
Stephen Clarke-Willson, Ph.D.
Server Programming Team Lead &
Interim Studio Technical Director
ArenaNet

Guild Wars 2:
Scaling from one to millions

Tuesday, April 2, 13

Puppies!

Tuesday, April 2, 13

This is not a stock photo. These are the siblings of our puppy. Aren’t they cute? I’m told presenting a picture of
something cute at the beginning of a talk will generate warm feelings in the audience, and who doesn’t want that?

Outline of the talk

Two parts:

Some background on ArenaNet and the company goals.

Some user stories (in the Agile sense) .

Tuesday, April 2, 13

But first ...

Screenshots!

Tuesday, April 2, 13

I skimmed through these in a few seconds during the talk; they are really just here to provide some context in case
someone looks at the slides online and has no idea what Guild Wars 2 looks like. Visit http://guildwars2.com for the
latest scoop.

Screenshots

Tuesday, April 2, 13

Screenshots

Tuesday, April 2, 13

Screenshots

Tuesday, April 2, 13

Screenshots

Tuesday, April 2, 13

Screenshots

Tuesday, April 2, 13

Screenshots

Tuesday, April 2, 13

End of screenshots

Tuesday, April 2, 13

Each screenshot was on the big screen for about 1/4 of a second. But you can look at them as long as you like. Or
watch videos on YouTube. Or Google even more screenshots.

First User Story

“As founders of ArenaNet we want to create high quality
products ... and the best way to do that is through iteration.”
-or-
“As founders of ArenaNet we desire agility and iteration ... and
we are going to structure our new company around those
goals.”

Key fact: I am not a founder.
Tuesday, April 2, 13

I mention that I’m not a founder, in case someone is confused as to how user stories work. This user story was
related to me by Mike O’Brien, one of the founders.

... ergo ... the ArenaNet
Development Process
•Process built around continuous integration and continuous
delivery to an online audience.

•The build process at ArenaNet is in the DNA of the company.
•Artists, designers, programmers, sound wizards, and writers
see the results of their work in a dynamically updated online
world as it is developed.
•It’s magic!

Tuesday, April 2, 13

Continuous delivery to an online
audience at huge scale.
•Anyone can push a build on Dev, Stage or Live (although a
Live build may not always be a wise thing to do!)

•I wanted to kick a Live build here, right now, from my laptop,
but the schedule didn't quite line up for the March release,
which came out yesterday.

•Secret Sauce: Any version to any version patching.

Tuesday, April 2, 13

Any version to any version patching
•The minimum update required to play the game is computed
on an individual basis for every player!

•In Gw1, about 25 file servers around the world crunched,
cached, and delivered the diffs.

•In Gw2, a handful of our own servers feed Akamai, which
claims 100,000 edge servers spread around the world.

Tuesday, April 2, 13

Build Server(s)
•Originally, one build server supported the entire company; the
build server for Gw1 has every file ever created, and the
current size of it is a mere 20,369,229,326 bytes.

•Gw2 had one build server until recently, and the Gw2 patching
source file (after yesterday’s build) is 195,676,800,694 bytes.

•Next step: 20 simultaneous ‘feature teams’.

•“Build Wars”

Tuesday, April 2, 13

“Build Wars” refers to either (1) people fighting over the build server; or (2) points earned for breaking the build. The
most points ever earned was by a founder who broke the build 3 times and was convinced his 4th and final
submission would work, so he drove off to catch an airplane to Europe. You can guess what happened.

Simultaneous overlapping feature
development at scale
•How fast we make stuff: Content 'churn' for a year leading up to
release: about a gigabyte of new/changed compressed files per
week.
•Switched from "one studio making one game" to 20 feature teams
making new features and content for Gw2, and delivering new content
to players once or twice a month.

•First refactoring of the build process in 12 years (yesterday’s Live
build used the new build server - w00t).

•We plan to create build servers on demand by pushing a button.
Tuesday, April 2, 13

Summary: Agility at scale
Developers (about 200 peeps)

20 Feature Branches (~10 peeps each)
Alpha Branch
Staging Branch
Live Branch
 (Live for us too! ... and ... servers.)

Tuesday, April 2, 13

Until the day before I gave this talk, we had never played the live build before the players at home! Yesterday we
poked around in it for almost an hour! Also, server programmers used to build server code on their local machine
and post it live! This allowed for great agility. Most producers faint when they hear this. These days server builds
go through the build server, so we always know the source code matches the deployed server. The old way was
exciting though.

