






• Light scattering is an important natural phenomenon, 
which arises when the light interacts with the particles 
distributed in the media. Rendering such effects greatly 
enhances the scene realism 

• To accurately compute scattering contribution, a complex 
integral has to be solved for each screen pixel 

• Due to the complexity of the computations involved, 
achieving natural-looking scattering effects at high 
performance is a challenging problem. 



There were a lot of work on rendering light scattering effect in a 
participating medium. And I would like to mention the following 
most most relevant works 

 

The first one is the work by Hoffman & Preetham who presented 
an Alanalytical model for outdoor light scattering for directional 
light source 

Sun et al presented semi-analytical solution to airlight integral 
due to a point light source  

Tevs et al used maximum mipmaps for dynamic height field 
rendering 

And Chen et al later adopted the same idea to accelerate ray 
marching using 1d min-max mipmaps for volumetric shadows 

Engelhardt & Dachsbacher presented epipolar sampling to 
significantly reduce the number of samples for which 
computationally expensive ray marching is performed 

 

Our approach combines 1D min/max mipmaps with epipolar 
sampling to achieve high performance. It also incorporates simple 
and efficient semi-analytical solution to a light scattering integral 
due to point light source. 

As a result our method is able to achieve high quality rendering at 
interactive frame rates. 



Scattering effects affect the appearance of scene objects in 
two ways which account for a phenomenon called aerial 
perspective 

• On one hand some portion of light initially emitted from 
the object is out-scattered and does not reach the camera 

• On the other hand, some sun light is scattered towards 
the camera on the particles. Thus the final radiance 
measured at the camera is a sum of two contributions: 
attenuated object radiance and inscattering 

• The T term is called optical depth or optical thickness. It is 
the integral of scattering coefficient beta over the path. 
For homogeneous single scattering media we consider it is 
just the path length multiplied by the scattering 
coefficient. 

 



Let’s now start deriving the scattering integral step-by-step 
and introduce some notations 

• The amount of energy a point light source emits is the 
radiant power intensity I 

• View direction is the unit vector directed from camera to 
object 

• Our first step is to notice that the total amount of light 
scattered towards the camera is proportional to I 

 



• Next, let’s consider some point P on the view ray  

• Amount of energy that reaches this point from the light 
source  

• is inversely proportional to the distance squared  

• and some energy is also lost in the media due to out-
scattering 



• Next we need to introduce visibility term V(P) indicating if 
light reaches the point or not. In practice it is filtered to 
eliminate aliasing 



• Let’s continue and derive the total amount of energy 
scattered at infinitely small ray section at point P.  

• This amount is proportional to  

• the section length and 

• to the scattering coefficient at this point 



But not all energy is scattered towards the camera and some 
part of it goes in other directions (which is called out-
scattering) 

• Amount scattered towards the camera is given by the 
phase function 

• All these terms together give differential amount of light 
scattered towards the camera at point P. 

 

Note that the phase function is assumed to be normalized to 

unity such that   𝑝(𝜃) 𝑑𝜔
Ω

= 1 where integration is 

performed over the whole set of directions Ω. 



• This differential amount of light is attenuated in the media 
before it reaches the camera 

• To get the total inscattering amount we need to integrate 
all the differential amounts. 



For directional light source, the integral is much simpler 
because the phase angle does not vary across the ray and 
the light intensity also does not depend on the distance from 
the light source 



Folowing many other previous works, we model the 
participating medium as a mix of two constituents: air 
molecules and aerosols. The scattering on molecules is 
described by Rayleigh theory. It is wavelength-dependent, 
so scattering coefficients are modeled as an RGB vector, but 
almost isotropic.  

 



Scattering on aerosols is described by Mie theory. It is much 
less wavelength-dependent but significantly anisotropic. The 
phase function is much more complex and can be 
approximated using Cornette-Shanks function. 



In the presense of two consituents, the light is attenuated 
by both of them. For homogeneous medium, optical 
thickness is simply the total scattering coefficient multiplied 
by the path length, while scattering by each type of particle 
is modulate by its own phase function 

We will denote total scattering coefficeint by betha with 
downscript sigma and the sum of phase functions modulated 
by the scattering coefficient by capital P with downsript 
sigma. 



This picture shows rendering spot light source with isotropic 
phase function 



While anisotropic one creates a nice glow around the light 
source 



Let’s now talk about how to solve the inscattering integral. 
We start from simpler case. For a directional light source, 
there is a fully analytical solution derived by Hoffman and 
Preetham. The inscattering contribution depends only on the 
ray length S and the angle 𝜃 between the view ray 𝑣  and the 

light direction 𝐿. 



