
Beautiful REST + JSON APIs

Les Hazlewood @lhazlewood
CTO, Stormpath
stormpath.com

 .com
• Identity Management and  

Access Control API
• Security for your applications
• User security workflows
• Security best practices
• Developer tools, SDKs, libraries

Outline
•  APIs, REST & JSON
•  REST Fundamentals
•  Design

Base URL
Versioning
Resource Format
Return Values
Content Negotiation
References (Linking)
Pagination
Query Parameters
Associations

Errors
IDs
Method Overloading
Resource Expansion
Partial Responses
Caching & Etags
Security
Multi Tenancy
Maintenance

APIs
• Applications
• Developers
• Pragmatism over Ideology
• Adoption
• Scale

Why REST?
• Scalability
• Generality
•  Independence
• Latency (Caching)
• Security
• Encapsulation

Why JSON?
• Ubiquity
• Simplicity
• Readability
• Scalability
• Flexibility

HATEOAS
• Hypermedia
• As
• The
•  Engine
• Of
• Application
•  State

Further restriction on REST architectures.

REST Is Easy

REST Is *&@#$! Hard  
 

(for providers)

REST can be easy  
 

(if you follow some guidelines)

Example Domain:
Stormpath

•  Applications
•  Directories
•  Accounts
•  Groups
•  Associations
•  Workflows

Fundamentals

Resources
Nouns, not Verbs

Coarse Grained, not Fine Grained

Architectural style for use-case
scalability

What If?
/getAccount

/createDirectory

/updateGroup

/verifyAccountEmailAddress

What If?
/getAccount
/getAllAccounts
/searchAccounts
/createDirectory
/createLdapDirectory
/updateGroup
/updateGroupName
/findGroupsByDirectory
/searchGroupsByName
/verifyAccountEmailAddress
/verifyAccountEmailAddressByToken
…
Smells like bad RPC. DON’T DO THIS.

Keep It Simple

The Answer
Fundamentally two types of resources:

Collection Resource

Instance Resource

Collection Resource

/applications!

Instance Resource

/applications/a1b2c3!

Behavior
• GET!
• PUT!
• POST!
• DELETE!
• HEAD!

Behavior
POST, GET, PUT, DELETE!

≠ 1:1
!

Create, Read, Update, Delete

Behavior
As you would expect:
!
GET = Read
DELETE = Delete
HEAD = Headers, no Body

Behavior
Not so obvious:

PUT and POST can both be used
for
Create and Update

PUT for Create
Identifier is known by the client:

PUT /applications/clientSpecifiedId!
!
{!
 …!
}!

PUT for Update
Full Replacement

PUT /applications/existingId!
{!
 “name”: “Best App Ever”,!
 “description”: “Awesomeness”!
}!

PUT

Idempotent!

POST as Create
On a parent resource

POST /applications!
{!
 “name”: “Best App Ever”!
}!
!
Response:!
!
201 Created!
Location: https://api.stormpath.com/applications/a1b2c3!

POST as Update
On instance resource

POST /applications/a1b2c3  
!
{!
 “name”: “Best App Ever. Srsly.”!
}!
!
Response:!
!
200 OK!

POST

NOT Idempotent!

Media Types
• Format Specification + Parsing Rules
• Request: Accept header
• Response: Content-Type header

•  application/json!
•  application/foo+json!
•  application/foo+json;application!
•  …!

Design Time!

Base URL

http(s)://api.foo.com  
 

vs 
 

http://www.foo.com/dev/service/
api/rest

http(s)://api.foo.com  
 

Rest Client 
vs  

Browser

Versioning

URL
 https://api.stormpath.com/v1!

vs.

Media-Type
 application/foo
+json;application&v=1!

Resource Format

Media Type
Content-Type: application/json!

When time allows:

application/foo+json!
application/foo+json;bar=baz&v=1!
…

camelCase
‘JS’ in ‘JSON’ = JavaScript

myArray.forEach
Not myArray.for_each!
!
account.givenName!
Not account.given_name

 Underscores for property/function names
are unconventional for JS. Stay consistent.

Date/Time/Timestamp
There’s already a standard. Use it: ISO
8601

Example:

{
 …,
 “createdTimestamp”: “2012-07-10T18:02:24.343Z”
}

Use UTC!

Response Body

GET obvious

What about POST?

Return the representation in the
response when feasible.

Add override (?_body=false) for control

Content Negotiation

Header
• Accept header

• Header values comma delimited in
order of preference

GET /applications/a1b2c3!
Accept: application/json, text/plain!

Resource Extension
/applications/a1b2c3.json!
/applications/a1b2c3.csv!
…!
!
Conventionally overrides Accept header

HREF
• Distributed Hypermedia is paramount!

• Every accessible Resource has a
canonical unique URL

• Replaces IDs (IDs exist, but are
opaque).

• Critical for linking, as we’ll soon see

Instance w/ HREF (v1)
GET /accounts/x7y8z9!
!
200 OK!
{!
 “href”: “https://api.stormpath.com/v1/accounts/x7y8z9”,!
 “givenName”: “Tony”,!
 “surname”: “Stark”,!
 ...!
} !