Next User Story: Iterative
programming at scale

“As a founder, I want programmers to be as productive as
possible, so that they have fun, and we as a company write
tons of awesome code.”

Tuesday, April 2, 13

My personal dev environment
•Four core, 8 16 gigabyte machine, with SSD.

•Guild Wars 2 code base builds in six minutes.

•At runtime the client can use pre-crunched asset files via
Akamai (same system used for Dev and Live) or locally stored
art and design content.

•Typical server changes compile and run in about 40 seconds.
(Client takes 90 seconds to link; feels like forever.)

Tuesday, April 2, 13

After I gave the dry-run of this talk at work, one of my colleagues verified that it only takes six minutes to build the
servers and client on our dev machines. Sorry, I said 8 gigabytes during the talk, but it turns out I have 16 gigabytes.

Why such fast builds?

•Stock Visual Studio 2008 or 2012.

•Not using IncrediBuild or other build accelerator.

•So ... how?
•Strict use of interfaces.
•Strict adherence to minimal include file references.

Tuesday, April 2, 13

Running locally
My computer can easily run everything we also run in a
datacenter:

• Database(s)
• “Platform”

• "Login servers" (login, chat, guilds, parties, friends)
• Caching & Deployment

• Commerce stack
• Game server
• Game client

Tuesday, April 2, 13

Remember: the game client wants to use up as much of the machine as possible! Even with it consuming half of the
8 gigabytes (since it is a 32-bit app it is restricted to 4 gigs) the rest of the code - the server stack - runs fine.

Summary of dev environment
•“Programming in the small” - but at scale.
•Generally and correctly speaking, I run the
same code locally that runs in the
datacenters.
•Most #ifdefery is about enabling cheats in
the different branches.

Tuesday, April 2, 13

Next User Story: Fun with
threading
“As a server programmer, I want to know the ideal
number of threads we should allocate when we deploy
game servers for Live players.”
-and-
“As a server programmer, I want the game servers to
automatically use the minimum number of threads to
aid in debugging and performance measurement.”

Tuesday, April 2, 13

Key fact:
•We run hundreds of game maps under a
single process; we do this for control over the
scheduling of maps and because of ports.
•Generally speaking, the game server
‘process’ is the only thing running on the
hardware.
•That’s why we want to know how many
threads should go into our single game server

Tuesday, April 2, 13

... so ... how many threads?
Goal:
•Game servers should use as few threads as possible but
as many as necessary.
•Why?

•Using the ‘exactly correct’ number of threads optimizes
the utilization of processor cores.
•But when debugging it's best to run few threads
regardless of the number of cores.
•Want same behavior from the same code on local
machine as in datacenter (e.g., for Telemetry).

Tuesday, April 2, 13

... in other words, we always want the game servers to use as few threads as necessary. When debugging locally, it’s
easier when “game context” (maps) don’t jump threads; and the same is true in the datacenter, when using Telemetry
(RAD’s profiling tool) or our own telemetry-style code.

Typical job system ...
Natural solution:
•Keep a list of threads and a priority queue of ready tasks,
and dispatch them as they become ready and as threads
are available (typical “job system”).
•Drawbacks:

•No good way to detect blocked threads (blocked on I/O,
critical section, whatever) and dispatch another one that
could be doing useful work...
•And start new threads only when a thread is genuinely
blocked (otherwise we just create resource contention).

Tuesday, April 2, 13

Trick: use Windows I/O Completion Ports
(IOCP) because they have magical properties.
•When an I/O event completes Windows will dispatch a
thread, if available, to handle the I/O event. (Otherwise the
event is queued until a thread is available.)
•Normally Windows will dispatch only as many threads as
cores, to prevent thrashing from context switches.
•However, if one or more threads are 'blocked', Windows will
allow more threads (if available) to run than the number of
cores.
•MSDN and “Windows Internals” says “a thread is interrupted
if it blocks for a significant period of time.”

Tuesday, April 2, 13

Context switching
•There is no context switching (between threads inside your
app) if the number of threads == the number of cores.

•Conversely, in the same configuration, if all threads 'block' at
the same time, there are no threads that can take up the slack.

