

• Light scattering is an important natural phenomenon,
which arises when the light interacts with the particles
distributed in the media. Rendering such effects greatly
enhances the scene realism

• To accurately compute scattering contribution, a complex
integral has to be solved for each screen pixel

• Due to the complexity of the computations involved,
achieving natural-looking scattering effects at high
performance is a challenging problem.

There were a lot of work on rendering light scattering effect in a
participating medium. And I would like to mention the following
most most relevant works

The first one is the work by Hoffman & Preetham who presented
an Alanalytical model for outdoor light scattering for directional
light source

Sun et al presented semi-analytical solution to airlight integral
due to a point light source

Tevs et al used maximum mipmaps for dynamic height field
rendering

And Chen et al later adopted the same idea to accelerate ray
marching using 1d min-max mipmaps for volumetric shadows

Engelhardt & Dachsbacher presented epipolar sampling to
significantly reduce the number of samples for which
computationally expensive ray marching is performed

Our approach combines 1D min/max mipmaps with epipolar
sampling to achieve high performance. It also incorporates simple
and efficient semi-analytical solution to a light scattering integral
due to point light source.

As a result our method is able to achieve high quality rendering at
interactive frame rates.

Scattering effects affect the appearance of scene objects in
two ways which account for a phenomenon called aerial
perspective

• On one hand some portion of light initially emitted from
the object is out-scattered and does not reach the camera

• On the other hand, some sun light is scattered towards
the camera on the particles. Thus the final radiance
measured at the camera is a sum of two contributions:
attenuated object radiance and inscattering

• The T term is called optical depth or optical thickness. It is
the integral of scattering coefficient beta over the path.
For homogeneous single scattering media we consider it is
just the path length multiplied by the scattering
coefficient.

Let’s now start deriving the scattering integral step-by-step
and introduce some notations

• The amount of energy a point light source emits is the
radiant power intensity I

• View direction is the unit vector directed from camera to
object

• Our first step is to notice that the total amount of light
scattered towards the camera is proportional to I

• Next, let’s consider some point P on the view ray

• Amount of energy that reaches this point from the light
source

• is inversely proportional to the distance squared

• and some energy is also lost in the media due to out-
scattering

• Next we need to introduce visibility term V(P) indicating if
light reaches the point or not. In practice it is filtered to
eliminate aliasing

• Let’s continue and derive the total amount of energy
scattered at infinitely small ray section at point P.

• This amount is proportional to

• the section length and

• to the scattering coefficient at this point

But not all energy is scattered towards the camera and some
part of it goes in other directions (which is called out-
scattering)

• Amount scattered towards the camera is given by the
phase function

• All these terms together give differential amount of light
scattered towards the camera at point P.

Note that the phase function is assumed to be normalized to

unity such that 𝑝(𝜃) 𝑑𝜔
Ω

= 1 where integration is

performed over the whole set of directions Ω.

• This differential amount of light is attenuated in the media
before it reaches the camera

• To get the total inscattering amount we need to integrate
all the differential amounts.

For directional light source, the integral is much simpler
because the phase angle does not vary across the ray and
the light intensity also does not depend on the distance from
the light source

Folowing many other previous works, we model the
participating medium as a mix of two constituents: air
molecules and aerosols. The scattering on molecules is
described by Rayleigh theory. It is wavelength-dependent,
so scattering coefficients are modeled as an RGB vector, but
almost isotropic.

Scattering on aerosols is described by Mie theory. It is much
less wavelength-dependent but significantly anisotropic. The
phase function is much more complex and can be
approximated using Cornette-Shanks function.

In the presense of two consituents, the light is attenuated
by both of them. For homogeneous medium, optical
thickness is simply the total scattering coefficient multiplied
by the path length, while scattering by each type of particle
is modulate by its own phase function

We will denote total scattering coefficeint by betha with
downscript sigma and the sum of phase functions modulated
by the scattering coefficient by capital P with downsript
sigma.

This picture shows rendering spot light source with isotropic
phase function

While anisotropic one creates a nice glow around the light
source

Let’s now talk about how to solve the inscattering integral.
We start from simpler case. For a directional light source,
there is a fully analytical solution derived by Hoffman and
Preetham. The inscattering contribution depends only on the
ray length S and the angle 𝜃 between the view ray 𝑣 and the

light direction 𝐿.