Unfortunately, for a point light source, there is no closed 
form solution. However, we can derive a simple semi-
analytical solution which requires one look-up into a 
precomputed table. To do this, we first rewrite the 
inscattering integral.  

We first relate the variable s to the projection L0 of the light 
source onto the view ray 

• The term in the denominator is then squared distance 
from the light source to the current point P  

• and the highlighted term in the exponent is the sum of 
distances from the light to the point and from the point to 
the camera 

• The phase functions are usually functions of cosine term 
which can be easily evaluated 

Now we can see that the inscattering integral depends on 
only three variables: the distance h from the light to the ray 
and the signed distances from the light projected position to 
the camera Sc and to the ray termination point So. 



To solve inscattering integral, we can precompute the 
inscattering integral for different values of h and start 
distance Sc to infinity 

These values can be stored in a two-dimensional look-up 
table 



The inscattering integral can then be computed as the 

• Integral from the camera towards infinity 

• Minus integral from the object towards infinity 

• We must not also forget that the light reaching the 
camera is attenuated in the media 



OK, so where is the volumetric shadows? Under single 
scattering assumption, light is only scattered from directly 
illuminated ray sections and there is no scattering from 
shadowed ray sections (where V(P) term is zero) 

• Thus due to additive nature of integration, we can 
subdivide the ray into lit regions and sum contributions 
from all lit segments 

• For each ray segment we can then compute scattering 
contribution as the integral from the beginning of the 
section 

• Minus contribution from the end of the section. 
Attenuation in the media must be taken into account here 

• The resulting contribution is the sum of contributions from 
all lit segments 



For a directional light source there is a analytical solution 
which does not require look-up tables 

Note that in this case F term can be computed outside the 
summation 

 

The question now is how to determine lit/unlit sections. 
There are a number of approaches which use light volumes 
for this purpose, but such methods are very fill-rate 
intensive and the performance is heavily scene-dependent. 
So in our approach we use shadow map 



So as our starting point we can derive the algorithm which 
does the following: 

• Projects the view ray onto the shadow map,  

• Sets up total inscattering and inscattering integral value 
from the end of the current section to infinity 

• Goes through each shadow map texel. For each texel it 
computes inscattering integral from the end of the current 
section to infinity 

• The amount of light scattered from this section is the 
difference of previous and current integrals multiplied by 
the visibility term. It is accumulated in the net inscattering 
variable 

• The next texel is then processed until the whole ray is 
marched 

• Note that only one exponent and/our look-up has to be 
performed in the loop. 

 



An important aspect of this algorithm is that we perform ray 
marching in the light projection space. Thus we can not 
directly interpolated attributes like distance along the ray. 
However, there is simple formula which tells how to do this 
correctly. We need to divide each attribute by the light view 
space z, interpolate and then divide by interpolated light 
view space z. 



Ok, this algorithm generates nice visual results, but we have 
to execute it for each screen pixel and go through all shadow 
map texels. Even on high-end discrete GPU such 
implementation requires enormous amount of time, so 
optimizations are necessary. 



• The first optimization is based on the observation that 
light shafts seen on the screen have special structure: 
they all emanate radially from the position of the light on 
the screen. Engelhardt and Dachsbacher noticed that the 
inscattered light varies orthogonally to these rays, but 
mostly smoothly along them. To account for this property 
they proposed placing samples along the epipolar lines 

• To catch low frequency variation, it is sufficient to sparsely 
locate initial ray marching samples 

• Since inscattering light intensity varies abruptly at depth 
discontinuities, additional ray marching samples are 
necessary at depth breaks to catch high frequency details  

• We can then compute computationally expensive ray 
marching for the selected number of samples. Since light 
intensity varies smoothly along the rays, for all the 
remaining samples, the intensity can be linearly 
interpolated from the nearby ray marching samples 

• After that we can transform inscattering from epipolar 
coordinates back to rectangular 

 



For this particular picture the epipolar sampling would look 
like this: 



Note that intentionally lower number of samples is used here 
to show the sampling structure  

Notice the regularly spaced rectangles which are initially 
placed ray marching samples and additional samples placed 
at depth discontinuities 



The first stage of the epipolar sampling algorithm is sample 
generation.  

• If the projected light source is on the screen, then 
epipolar line generation is done by  

• equidistantly placing a user-defined number of exit 
points along the border of the screen and  

• connecting the light position (which is in this case the 
entry point for each line) with these points 

• A predefined number of samples are then evenly placed 
between entry and exit points of each line. 

