
How to use Cocos2d
to build a successful mobile game

Ashik Raj Manandhar
Senior Mobile Application Engineer
Pocket Gems

Agenda
●  Cocos2d and Me
●  Overview
●  Walkthrough
●  Limitations
●  Extensions
●  Alternatives
●  Questions

Ashik Raj Manandhar
Ashik was the third engineer hired at Pocket Gems, a Sequoia-backed mobile
gaming company.

Over the past year, Ashik played a lead role in building Pet Hotel, a fun casual
game for the iPhone that debuted as the #1 Top Grossing App and had millions of
downloads. Ashik and his team worked hard to release nearly weekly feature and
content updates that kept Pet Hotel consistently in the Top 10 Top Grossing apps.
Pet Hotel was the fourth Top Grossing App Worldwide of 2011.

Ashik graduated from UC Berkeley with a BS in Electrical Engineering and
Computer Science with a focus in Robotics. He was the Berkeley EECS Department
2009 Warren Dere Design Award recipient for the Most Outstanding Engineering
Design for his work on an autonomous self-driving scaled model robotic car. Ashik
worked on computer vision and media streaming software for large government
projects at a Silicon Valley startup in the defense industry. Prior to Pocket Gems,
Ashik did research in land robotics at the University of Michigan.

Cocos2d and Me

Pocket Gems
●  Founded 2009, backed by Sequoia Capital
●  14 iOS and Android titles
●  Pioneer in mobile games

●  1st farm game
●  1st store game
●  1st zoo game
●  1st hotel game

Cocos2d and Me

Tap Zoo and Tap Pet Hotel
#1 and #4 Top Grossing iPhone Apps of 2011

Cocos2d and Me

Longevity

 Tap Zoo – Released Sep. 2010
 12 months straight in the top 10 grossing apps

 Tap Pet Hotel – Released Apr. 2011
 8 months straight in the top 10 grossing apps

 Cocos2d and Me

Tap Pet Hotel

Cocos2d and Me

Cocos2d

Cocos2d
●  OO wrapper around OpenGL
●  Open Source
●  Fast
●  Easy

Overview

Cocos2d
●  Large community of developers
●  Used by over 3000 games on the
App Store

Overview

Cocos2d
●  OpenGL = lots of code

●  Load images into memory
●  Calculate rotations
●  Create run loop to call rotations
●  Call run loop

●  Cocos2d
CCRotateBy *rotation = [CCRotateBy actionWithDuration:2 angle:360];
CCRepeatForever *repeat = [CCRepeatForever actionWithAction:rotation];
[gem runAction:repeat];

Overview

Building Blocks
●  Sprites
●  Labels
●  Menus
●  Sounds
●  Actions
●  Action Sequences

Overview

Pocket Full Of Gems
Simple game that uses D-Pad
to move character and pick
up gems

Walkthrough

Pocket Full Of Gems

Walkthrough

Pocket Full Of Gems
●  Add the character
// Load image and create character
self.character = [CCSprite spriteWithFile:@"Icon-Small@2x.png"];

// Position the character
self.character.position = CGPointMake(size.width/2,
 kBottomControls +
 [self.character texture].contentSize.height/2);

// Place character on screen
[self addChild:self.character];

Walkthrough

Pocket Full Of Gems
●  Add the directional pad

// Load image and create left button sprites
CCSprite *leftSprite = [CCSprite spriteWithFile:@"left.png"];
CCSprite *leftSelectedSprite = [CCSprite spriteWithTexture:[leftSprite texture]];
leftSelectedSprite.color = ccGRAY;

// Create left button menu item
CCMenuItemImage *leftButton = [CCMenuItemImage
 itemFromNormalSprite:leftSprite

 selectedSprite:leftSelectedSprite
 target:self
 selector:@selector(leftSelected)];
leftButton.position = CGPointMake([leftSprite texture].contentSize.width/2,
 [leftSprite texture].contentSize.height/2);

// Place on screen
[menu addChild:leftButton];

Walkthrough

Pocket Full Of Gems
●  Update the position

- (void) leftSelected {
 // Calculate new character position
 int xPosition = self.character.position.x;
 xPosition += [self.character texture].contentSize.width/2;

 … check bounds …

 // Update character position
 self.character.position = CGPointMake(xPosition, self.character.position.y);

 // Check to see if you picked up any gems
 [self checkForCollisions];
}

Walkthrough

Pocket Full Of Gems
●  Add the score
// Create the Score Label
self.score = [CCLabelTTF labelWithString:@"0"
 fontName:@"Arial"
 fontSize:48];

// Position the score
self.score.position = CGPointMake(size.width/2,
 size.height - [self.score texture].contentSize.height/2);

// Place it on screen
[self addChild:self.score];

Walkthrough

Pocket Full Of Gems
●  Update the score
- (void) updateScore {
 // Update the score label
 [self.score setString:[NSString stringWithFormat:@"%d",
 self.points]];
}

Walkthrough

Pocket Full Of Gems
●  Add the gems
// Load the image and create a gem
CCSprite *gem = [CCSprite spriteWithFile:@"gem.jpg"];

... find a random position …

// Find the position
gem.position = CGPointMake(xPosition, yPosition);

// Rotate the gem
… Create rotation loop …

// Add it on screen
[self addChild:gem];

Walkthrough

Pocket Full Of Gems
●  Collision detection
// If the character and the gem overlap
if (ccpDistance(self.character.position – gem.position) < minDistance) {
 // Remove the gem off screen
 [self removeChild:gem cleanup:YES];

 // Add points
 self.points++;
}

// Update the score on screen
[self updateScore];

Walkthrough

Pocket Full Of Gems

Walkthrough

Additional Features

Scenes

Atlasing

Debugging

Texture Management

Isometric Support

High Quality Games

Walkthrough

Limitations

Limitations
●  Touch handling
●  No support for gestures
●  No support for scroll lists
●  Performance can be sluggish when you
add 10,000x things on screen

Limitations

Culling

Limitations

Mipmap

Limitations

Extensions
●  Subclassing the basic classes to create
novel features
●  Overriding the draw and update methods
●  Compositing
●  Improved Atlasing

Extensions

Extensions
●  Physics Engines
●  Box2D
●  Chipmunk

●  Other open source extensions

Extensions

When is Cocos2d the Wrong Choice?

●  Real time 3D
●  Complex/intricate menus

Alternatives

Alternatives

Alternatives

Pros Cons
OpenGL + Great performance -  Low-level

-  Hard to iterate fast

Unity + Cross Platform
+ 3D

- Proprietary

Corona + Wrapper around OpenGL
+ Cross Platform

- Proprietary

Questions?

Ashik Raj Manandhar
Senior Mobile Application Engineer
Pocket Gems
@AshikRaj
ashik.raj@pocketgems.com