Unfortunately, for a point light source, there is no closed
form solution. However, we can derive a simple semi-
analytical solution which requires one look-up into a
precomputed table. To do this, we first rewrite the
inscattering integral.

We first relate the variable s to the projection L0 of the light
source onto the view ray

• The term in the denominator is then squared distance
from the light source to the current point P

• and the highlighted term in the exponent is the sum of
distances from the light to the point and from the point to
the camera

• The phase functions are usually functions of cosine term
which can be easily evaluated

Now we can see that the inscattering integral depends on
only three variables: the distance h from the light to the ray
and the signed distances from the light projected position to
the camera Sc and to the ray termination point So.

To solve inscattering integral, we can precompute the
inscattering integral for different values of h and start
distance Sc to infinity

These values can be stored in a two-dimensional look-up
table

The inscattering integral can then be computed as the

• Integral from the camera towards infinity

• Minus integral from the object towards infinity

• We must not also forget that the light reaching the
camera is attenuated in the media

OK, so where is the volumetric shadows? Under single
scattering assumption, light is only scattered from directly
illuminated ray sections and there is no scattering from
shadowed ray sections (where V(P) term is zero)

• Thus due to additive nature of integration, we can
subdivide the ray into lit regions and sum contributions
from all lit segments

• For each ray segment we can then compute scattering
contribution as the integral from the beginning of the
section

• Minus contribution from the end of the section.
Attenuation in the media must be taken into account here

• The resulting contribution is the sum of contributions from
all lit segments

For a directional light source there is a analytical solution
which does not require look-up tables

Note that in this case F term can be computed outside the
summation

The question now is how to determine lit/unlit sections.
There are a number of approaches which use light volumes
for this purpose, but such methods are very fill-rate
intensive and the performance is heavily scene-dependent.
So in our approach we use shadow map

So as our starting point we can derive the algorithm which
does the following:

• Projects the view ray onto the shadow map,

• Sets up total inscattering and inscattering integral value
from the end of the current section to infinity

• Goes through each shadow map texel. For each texel it
computes inscattering integral from the end of the current
section to infinity

• The amount of light scattered from this section is the
difference of previous and current integrals multiplied by
the visibility term. It is accumulated in the net inscattering
variable

• The next texel is then processed until the whole ray is
marched

• Note that only one exponent and/our look-up has to be
performed in the loop.

An important aspect of this algorithm is that we perform ray
marching in the light projection space. Thus we can not
directly interpolated attributes like distance along the ray.
However, there is simple formula which tells how to do this
correctly. We need to divide each attribute by the light view
space z, interpolate and then divide by interpolated light
view space z.

Ok, this algorithm generates nice visual results, but we have
to execute it for each screen pixel and go through all shadow
map texels. Even on high-end discrete GPU such
implementation requires enormous amount of time, so
optimizations are necessary.

• The first optimization is based on the observation that
light shafts seen on the screen have special structure:
they all emanate radially from the position of the light on
the screen. Engelhardt and Dachsbacher noticed that the
inscattered light varies orthogonally to these rays, but
mostly smoothly along them. To account for this property
they proposed placing samples along the epipolar lines

• To catch low frequency variation, it is sufficient to sparsely
locate initial ray marching samples

• Since inscattering light intensity varies abruptly at depth
discontinuities, additional ray marching samples are
necessary at depth breaks to catch high frequency details

• We can then compute computationally expensive ray
marching for the selected number of samples. Since light
intensity varies smoothly along the rays, for all the
remaining samples, the intensity can be linearly
interpolated from the nearby ray marching samples

• After that we can transform inscattering from epipolar
coordinates back to rectangular

For this particular picture the epipolar sampling would look
like this:

Note that intentionally lower number of samples is used here
to show the sampling structure

Notice the regularly spaced rectangles which are initially
placed ray marching samples and additional samples placed
at depth discontinuities

The first stage of the epipolar sampling algorithm is sample
generation.

• If the projected light source is on the screen, then
epipolar line generation is done by

• equidistantly placing a user-defined number of exit
points along the border of the screen and

• connecting the light position (which is in this case the
entry point for each line) with these points

• A predefined number of samples are then evenly placed
between entry and exit points of each line.