•If we create too many threads we waste resources and also
increase the odds of an annoying context switch.

•Cost of context switches is NOT THE OS.

Tuesday, April 2, 13

On modern hardware, the OS switches between threads at an astounding rate. However, switching between
compute-bound threads is expensive, because switching to another thread will generally flush the cache of the
previous thread. That’s not good.

... so ... (again) how many threads?
•You will see the following statement over and over again in
books and articles (this exact line from MSDN):

"... a good rule of thumb is to have a minimum of twice as
many threads in the thread pool as there are processors on
the system."

•Key fact: it is only a rule of thumb - and not a very good one.

•Only proper solution is to measure.

Tuesday, April 2, 13

... so ... how many did you choose?
a.Number of cores * 2 (as per tradition)
b.Number of cores + 2
c.One
d.200
e.Dynamically allocated based on demand.
f. Number of cores - 1

For Gw2 game servers, the answer is ...

Tuesday, April 2, 13

The answer is ‘b’

For game servers only:
b. Compute threads: # of cores + 2

(Plus a few other threads for file and socket I/O.)

Tuesday, April 2, 13

The answers “One” and “200” are also excellent answers for other parts of our system.

"Number of cores + 2" ... ?
•In order to measure how often a thread is getting blocked,
you need more threads than cores, so Windows will dispatch
an extra thread if blocking occurs.

•Number of cores ...

•+1 The "compute thread pump" which dispatches an extra
thread 25 times a second (which often quickly returns
[analogous to I/O notifications dispatching threads]).

•+1 An extra thread that should only execute if all other
Tuesday, April 2, 13

This is basically using IO Completion Ports without IO! Instead a notification is posted to the IOCP which wakes up an
additional thread every 1/25 of a second. That thread looks around to see if a game context should be run; if not, it
quickly exits.

Brief aside: I/O Contention
“As a server programmer, I want to minimize contention between
compute threads and I/O threads.”

•We also have I/O threads (otherwise nothing would happen).

•The original Gw1 I/O threading code required at least two.

•After measurement, I sorely wanted to reduce this to just one, but
ran out of time to ensure there would never be a deadlock.

•These threads (on game servers) simply queue requests and exit.
Tuesday, April 2, 13

I skipped this slide in the actual talk. If I had not skipped it, I would have said that our I/O threads act like Windows
Deferred Procedure Call (DPC) handlers; the get completion notifications and hand off the actual work to another
thread as soon as possible.

Next User Story: Measuring
compute thread blocking

“As a server programmer, I want to know how often our
compute threads actually block, so that I can choose the
‘right’ number of threads to allocate.”

Tuesday, April 2, 13

I love Stress Tests
•The only way to find out how many threads we would really
need was to run with Live users, ideally before the first Beta
Weekend Event. (We didn’t have the final hardware
configuration during CBT3.)

•Since Beta Weekend Events are meant to show off the
game in the best possible light, it’s not a great time for
experimenting!

•I doubt we invented this kind of “stress testing” between
Beta events, but we sure pushed the envelope.

Tuesday, April 2, 13

Stress tests FTW
We had 12 stress tests - 1 private (with the CBT crowd), 10
public, and 1 accidental. Contrast with 3 BWEs.

Tuesday, April 2, 13

The accidental one was caused when we updated the Auth servers and a few minutes later the Community team said,
“You guys know people are logging in and playing, right?” “Whazzat”, we said? Rather than just kill everyone, we
fooled with the Auth code “old-school style” with manual server restarts. It was fun.

Stress Test Thread Concurrency

12

25

18 Threads in use
over time

Tuesday, April 2, 13

During our first stress test and using our fresh installed Graphite visualization tool we monitored the number of
threads in concurrent use. You can see it clusters around 12 threads (which matches our number of cores) and goes
as high as 18 threads (ignoring the outliers - who cares about them). We had to decide on a number between 12 and
18.

Thread Concurrency Final BWE
WTF is this chart anyway? It is the minute-by-minute number
of threads in use across dozens of hardware servers.

We have dispatched as many as 400 maps/server with this.

18

0

14

Tuesday, April 2, 13

This is the number of concurrent threads in use sampled once a minute, with each server assigned its own colored
line. With practice you can trace the number in use by following the lines. You can see a horizontal line at 14 and
then of course the cap at 18 (we set the cap at 18 for the final BWE). We decided we hated contention more than we
liked concurrency so we choose 14, as with that number we could monitor blocking and minimize contention.

