explicitly
dictates the alignment of the mask – the UV information is
derived purely from the vertex position of the geometry in the
world.

405

The Time of Day mask dictates what windows are illuminated
at night – it tiles, so some windows will never illuminate.
However this tiling effect is reduced when pushed through the
noise of the global mask map, since a pseudorandom pattern
of additional windows also won‟t illuminate when multiplied
through that mask. Applying the ToD mask reduces the effect
of the glow significantly, since now you can only see the glow
on areas of the building textures that are supposed to be
windows – this is what we want. But we‟re not done yet.

406

At this point the best place to push more variation is the tiling
mask map. I‟ve never actually seen Larry King – but for some
reason I remembered the backdrop in that show, and when I
dredged my brain for what a global night window illumination
noise map might look like, this was I thought of. You get the
idea!

407

Starting with the generic noise texture from early
experimentation, the mask is colorized with a combination of
the SR3 art direction palette and eyedroppered colors directly
from concept art, then evenly distributed. Scott Kircher, one of
our rendering programmers, made the observation that it was
far more likely to see horizontal rather than vertical patterns
of illumination in building windows. Rooms may occupy
multiple windows, but it was less likely for a room to feature
more than one window vertically. To push a more striated floor
appearance, I simply etched dark lines through the mask map.
With a bit of luck and some global tweaking, I could align
these striations to floor heights in the city.

I plotted this mask right in photoshop, but in retrospect it
would have been cool to author a randomly seeded tool to
generate a huge pile of them, and pick the best. I‟ll come back
to this idea later. For now though, I‟m curious to see what
effect colorizing the mask map has on the city.

408

Before…

409

…After.

Colorizing the mask map definitely gets me the effect I‟m
looking for.

Since the global mask map drove the overall appearance of
the window lighting so predominantly, it was easy to iterate
and adjust the mood of the night-time world by altering the
mask map. Along with variation in time-of-day, fog, and glow
multiplier, I could emulate some of the looks and moods I had
examined while collecting reference.

410

Here‟s a Deus-Ex style Steelport, with overbright halogen
windows from a denser, yellowy mask. SR3‟s time of day
system was linked to our full-screen look-up-table color
correction system, so we could finish what the window glow
map started with post-processing over the full frame.

411

Here‟s Steelport with a little more Liberty City vibe, driven by
a desaturated, whiter, more elongated mask.

412

Once the content of the mask map was dialed in, I could
further multiply the glow map UV lookup by a constant to
affect the stretching, tiling, and aspect ratio of the mask over
the entirety of the world. These final tweaks were mostly trial-
and-error, just trying to balance colorization with getting the
striation artifacts to line up best with the floors on most of the
buildings.

Playing with the hue, saturation, value, scale and aspect ratio
of the mask map allowed me to quickly adjust the look of the
city globally to match art direction quickly and easily.

At this point I discovered some awesome ancillary benefits of
world-space UV mapping the glow. Happy Accidents.

413

My original justification for mapping the glow mask in world
space was simply so I didn‟t have to affect every building, I
just had to assemble the global shader and then tweak the
glow mask map. But this also meant that buildings would look
up into different positions in the glow mask if they were
positioned differently in the world, and if two buildings were at
the same location (meaning right on top of each other) they‟d
look up into the mask map at nearly the exact same place. I
was superficially aware this was the case, but I was very
happy about two extremely important and helpful side-effects.

Firstly, by mapping window glow using world-space position
that wasn‟t applied in any way to buildings,

414

two identical buildings at slightly different positions in the
world would get two clearly different window patterns. Check
out these two identical warehouses that are mere meters
apart…

415

Just for comparison, I‟ll pull the sides off the buildings

416

and flatten them out next to each other, so you can see…

417

The corresponding sides, south to south, west to west, have
clearly different glow patterns, even though this is the exact
same building. I‟ve boosted the glow in this slide to call it out.
This is awesome – it means that duplicated buildings in the
world will appear varied (at least at night), and without any
input from an artist or world builder. The very act of placing
the same building in a new location makes the window glow
pattern change, automagically.

Interestingly, this does mean that the window glow pattern
visibly „slides‟ across the buildings when the artists are moving
the structures in our level editor. But since buildings never
move once they‟re in the game, this is just a curiosity, and not
a big deal.

The second benefit is that buildings at identical locations will
share the exact same glow pattern. At first that seems like an
odd thing to be excited about, why would you ever need to
put two different buildings at the exact same position? Well
that‟s exactly what our level of detail system effectively is.

418

As buildings become more or less distant, they swap to a
combination of procedurally generated and hand-authored
models at varying levels of detail. Distant buildings have fewer
details…

419

And closer buildings have more detail.

420

As far as the game engine is concerned, LOD models are
effectively different buildings altogether. And in the interest of
optimization, sometimes they have radically different polygon
flows or UV layouts to make them look better or more run
more efficiently at a distance. As we get closer to this
building, its LOD model is changing.