• If the light source is located outside the screen, then some
lines are completely outside the visible area and are culled
prior to the subsequent steps

• The remaining lines are truncated against the screen
borders and samples are placed between entry and exit
points.

If the light source is behind the camera, its projected
position is the point where rays converge in infinity. Sample
generation in this case is done in exactly the same way.

• If the light source is located close to the screen boundary,
then screen length of epipolar lines could vary
significantly. This will result in using too dense sampling
for short lines and doing redundant computations

• To solve this issue, we rescale the epipolar lines by
advancing the exit point, striving to provide 1:1
correspondence between samples on the line and screen
pixels. This not only reduces the amount of computations,
but also results in a more natural circular-shaped
distribution of samples against a rectangular-shaped
distribution in the base method

Screen space coordinates of each sample are stored in a
two-dimensional texture. Each row of this texture
corresponds to one epipolar line while each column
corresponds to one location on the line.

• After samples are generated, initial ray marching samples
are equidistantly placed along each epipolar line to catch
low-frequency variations.

• After that depth breaks are detected in each line and
additional samples are placed directly before and after the
break

• The remaining samples are interpolation samples and their
intensity is computed by linear interpolation between
closest ray-marching samples

• To alleviate interpolation step, an auxiliary two-channel
integer texture is used. This texture contains indices of
two closest ray marching samples from the same slice,
from which the inscattered light is interpolated. Ray
marching samples are marked to be interpolated from
themselves.

After the inscattering integral is calculated by ray marching
or interpolation for each epipolar sample, inscattering is
computed for each screen pixel. This is done by the following
steps:

• An epipolar line is cast through the pixel and location in
epipolar texture is computed

• Bilateral filtering is performed

• one Gather() for camera space z and two Sample() for
inscattered light texture is used

• It is also possible that there are no appropriate samples to
filter from.

• We mark such samples in stencil and

• perform an additional ray marching pass for these
samples using fewer steps and no min/max optimization

So epipolar sampling dramatically reduced the computation
time, but we still can do better.

Stepping through each shadow map texel is still too
expensive, especially for high shadow map resolution while
using constant number of samples can cause undersampling
and result in banding artifacts.

Let’s now talk about how we can improve inscattering
integral calculation for each ray marching sample.

Epipolar sampling has one important property: all camera
rays in an epipolar slice share the same plane. Intersection
of this plane with the shadow map essentially forms a one-
dimensional height map. Shadow test is intrinsically a check
if current position on the ray is under this height map or
above it.

This property was first recognized by Chen et al who
proposed constructing 1D min/max binary tree for each
epipolar slice and using this structure to identify long lit and
shadowed regions on the ray

• These are the nodes of the first level of the tree

explain what the problem is, why this helps and why it is
good

These are the nodes of the second level

And here are the nodes of the third level

• Now, if the maximum value of depths at the ends of the
current ray section is less than the minimum depth stored
in the min/max tree, then this section is completely lit

• Alternatively, if the minimum value of depths at the ends
is greater than the maximum value stored in the tree,
then the section is fully in shadow and we can skip it

• It is also possible that neither condition is true. In this
case, it is necessary to repeat the test at the next finer
tree level

The next question is how to construct these min/max binary
trees. For this we need to know from what point and in what
direction to perform ray marching.

For all rays in an epipolar slice, ray marching starts from the
same position in the shadow map and proceeds in the same
direction.

If we know origin and direction, we can compute shadow
map location of any sample in the slice

Now, how can we find slice origin and direction.

For a directional light source, origin can be computed by
simply transforming the camera world space position C with
the shadow map transform matrix. For spot light source, this
method will only work if the camera is located inside the
light cone. If the camera is located behind the light
projection plane, or if it lies on it, the method will fail.

We thus developed a universal solution which works for both
directional and spot light sources for any camera position
and orientation. This method first finds intersection of the
epipolar plane with the shadow map projection plane in
world space, and then projects this vector onto the shadow
map.

The first step of this method is to define epipolar slice plane
in the world space. The camera obviously lies in all slices, so
we need to find normal to the plane. For this, we need two

vectors 𝑆 0 and 𝑆 1 in the plane.

