
Managing the Masses

Mike Lewis
Senior Server Programmer, ArenaNet





Guild Wars 2

• Massively Multiplayer Online RPG

• Emphasis belongs on “Massive”

• Several hundred players in an environment

• Hundreds of AI agents per environment



Piece of Cake!



MMO Servers = Beefy!



How much beef, you ask?

A hypothetical server might look like...

• 12 cores at high clock speeds

• 32 GB of RAM

• Massive CPU caches

• Fast network, disk, etc.



Compare this to...

A commodity gaming PC/console

• 2-8 “heavy lifting” cores (plus SPUs, etc.)

• 1-2 dedicated GPU cores

• 512MB – 16GB of RAM

• Comparatively slow network and disks



Critical Comparison:
Resources Per Player



Resources Per Player (Xbox 360)

• 3 cores at ~3.2GHz

• Approximately 9.6GHz of raw processor

• Perhaps only one player per console

• All this goes to one person on the couch



So all this...

... goes to one (or maybe four) people.



Resources Per Player (MMOs)

• 12 cores at ~2.3GHz

• Approximately 27.6GHz of raw processor

• Conservatively, say 5000 players/server

• Only 5.5MHz per player!



For Perspective...

That’s roughly 5 Atari 2600s per person



OK, so it’s not quite that bad...

• More work per clock cycle on a modern CPU

• Overlapping data between players

• Shared computations throughout a map

• Some constant overheads

• Scaling per player isn’t necessarily linear



But we still have relatively
limited resources per player.



Attacking the Problem: Guild Wars 2



Threading Architecture

• Asynchronous versus Synchronous layers

• Async is the messy “stuff that can fail”

• Sync is everything else, i.e. the game logic

• Game Contexts

• Major public maps

• Personal story instances



Threading Architecture

Game Contexts are “synchronous”

• A server runs many contexts in parallel

• But each context is effectively single threaded

• Remember resources per player



What runs on a core?

Asynchronous layer

• Network logic

• Database communication

• Security and sanity validations

• Sync layer coordination

• Spread across all cores



What runs on a core?

Synchronous layer

• Simulation/event framework

• Game rules and logic

• Physics

• Latency compensation

• Only one thread per context



This is starting to look pretty good...



AI Architecture

Highly optimized behavior trees

• Prioritized lists of actions to take

• Each “thought tick”, agents select one action

• Resemble telephone poles more than trees

Some customizable scripting capabilities also



Why this approach?

• Minimizes latency for game simulation

• Programming game code is simpler

• Increased security and stability

• The alternatives are all worse



Some Alternatives

• Vertical scaling

• Full multithreading

• Client-side offloading

• Distributed computation



Vertical Scaling

• Just add some more beef!

• Beef isn’t cheap

• Cost grows super-linearly

• Becomes prohibitively expensive very quickly



All-out Multithreading

• Don’t silo contexts onto single threads

• Use many threads per context instead

• Increases total latency

• Much more difficult to write robust code



All-out Multithreading

Latency with a core per context:

Cores

Time

Context on core 3 is 
running very slowly!

Each box = 1 game tick



All-out Multithreading

Latency with multiple threads per context:

Cores

Time

Thread 3 stalls, leaving all 
other cores idle until context 
is completely done!

Each box = 1 game tick



All-out Multithreading

• This can be amortized with thread pooling

• But average performance is often worse

• Much harder to code for robustly

• Hard to coordinate with async layer as well



Client-side Offloading

• Leave some computations for the client

• Lots of clients connected = lots of CPUs

• Very risky from security perspective

• How to handle disconnected players?



Practical Client-side Offloading

• Leave “non-risky” stuff on the client

• Perform security-sensitive stuff on servers

• Standard approach for multiplayer games

• Has definite benefits but only goes so far



Distributed Server Model

• Split server-side load between machines

• One “game context” is now many servers

• Allows easy horizontal scaling

• Need more CPU time? Add another server!



Distributed Server Model

• Not using shared-state concurrency

• Safer and more reliable in many ways

• But also difficult in its own right

• Lots of things are essentially impossible



Distributed Server Model

Hundreds of Impossibility Results for Distributed Computing

Faith Fich and Eric Ruppert

February 26, 2003

http://bit.ly/kLutYX



Managing the Masses

• MMOs are big. Really big...

• Lots of server power, but little per player

• Threading model makes all the difference

• Lots of room for future innovation



Thank You!