421

What‟s cool about world-space glow mapping is that each
successive LOD model will have a pixel-perfect glow map
pattern, exactly the same pattern as its higher and lower
detail siblings – making the transition between levels of detail
almost completely invisible when looking at night-time
windows.

How cool is that?!

Now look at that orange/red window there in the center…

422

And follow it back…

423

424

425

I know you probably can‟t see on this slide, but that red
window is still there – and that continuity over distance helps
a ton to sell the physical reality of our game world.

426

And distant twinkly lights on the xbox are crisp and clear on
ridiculous PC setups.

427

Now for some spot fixes. There are outliers to any generalized
solution, and window glows, while simple, was no different. I
knew there would be some spot-fixing required throughout the
city due to the sheer scale and variation of all our building
assets.

Thankfully for each of these I only had to subtly modify the
shader to account for these differences, just making the global
solution work better overall.

428

Windows on the ceiling! Why are there windows on the ceiling
– who would do this – why, oh jeez. No I get it, it‟s like a
hangar with skylights, that‟s cool. The world-space glow
clearly isn‟t helping these out, though. I‟ve already got the
face normal in the shader though to extract the north-or-east
bias though, so the easiest fix is to dot that against an up-
vector, and bash the glow value as window geometry
approaches horizontal.

429

Ta daa! No problem. And it doesn‟t seem to hurt any other
building in the game world.

430

What‟s going on here? There‟s like a stretched skew squeezed
thing going on. Gross.

Turns out this makes perfect sense, and comes back to my
assumption that most building faces are either mostly north-
south facing or east-west facing. This semi-circular building
just has to be different, and normally even that would be ok,
since each particular face would choose only one or other axis
of mask-mapping. The trouble in this case is however that an
erroneous smoothing group is running across these faces, and
averaging the vertex normal between the two.

431

The averaged vertex normal means that the mask map UVs
get warped – and the north-or-east bias is freaking out.

To fix this I dive into 3ds max, and pay two vertices to put a
hard edge between these faces…

432

– that separates the vertex normals on this face and lets each
face look up into the mask map correctly.

433

Limited scope of production meant there were some areas for
improvement or spot fixes that I didn‟t have time or resources
to attack – and that‟s another reality of game development.

For example, a better way to align the glow map in world
space may have been to construct a matrix using the face
normal, tangent and binormal of each face, instead of finding
the closest bias to the north-south or east-west directions.
Combined with a world-space offset, this might have aligned
the mask map more appropriately to faces in the world. Cargo
ships have illuminated windows, and while most of them are
ok…

434

The window glows don‟t tilt to match the list of this partially-
sunken ship. Though to be fair it‟s odd this boat is still
powered up – we probably should have just applied a non-
illuminated window material to this guy. The engine room is
probably well underwater at this point, after all.

435

Still, I‟m fairly pleased with the result of this fix. The goal of
the process was to apply the exaggereal look, feel, and mood
of Saints Row the Third to the building windows – both in
terms of up-close contrast and variation…

436

…and distant consistency.

The process is ongoing, and I‟ve identified several areas for
improvement. I‟ve learned a great deal about how assets are
currently constructed in the city, and I can apply that
knowledge towards a wide variety of future issues, should
they arise.

I‟ve also identified several advantages and potential caveats
and restrictions of unusual UV mapping, specifically applying a
global mask in world-space. Some of the problems I didn‟t
have time or answers for during production, such as
uniformity of texture layouts or raw triangulation of our
buildings need to be investigated further.

Most of all I‟ve gained more insight into thinking about game
resources in terms of massive, generic, global re-use.
Technical standardization is incredibly important, such as
texture and UV layout standards – to artistic and stylistic
consistency, such as floor heights and intra-building
construction rules. The lack or presence of each of these
concepts greatly influenced the way I attacked, adapted, and

437

worked around the problem at hand.

437

Thinking about a variety of ways to approach any given
problem often inspires more ideas and potential solutions for
the future. Game development solutions are always on-going,
and dreaming up additional creative features is part of the
fun.

After the basic night-window implementation, I‟m already
thinking about how we can make it better. Maybe we can
animate or cycle the glow to adjust the seeming „population‟
of the city, or maybe we can update the ToD mask map for
each mission to affect the visual „mood‟ – what would this look
like? What per-mission moods might we want? This would be
something cool to run by design – I bet they‟d be totally on
board.

The completion of this cycle is for solutions to open new
avenues, ideas, questions and possibilities for design and art
direction, by raising ideas like these. Ensuring that efficient
technical fixes are grounded in an understanding of the
game‟s artistic and thematic requirements is vital in order for

438

this to happen.

438

So I want to thank everyone very much for listening, and I
might have time for a couple questions. Thank you very much!

439

440