• The first vector is the direction from the camera to light
source

• The second vector can be found by reconstructing epipolar slice
exit point world space position 𝐒𝐄𝐱𝐢𝐭 and taking a vector from the
camera through this point

• Epipolar plane normal can be computed as a cross product of
S1 and S0

• Finally, slice direction D is the intersection of two planes and
thus belongs to both. This means it is orthogonal to both plane
normals. Thus it can be computed as a cross product of these
vectors.

So now we know slice direction D and need to find slice
origin O. If the camera is inside the light cone, the origin is
the same for all slices and is the projection of the camera
position onto the shadow map plane.

If the camera is located outside the cone, all the rays are
truncated against the cone.

• Note that all camera rays in a slice hit the same cone side.
As a result, for all the rays, ray marching starts from the
same point which is the projection of this cone side onto
the shadow map plane

• To find this point, we first find some point 𝐏0 on the ray in
the following form

• Next, we compute two intersections of the ray with the
light cone. If there are no intersections, the ray misses the
cone and the ray marching thus will not be performed for
all rays in this slice

• The slice origin is then computed as 𝐎 = 𝐏0 + 𝑡𝑚𝑖𝑛 ∙ 𝑫

The same method works for directional light source if we
replace S0 with the negated light direction

To obtain slice origin 𝐎𝑈𝑉 in shadow map UV coordinates, it
is necessary to transform 𝐎 with the shadow map transform
matrix. Since 𝐎 is guaranteed to lie on the light projection
plane, it always has positive z coordinate, which assures the
result is always correct. Ray marching starts from the same
point which is the projection of this cone side onto the
shadow map plane.

The direction 𝐷𝑈𝑉 in shadow map coordinates is then

obtained by transforming 𝐷 with the light transform matrix.

Our algorithm also supports colored light shafts.

• This is implemented by simply rendering the stained glass
into the additional buffer and sampling the light color
texture during the ray marching

The min/max optimization is much less efficient in this case
since only long shadowed sections can be skipped, while all
lit sections must be traversed with the fine step

There are a number of textures which are used to store
intermediate data required during the processing, which are
presented on the slide

The first three textures are back buffer, depth buffer and
camera space z are not specific to the algorithm.

On the first stage, camera-space z coordinate is
reconstructed from the depth buffer. This is required
because depth is non-linear, while z coordinate can be safely
interpolated

• On the next step, a 1D texture is computed which
contains enter and exit points for each epipolar slice

• This texture as well as camera space z is then used to
render coordinate texture and camera space z in epipolar
coordinates. At this stage, a depth-stencil buffer is also
set up which marks valid samples

• Next, depth breaks are detected and interpolation source
texture is computed

• Next, another 1D texture is rendered which contains slice
origin and direction computed as described above

• On the next stage original shadow map and direction and
origin textures are used to build 1D min/max binary trees
for each epipolar slice

• After that, ray marching samples are marked in the stencil
and

• Ray marching algorithm with 1D min/max optimization is
executed for each sample

• On the next stage, initial inscattering is interpolated using
interpolation source texture

• And inscattering is transformed from epipolar to
rectangular coordinates. Both epipolar and rectangular
camera space z textures are used at this stage to compute
bilateral weights. These pixels, which cannot be
interpolated from epipolar coordinates are marked in
stencil at this stage

* Finally, inscattering fix-up pass is performed for pixels
marked in stencil. No 1D min/max optimization is used at
this stage.

The depth discontinuities search stage in the algorithm is
implemented with a compute shader. Each thread group of
this shader processes one ray section between two
neighboring ray marching samples and each thread
processes one sample.

The process consists of two steps

• On the first step, a shared-memory array is populated
with 1-bit flags indicating if there is a discontinuity
between each two adjacent samples in this segment. The
flags are packed as 32 bit uints

• On the second step, interpolation source samples are
identified using firstbitlow() and firstbithigh() intrinsic
functions that return the bit position of the first non-zero
bit starting from the lowest order bit and the highest order
bit, respectively

• Our experiments showed that this implementations is up
to 6x times faster for long steps than direct
implementation of depth breaks detection algorithm
presented in original paper [ED10].

This animation shows process of constructing 1D min/max
binary trees

Creating the 1D min/max binary trees is performed using a
well-known flip/flop approach when two textures are
alternately used as a source and destination.

• The initial shadow map is used to initialize the first level of
the min/max binary trees.