Key fact:
• Our “sweet spot” for server hardware is 12-core blades, and

“one thread / core + two” has worked well for us.

•We tested an Intel 32-core machine and an AMD 48-core
machine.

•In both cases, simply due to the massive game maps we
run, our choice would have been to run with fewer threads
than cores! Because eventually memory contention became
an issue for us with that many cores. YMMV.

Tuesday, April 2, 13

Our experience is that 3 12 core machines are much, much better than one 32-core machine from the same vendor.
Again, YMMV, but with 3 12 core machines, not only do you get 4 extra cores (total 36) but a massive increase in
memory bandwidth, because each set of 12 cores has (effectively) dedicated DDR3 memory.

Next User Story: Horizontal
Scaling ...
“As a server programmer, I want to allow as many people who
want to play, to play without login queues.”

•Thread efficiency is one thing; raw compute power is another
thing. We load balance thousands of maps (public maps plus
story instance and dungeon maps) across hundreds of
hardware servers in each datacenter.

•Instead of login queues, we have overflow maps, which allow
players to keep playing while they wait for their home instance.

Tuesday, April 2, 13

The Dragon Graph

Per blade concurrency: NA & EU
EU: 5:1 range; NA 2.5:1 range

Concurrency
per blade;

both
datacenters

T24 hours

Tuesday, April 2, 13

Someone at NCWest called this the dragon graph and it stuck. This is the player concurrency on each hardware
server in both datacenters over a 24-hour period. You can see that NA and EU have different peak concurrency
times. When we quote concurrency, we are quoting world-wide simultaneous use of the game. I think a reasonable
alternative would be to add up the peak per datacenter, which would be higher, but that’s not what we do.

Next User Story: Server
populations
“As a designer, I want ‘worlds’, which support
social interaction, and allow us to create
‘World vs. World’ which is easy-access PvP.”
“As a server programmer, I don’t want to
hardwire server capacities so that we have
maximum load balancing flexibility.”

Tuesday, April 2, 13

... so to answer everyone’s question authoritatively: the world capacities are managed and set by hand. They are
based on the total membership of the world. It can’t be otherwise, because as you can see in the previous slide, the
population varies enormously during a 24 hour period. We change the mix of “Full”, “Very High”, “High”, and
“Medium” in order to encourage people to balance the worlds. Today, world transfer to “Medium” is free to support
our latest WvW update; this encourages people to transfer to less busy worlds, thus balancing things out. At the
same time we made transfer to ‘medium’ servers free, we also increased the number of ‘medium’ servers by
reconfiguring the world population settings.

Next User Story: Virtual Machines
“As a server programmer, I want to control how
game server maps are dispatched.”

•So ... we don’t use VMs (from any provider)
after a bad experience on Gw1.

•VMs are great for many things, just not our
game servers.

Tuesday, April 2, 13

We understand Windows scheduling and we understand our own thread scheduling and adding in another scheduler
from the VM provider just confuses the issue. Specifically, for Gw1, some servers are low-load and low-latency, and
the VM software liked to put those to sleep because they weren’t very busy. Sometimes for 20-30 seconds. That
broke things. We had tested game servers under VMs because we expected that’s where the problem would be but
(doh!) the problem was really with some of the backend servers! *Sigh*. We had to quickly rebalance our server
deployment during the first four hours after the complete conversion to VMs. BTW, we used VMs for Gw1 because it
was designed to run on 2 processor (yes, processor, not core) systems, so when we bought all new hardware, we
decided to emulate on 12-core machines the old layout. When that didn’t work, we made our own system for
running multiple instances of our servers on a single piece of hardware and now we only use VMs for certain utility
purposes.

Next User Story: Memory
shortage masking as CPU hiccup.
“As a game programmer, I don’t want the
game server to suddenly go out to lunch, so
server programmers please figure that out.”
•Tons of time spent on tracking down
contention, especially in critical sections.
•But during CBT3 there would be these huge
CPU spikes ... just sometimes.