• If the light source is located outside the screen, then some 
lines are completely outside the visible area and are culled 
prior to the subsequent steps 

• The remaining lines are truncated against the screen 
borders and samples are placed between entry and exit 
points.  

 

If the light source is behind the camera, its projected 
position is the point where rays converge in infinity. Sample 
generation in this case is done in exactly the same way. 

 



• If the light source is located close to the screen boundary, 
then screen length of epipolar lines could vary 
significantly. This will result in using too dense sampling 
for short lines and doing redundant computations 

• To solve this issue, we rescale the epipolar lines by 
advancing the exit point, striving to provide 1:1 
correspondence between samples on the line and screen 
pixels. This not only reduces the amount of computations, 
but also results in a more natural circular-shaped 
distribution of samples against a rectangular-shaped 
distribution in the base method 



Screen space coordinates of each sample are stored in a 
two-dimensional texture. Each row of this texture 
corresponds to one epipolar line while each column 
corresponds to one location on the line. 



• After samples are generated, initial ray marching samples 
are equidistantly placed along each epipolar line to catch 
low-frequency variations. 

• After that depth breaks are detected in each line and 
additional samples are placed directly before and after the 
break 

• The remaining samples are interpolation samples and their 
intensity is computed by linear interpolation between 
closest ray-marching samples 

 



• To alleviate interpolation step, an auxiliary two-channel 
integer texture is used. This texture contains indices of 
two closest ray marching samples from the same slice, 
from which the inscattered light is interpolated. Ray 
marching samples are marked to be interpolated from 
themselves. 

 



After the inscattering integral is calculated by ray marching 
or interpolation for each epipolar sample, inscattering is 
computed for each screen pixel. This is done by the following 
steps: 

• An epipolar line is cast through the pixel and location in 
epipolar texture is computed 

• Bilateral filtering is performed 

• one Gather() for camera space z and two Sample() for 
inscattered light texture is used 



• It is also possible that there are no appropriate samples to 
filter from.  

• We mark such samples in stencil and  

• perform an additional ray marching pass for these 
samples using fewer steps and no min/max optimization 



So epipolar sampling dramatically reduced the computation 
time, but we still can do better.  

 

Stepping through each shadow map texel is still too 
expensive, especially for high shadow map resolution while 
using constant number of samples can cause undersampling 
and result in banding artifacts. 

Let’s now talk about how we can improve inscattering 
integral calculation for each ray marching sample. 

 



Epipolar sampling has one important property: all camera 
rays in an epipolar slice share the same plane. Intersection 
of this plane with the shadow map essentially forms a one-
dimensional height map. Shadow test is intrinsically a check 
if current position on the ray is under this height map or 
above it. 

 

This property was first recognized by Chen et al who 
proposed constructing 1D min/max binary tree for each 
epipolar slice and using this structure to identify long lit and 
shadowed regions on the ray 

 

• These are the nodes of the first level of the tree 

 

explain what the problem is, why this helps and why it is 
good 



These are the nodes of the second level 



And here are the nodes of the third level 



• Now, if the maximum value of depths at the ends of the 
current ray section is less than the minimum depth stored 
in the min/max tree, then this section is completely lit 

• Alternatively, if the minimum value of depths at the ends 
is greater than the maximum value stored in the tree, 
then the section is fully in shadow and we can skip it 

• It is also possible that neither condition is true. In this 
case, it is necessary to repeat the test at the next finer 
tree level 



The next question is how to construct these min/max binary 
trees. For this we need to know from what point and in what 
direction to perform ray marching. 

For all rays in an epipolar slice, ray marching starts from the 
same position in the shadow map and proceeds in the same 
direction. 

If we know origin and direction, we can compute shadow 
map location of any sample in the slice 



Now, how can we find slice origin and direction. 

For a directional light source, origin can be computed by 
simply transforming the camera world space position C with 
the shadow map transform matrix. For spot light source, this 
method will only work if the camera is located inside the 
light cone. If the camera is located behind the light 
projection plane, or if it lies on it, the method will fail. 

 

We thus developed a universal solution which works for both 
directional and spot light sources for any camera position 
and orientation. This method first finds intersection of the 
epipolar plane with the shadow map projection plane in 
world space, and then projects this vector onto the shadow 
map. 

 

The first step of this method is to define epipolar slice plane 
in the world space. The camera obviously lies in all slices, so 
we need to find normal to the plane. For this, we need two 

vectors 𝑆 0 and 𝑆 1 in the plane. 

