
VAULT, SLIDE, MANTLE
BUILDING BRINK’S SMART SYSTEM

Arne Olav Hallingstad
Lead Gameplay Programmer
Splash Damage

BRINK is a registered trademark of ZeniMax Media Inc.
© 2011. ZeniMax Media Inc. All Rights Reserved.

Splash Damage

 Multiplayer team & objective
based FPS games

 Relatively small team

 Evolve multiplayer shooters

Goals

 Improve player movement

 Be consistent

 Be accessible

 Support different body types

 Shouldn’t require extra LD
work

 Must be usable by AI
JACK MONAHAN

GAUSSWERKS.COM

SMART moves

What we’ll cover

 Prototype

 Precomputation

 Runtime Detection

 Runtime Execution

 Lessons Learned

Prototype

Prototype

 Prove viability of SMART movement

– Multiplayer game

– Impact on level design and gameplay

 Prototyped using run-time collision traces

 Refined over 6 months

Ledge Detection & Vaulting

 Find ground

 Find wall

 Find low edge/high edge

 Trace clip to ledge height

 Trace clip over ledge

 Trace clip down

 Trace down on ledge

Successes

 Easy to implement

 No LD placed hint objects

 Works on any map

 Standardized map metrics

Issues

 At least 1 trace every frame

 Worst case 8 traces per player

Precomputation

Nav mesh system

 Used for AI path-finding

 Map-compile step

 Areas connected by
reachabilities

 Potential use for SMART?

Reachabilities

 Get all edges between two areas

 Edges overlap vertically we may
create a reachability

 Stores edge segment

 travel_flags

Reachability Types

 barrier_vault
 barrier_mantle
 AI pathfinding
 Used by players & bots
 barrier_dynamic

– Used by players only
– Vault/Mantle move decided at

runtime
– Explosion in number of reachabilities

barrier_dynamic barrier_mantle barrier_vault

Slide

 Areas marked low ceiling

 Bots & players required to
crouch

 Players can auto slide into
these areas

Runtime
Detection

Player Physics Loop

 Step 1: Is player on ground?
 Step 2: Query player body type for available movement

modes
 Step 3: Detect high moves (vault, mantle, wall hop)
 Step 4: Detect low moves (slides)
 Step 5: Choose active move
 Step 6: Update player state machine

Step 3: Detect High Move

 3.1: Player checks

 3.2: Nav mesh query

 3.3: Evaluate high moves

Step 3.1: Player Checks

• Cannot be in active state

• Vaulting

• Mantling

• Sliding

• Iron-sighting

• Knocked down

Step 3.2: Nav Mesh Query

 Search bounds 6x player b-box width & 2.5x player height

 Areas = GetBoundsAreas(searchBounds)

– Areas in BSP-tree

 For each Area

– For each Reachability

• barrier_vault, barrier_mantle or barrier_dynamic

• Append to list

Step 3.3: Evaluate High Moves

 Iterate all reachabilities
– Player must look at the ledge
– Distance within 2.5x player b-box width

 Vault: ledge height is 0.4x-0.8x player
height

 Mantle: ledge height is 0.8x-1.4x player
height

 Auto wall hop: Ledge height is mantle
height + player’s jump height

Step 3.3: Evaluate High Moves

 Reachability list

 Exclude wall hop if vault/mantle in list

 Mutual exclusion

– Allow mantle if within 1.5x player b-box width

– Otherwise: Allow vault

 Sort potential moves by closest ledge

Player Physics Loop

 Step 1: Is player on ground?
 Step 2: Query player body type for available movement

modes
 Step 3: Detect high moves (vault, mantle, wall hop)
 Step 4: Detect low moves (slide)
 Step 5: Choose active move
 Step 6: Update player for delta time

Step 4: Detect Slide

 4.1: Player checks

 4.2: Nav mesh query

 4.3: Evaluate low moves

Step 4.3: Evaluate Low Moves

 Iterate all areas
 Area within height of 0.4x player height
 Area marked as low ceiling
 Auto crouch: distance < small number
 Auto slide: distance within 1.5x player b-

box width
 Mutual exclusion

– Allow auto slide if sprint held
– Otherwise: Allow auto crouch

Step 5: Choose Active Move

Runtime
Execution

Vault Physics States

 Intro and exit states
 Intro

– Duration: Distance and player velocity
– Spline from player position to ledge

 Exit
– Calculates momentum
– Calculates direction
– Clear momentum if drop too high

(trace)

Intro Exit

Mantle Physics States

 Intro, climb and exit states
 Spline calculation same as vault
 Intro

– Duration calculation same as vault
– Push player to correct position

 Climb
– Duration scaled up during climb
– Pulls the player on top of ledge

 Exit - Clear momentum

Intro Climb Exit

Slide & Wall Hop Physics States

 Sliding
– Force crouch

– Constant velocity in direction of
travel for a second

 Wall Hop
– Single frame state

– Only light body type may wall
hop

Wall Hop Slide

Third Person Animations

 Animations driven by physics state

 Slide - Play slide animation

 Vault - Intro plays vault animation

 Mantle

– Intro plays grab animation

– Climb plays mantle animation as
root motion

Third Person Animations

 Animations driven by physics state

 Slide - Play slide animation

 Vault - Intro plays vault animation

 Mantle

– Intro plays grab animation

– Climb plays mantle animation as
root motion

Conclusions

 More fluid movement

 SMART Button

 Generated during map-compile step

 Free flow restricted by body types

Lessons Learned

 Prototyping allows quick iterations

 Systems can successfully be used beyond their
original intention

 Could give client authority over physics

 Consolidating physics states saves network
bandwidth

Arne Olav Hallingstad

ao@splashdamage.com

@arneolavhal
@splashdamage

www.splashdamage.com

Questions?