Tuesday, April 2, 13

Transitioning from 32-bit to 64-bit

•Long story short: when 32-bit apps run out of
memory, they crash. When 64-bit apps run out
of memory, they page (but you knew that).
•When your server is seriously over-budget,
memory-wise, you know it. When you’re a
tiny bit over budget, and you are used to 32-
bit app limitations (where the code will crash
when out of memory), you see what looks like a
CPU hiccup.

Tuesday, April 2, 13

... and it was self-regulating, at least during CBT3 and BWE1: the CPU hiccups are experienced by players as lag
(spell activation delay) and so when it is bad, they logout, and when enough logout, the problem goes away.
Therefore the game servers bounce along using slightly too much memory from time-to-time. We had spent so
much time worrying about Critical Section performance ... and many years running 32-bit servers ... that we forgot
that it only takes a little bit of paging to ruin your day.

The ‘Waterfall of Death’

Free
Mem

Friday Saturday
Tuesday, April 2, 13

During Beta Weekend Events, the concurrency was highest Friday, dropping a bit Saturday, then lowest on Sunday.
This chart shows how on Friday some servers ran out of physical memory and started paging; by the second day of
BWE1 concurrency was lower and there were no problems. After this, we delayed BWE2 so we could buy more
hardware, just in case ... but see next slide.

Fixed for BWE2

Free
Mem

Tuesday, April 2, 13

Yay! Gameplay programmers figured out where the memory was going - some story instance memory was not being
properly reused (but it was reclaimed when the instance exited, so the lack of RAM was never a permanent condition).
For BWE2 memory usage was very stable. There are two lines because the new machines had 32 gigabytes of RAM,
and the (slightly) older ones have a mere 24 gigabytes of RAM.

Next User Story: Accurate CPU
measurement
“As a developer, I want to know how much
CPU our game servers are using.”

Don’t use Windows Perf Counters because the
sampling rate is too low. You must
instrument your own code.

Tuesday, April 2, 13

If you have an app (a web app) or a game like ours that is driven by user input, and you process the user input as fast
as possible, then it is highly likely at low concurrency Windows will sample your CPU usage inaccurately, because a
lot of the time your app isn’t running. Extrapolating from Windows Perf counters in that situation will be deadly.

Next User Story: Guesting
cross-Atlantic
“As a player, I want to ‘Guest’ in other worlds,
even if they are across the Atlantic from my
home world.”

Me: “It’s good to want things.”

Tuesday, April 2, 13

Sorry, the trans-Atlantic cable connection just isn’t reliable enough. We’re not wimping out either; solutions like
caching your character record in the local datacenter and then copying it across after an outage would be mind
boggling confusing for players and really hard to explain. If we add this feature, it will be for GMs first, because who
cares about their character records. I want this to work too, but it’s just not practical right now. BTW, world transfer
works, because everything is copied to the other datacenter; you might get disconnected when playing cross-
territory but that won’t matter to our servers, where all of the other traffic would be local to the datacenter. Also,
some less critical features are available cross-datacenter: in-game email and chat and guild membership.

Next User Story: Availability of
Guesting

“As a player, I wanted Guesting; you said we
could have it sooner, so we could play with
our friends on other worlds.”

Me: “my bad.”

Tuesday, April 2, 13

I told a story here how I totally misled everyone at work with how simple I expected Guesting to be to implement,
because I had finished all the back-end work. We kept putting a couple of days into it during each 4 week sprint and
then QA would find new UI issues. Finally after three months we noticed a pattern - we had no idea of the scope of
what we were doing, particularly regarding the effect of Guesting on the UI. We got all the interested parties in a
room and hashed out the true requirements. Implementing those finally got us where we needed to be. This is an
example of how a project can go bad a few days at a time or ‘optimistic programmer syndrome’ in action.

Next User Story: Jobs!
“As a programmer, I want to work at

ArenaNet.”

Visit our jobs booth!
Visit our newly updated page:
 http://arena.net/jobs

Tuesday, April 2, 13

http://arena.net/jobs
http://arena.net/jobs

Summary
•Guild Wars 2 is insanely huge and frequently
updated: we have been posting about 500
megabytes of new content (after delta
patching) each month.
•We solve interesting problems that only
arise at this scale.
•In spite of the scale, we try to ‘keep it small’
and allow fast iteration.

Tuesday, April 2, 13

Thank you for listening.
Questions?

(Also ... puppies!)

Tuesday, April 2, 13

“... wait, wasn’t there four of us in here a few moments ago?”