• Gather() instruction is used here to load four samples
which will be required for PCF filtering of each sample
and compute conservative minimum and maximum
values

• This guarantees accelerated algorithm produces exactly
the same results as if all texels were visited

• After that, coarse tree levels are constructed by loading
two min/max values from the corresponding nodes at the
next finer level.

We tried using compute shader for this step, but this
approach turned out to be less efficient due to poor GPU
utilization. We also do not construct full binary trees because
it is very unlikely that coarse levels could be reached.
Besides, rendering to low-resolution textures is inefficient on

modern GPUs.

An important aspect related to sample generation which has
to be taken into account is that during the rasterization,
pixel attributes are interpolated to pixel centers. As a result,
the outermost visible screen pixels do not lie exactly on the
screen boundary −1, 1 × −1, 1 , but are biased by 0.5 pixel
size inwards. Thus exit point of epipolar lines should be

located on shrinked screen boundary −1 +
1

𝑊
, 1 −

1

𝑊
×

−1 +
1

𝐻
, 1 −

1

𝐻
 where W and H are width and height of the

viewport.

If we do not take this into account, samples will be
distributed along the epipolar lines less efficiently. As a
result, interpolation from epipolar geometry to rectangular
coordinates will be less accurate and more screen pixels will
require additional correction pass.

The technique has a number of different parameters which
allow trade quality for performance. This makes it suitable
for a wide range of hardware, from high-end GPUs to
processor graphics.

This chart shows the performance of different stages for
high-end discrete GPU for very high screen resolution and
three different quality profiles. It also presents the time of
the brute force ray marching algorithm executed for each
screen pixel with no 1D min/max optimization.

Memory consumption for these quality settings is also shown
in the table. From the first glance the required memory
amount could seem to be very high. But if we take into
account the fact that for such resolution, the back buffer and
depth buffer occupy 31 MB and shadow map is 64 MB, than
88 MB is less than total amount of memory required to store
these buffers, which looks quite reasonable.

This is the reference picture for brute force ray marching

This is the high quality profile which is almost identical to
the reference picture

In balanced quality profile, rays loose crisper appearance
because lower resolution shadow map is used

In high performance profile, the rays are even more
smoother, however, no apparent artifacts like banding are
noticeable

This slide shows performance of the technique for mobile
Nvidia GPU. 5.38 ms with 5.5 MB of memory consumption
for mobile graphics is not a bad result

Again this is the reference picture for brute force ray
marching

And the high quality profile is almost identical to the
reference picture

This is the balanced quality where rays become a bit
smoother

And here is the picture for high performance profile. You can
see some artifacts near the light source due to insufficient
sampling. These are not very apparent though and with
isotropic scattering function are almost unnoticeable. Note
that the rest of the rays are smooth and there are no
banding or other artifacts

This chart presents performance for Intel HD graphics. 8.85
ms for processor graphics for rendering such quality effect is
not that bad. Even in high quality, the technique still able to
render the scene at interactive frame rates on just
integrated graphics.

Here is the comparison for different quality settings

The high quality profile is almost identical to the reference
picture

This is the balanced quality where rays become a bit
smoother

Again, even in high performance profile, the effect quality is
rather good

This chart presents detailed timings for another scene
rendered on Nvidia discrete GPU. Total processing time is
less than 3.4 ms.

Here is the performance for another test for directional light
source. Fot 4k x 4k shadow map, the technique requires just
above 4 ms which is very good result

For a spot light source, without 1D min/max binary tree
acceleration, the ray marching time alone is 3.3 times higher
while the total frame time is 2x times higher.

For higher quality settings the speedup is much higher

The algorithm also supports colored light shafts. However,
min/max optimization in this case is much less efficient,
because lit regions cannot be skipped and should be
traversed with fine step. Nethertheless, the algorithm is able
to render colored light shafts at more than 100 fps for the
same quality settings

The technique is fully post processing and integration into
game engines should not be very difficult

• There are a number of possible directions the technique
could be improved. The first way is to apply this approach
for rendering large outdoor environments. The first
experiments are quite promising

• The technique can also be integrated with other
shadowing techniques

• Another interesting area is implementing heterogeneous
media like clouds or smoke

• New technologies like PRT could be used her

These are references to the most relevant work

Here are some people I would like to thank