• The first vector is the direction from the camera to light 
source 



• The second vector can be found by reconstructing epipolar slice 
exit point world space position 𝐒𝐄𝐱𝐢𝐭 and taking a vector from the 
camera through this point 

• Epipolar plane normal can be computed as a cross product of 
S1 and S0 

• Finally, slice direction D is the intersection of two planes and 
thus belongs to both. This means it is orthogonal to both plane 
normals. Thus it can be computed as a cross product of these 
vectors. 



So now we know slice direction D and need to find slice 
origin O. If the camera is inside the light cone, the origin is 
the same for all slices and is the projection of the camera 
position onto the shadow map plane. 

 



If the camera is located outside the cone, all the rays are 
truncated against the cone.  

• Note that all camera rays in a slice hit the same cone side. 
As a result, for all the rays, ray marching starts from the 
same point which is the projection of this cone side onto 
the shadow map plane 

• To find this point, we first find some point 𝐏0 on the ray in 
the following form 

• Next, we compute two intersections of the ray with the 
light cone. If there are no intersections, the ray misses the 
cone and the ray marching thus will not be performed for 
all rays in this slice 

• The slice origin is then computed as 𝐎 = 𝐏0 + 𝑡𝑚𝑖𝑛 ∙ 𝑫 

 

 



The same method works for directional light source if we 
replace S0 with the negated light direction 

 

To obtain slice origin 𝐎𝑈𝑉 in shadow map UV coordinates, it 
is necessary to transform 𝐎 with the shadow map transform 
matrix. Since 𝐎 is guaranteed to lie on the light projection 
plane, it always has positive z coordinate, which assures the 
result is always correct. Ray marching starts from the same 
point which is the projection of this cone side onto the 
shadow map plane.  

The direction 𝐷𝑈𝑉 in shadow map coordinates is then 

obtained by transforming 𝐷 with the light transform matrix.  



Our algorithm also supports colored light shafts.  

• This is implemented by simply rendering the stained glass 
into the additional buffer and sampling the light color 
texture during the ray marching 

The min/max optimization is much less efficient in this case 
since only long shadowed sections can be skipped, while all 
lit sections must be traversed with the fine step 



There are a number of textures which are used to store 
intermediate data required during the processing, which are 
presented on the slide 

The first three textures are back buffer, depth buffer and 
camera space z are not specific to the algorithm. 



On the first stage, camera-space z coordinate is 
reconstructed from the depth buffer. This is required 
because depth is non-linear, while z coordinate can be safely 
interpolated 

• On the next step, a 1D texture is computed which 
contains enter and exit points for each epipolar slice 

• This texture as well as camera space z is then used to 
render coordinate texture and camera space z in epipolar 
coordinates. At this stage, a depth-stencil buffer is also 
set up which marks valid samples 

• Next, depth breaks are detected and interpolation source 
texture is computed 

• Next, another 1D texture is rendered which contains slice 
origin and direction computed as described above 



• On the next stage original shadow map and direction and 
origin textures are used to build 1D min/max binary trees 
for each epipolar slice 

• After that, ray marching samples are marked in the stencil 
and  

• Ray marching algorithm with 1D min/max optimization is 
executed for each sample 

 



• On the next stage, initial inscattering is interpolated using 
interpolation source texture 

• And inscattering is transformed from epipolar to 
rectangular coordinates. Both epipolar and rectangular 
camera space z textures are used at this stage to compute 
bilateral weights. These pixels, which cannot be 
interpolated from epipolar coordinates are marked in 
stencil at this stage 



* Finally, inscattering fix-up pass is performed for pixels 
marked in stencil. No 1D min/max optimization is used at 
this stage. 



The depth discontinuities search stage in the algorithm is 
implemented with a compute shader. Each thread group of 
this shader processes one ray section between two 
neighboring ray marching samples and each thread 
processes one sample. 



The process consists of two steps 

• On the first step, a shared-memory array is populated 
with 1-bit flags indicating if there is a discontinuity 
between each two adjacent samples in this segment. The 
flags are packed as 32 bit uints 

• On the second step, interpolation source samples are 
identified using firstbitlow() and firstbithigh() intrinsic 
functions that return the bit position of the first non-zero 
bit starting from the lowest order bit and the highest order 
bit, respectively 

• Our experiments showed that this implementations is up 
to 6x times faster for long steps than direct 
implementation of depth breaks detection algorithm 
presented in original paper [ED10]. 

 



This animation shows process of constructing 1D min/max 
binary trees 



Creating the 1D min/max binary trees is performed using a 
well-known flip/flop approach when two textures are 
alternately used as a source and destination. 

• The initial shadow map is used to initialize the first level of 
the min/max binary trees.  

• Gather() instruction is used here to load four samples 
which will be required for PCF filtering of each sample 
and compute conservative minimum and maximum 
values 

• This guarantees accelerated algorithm produces exactly 
the same results as if all texels were visited 

• After that, coarse tree levels are constructed by loading 
two min/max values from the corresponding nodes at the 
next finer level.  

 

 

We tried using compute shader for this step, but this 
approach turned out to be less efficient due to poor GPU 
utilization. We also do not construct full binary trees because 
it is very unlikely that coarse levels could be reached. 
Besides, rendering to low-resolution textures is inefficient on  



modern GPUs. 



An important aspect related to sample generation which has 
to be taken into account is that during the rasterization, 
pixel attributes are interpolated to pixel centers. As a result, 
the outermost visible screen pixels do not lie exactly on the 
screen boundary −1, 1 × −1, 1 , but are biased by 0.5 pixel 
size inwards. Thus exit point of epipolar lines should be 

located on shrinked screen boundary −1 +
1

𝑊
, 1 −

1

𝑊
×

−1 +
1

𝐻
, 1 −

1

𝐻
 where W and H are width and height of the 

viewport. 

If we do not take this into account, samples will be 
distributed along the epipolar lines less efficiently. As a 
result, interpolation from epipolar geometry to rectangular 
coordinates will be less accurate and more screen pixels will 
require additional correction pass. 



The technique has a number of different parameters which 
allow trade quality for performance. This makes it suitable 
for a wide range of hardware, from high-end GPUs to 
processor graphics.  

 

This chart shows the performance of different stages for 
high-end discrete GPU for very high screen resolution and 
three different quality profiles. It also presents the time of 
the brute force ray marching algorithm executed for each 
screen pixel with no 1D min/max optimization. 

 

Memory consumption for these quality settings is also shown 
in the table. From the first glance the required memory 
amount could seem to be very high. But if we take into 
account the fact that for such resolution, the back buffer and 
depth buffer occupy 31 MB and shadow map is 64 MB, than 
88 MB is less than total amount of memory required to store 
these buffers, which looks quite reasonable. 



This is the reference picture for brute force ray marching 



This is the high quality profile which is almost identical to 
the reference picture 



In balanced quality profile, rays loose crisper appearance 
because lower resolution shadow map is used 



In high performance profile, the rays are even more 
smoother, however, no apparent artifacts like banding are 
noticeable 



This slide shows performance of the technique for mobile 
Nvidia GPU. 5.38 ms with 5.5 MB of memory consumption 
for mobile graphics is not a bad result 



Again this is the reference picture for brute force ray 
marching 



And the high quality profile is almost identical to the 
reference picture 



This is the balanced quality where rays become a bit 
smoother 



And here is the picture for high performance profile. You can 
see some artifacts near the light source due to insufficient 
sampling. These are not very apparent though and with 
isotropic scattering function are almost unnoticeable. Note 
that the rest of the rays are smooth and there are no 
banding or other artifacts 



This chart presents performance for Intel HD graphics. 8.85 
ms for processor graphics for rendering such quality effect is 
not that bad. Even in high quality, the technique still able to 
render the scene at interactive frame rates on just 
integrated graphics. 



Here is the comparison for different quality settings 



The high quality profile is almost identical to the reference 
picture 



This is the balanced quality where rays become a bit 
smoother 



Again, even in high performance profile, the effect quality is 
rather good 



This chart presents detailed timings for another scene 
rendered on Nvidia discrete GPU. Total processing time is 
less than 3.4 ms. 



Here is the performance for another test for directional light 
source. Fot 4k x 4k shadow map, the technique requires just 
above 4 ms which is very good result 



For a spot light source, without 1D min/max binary tree 
acceleration, the ray marching time alone is 3.3 times higher 
while the total frame time is 2x times higher. 

 

For higher quality settings the speedup is much higher 

 



The algorithm also supports colored light shafts. However, 
min/max optimization in this case is much less efficient, 
because lit regions cannot be skipped and should be 
traversed with fine step. Nethertheless, the algorithm is able 
to render colored light shafts at more than 100 fps for the 
same quality settings 





The technique is fully post processing and integration into 
game engines should not be very difficult 



• There are a number of possible directions the technique 
could be improved. The first way is to apply this approach 
for rendering large outdoor environments. The first 
experiments are quite promising 

• The technique can also be integrated with other 
shadowing techniques 

• Another interesting area is implementing heterogeneous 
media like clouds or smoke 

• New technologies like PRT could be used her 

 



These are references to the most relevant work 
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