Resource References 
aka ‘Linking’  

(v1)

• Hypermedia is paramount.
• Linking is fundamental to scalability.

• Tricky in JSON
• XML has it (XLink), JSON doesn’t
• How do we do it?

Instance Reference (v1)
GET /accounts/x7y8z9!
!
200 OK!
{!
 “href”: “https://api.stormpath.com/v1/accounts/x7y8z9”,!
 “givenName”: “Tony”,!
 “surname”: “Stark”,!
 …,!
 “directory”: ????!
} !

Instance Reference (v1)
GET /accounts/x7y8z9!
!
200 OK!
{!
 “href”: “https://api.stormpath.com/v1/accounts/x7y8z9”,!
 “givenName”: “Tony”,!
 “surname”: “Stark”,!
 …,!
 “directory”: {!
 “href”: “https://api.stormpath.com/v1/directories/g4h5i6”!
 }!
} !

Collection Reference (v1)
GET /accounts/x7y8z9!
!
200 OK!
{!
 “href”: “https://api.stormpath.com/v1/accounts/x7y8z9”,!
 “givenName”: “Tony”,!
 “surname”: “Stark”,!
 …,!
 “groups”: {!
 “href”: “https://api.stormpath.com/v1/accounts/x7y8z9/groups”!
 }!
} !

Linking v2  
(recommended)

Instance HREF (v2)
GET /accounts/x7y8z9!
!
200 OK!
{!
 “meta”: {!
 “href”: “https://api.stormpath.com/v1/accounts/x7y8z9”,!
 “mediaType”: “application/ion+json;version=2&schema=...”!
 },!
 “givenName”: “Tony”,!
 “surname”: “Stark”,!
 …!
} !

Instance Reference (v2)
GET /accounts/x7y8z9!
!
200 OK!
{!
 “meta”: { ... },!
 “givenName”: “Tony”,!
 “surname”: “Stark”,!
 …,!
 “directory”: {!
 “meta”: {!
 “href”: “https://api.stormpath.com/v1/directories/g4h5i6”!
 “mediaType”: “application/ion+json;version=2&schema=...”!
 }!
 }!
} !

Collection Reference (v2)
GET /accounts/x7y8z9!
!
200 OK!
{!
 “meta”: { ... },!
 “givenName”: “Tony”,!
 “surname”: “Stark”,!
 …,!
 “groups”: {!
 “meta”: {!
 “href”: “https://api.stormpath.com/v1/accounts/x7y8z9/groups”,!
 “mediaType”: “application/ioncoll+json;version=2&schema=...”!
 }!
 }!
} !

Reference Expansion 
 

(aka Entity Expansion, Link Expansion)

Account and its Directory?

GET /accounts/x7y8z9?expand=directory!

!
200 OK!
{!
 “meta”: {...},!
 “givenName”: “Tony”,!
 “surname”: “Stark”,!
 …,!
 “directory”: {!
 “meta”: { ... },!
 “name”: “Avengers”,!
 “description”: “Hollywood’s hope for more $”,!
 “creationDate”: “2012-07-01T14:22:18.029Z”,!
 …!
 }!
} !

Partial Representations

GET /accounts/x7y8z9?
fields=givenName,surname,directory(name)!

Pagination

Collection Resource supports query
params:
• Offset
• Limit

…/applications?offset=50&limit=25

GET /accounts/x7y8z9/groups!
!
200 OK!
{!
 “meta”: { ... },!
 “offset”: 0,!
 “limit”: 25,!
 “first”: { “meta”:{“href”: “…/accounts/x7y8z9/groups?offset=0”}},!
 “previous”: null,!
 “next”: { “meta”:{“href”: “…/accounts/x7y8z9/groups?offset=25”}},!
 “last”: { “meta”:{“href”: “…”}}, !
 “items”: [!
 {!
 “meta”: { “href”: “…”, ...}!
 },!
 {!
 “meta”: { “href”: “…”, ...}!
 },!
 …!
]!
} !

Many To Many

Group to Account
• A group can have many accounts
• An account can be in many groups
• Each mapping is a resource:

GroupMembership!

GET /groupMemberships/23lk3j2j3!

!
200 OK!
{!
 “meta”:{“href”: “…/groupMemberships/23lk3j2j3”},!
 “account”: {!
 “meta”:{“href”: “…”}!
 },!
 “group”: {!
 “meta”{“href”: “…”}!
 },!
 …!
} !

GET /accounts/x7y8z9!
!
200 OK!
{!
 “meta”:{“href”: “…/accounts/x7y8z9”},!
 “givenName”: “Tony”,!
 “surname”: “Stark”,!
 …,!
 “groups”: {!
 “meta”:{“href”: “…/accounts/x7y8z9/groups”}!
 },!
 “groupMemberships”: {!
 “meta”:{“href”: “…/groupMemberships?accountId=x7y8z9”}!
 }!
} !

Errors

• As descriptive as possible
• As much information as possible
• Developers are your customers

POST /directories!
!
409 Conflict!
{!
 “status”: 409,!
 “code”: 40924,!
 “property”: “name”,!
 “message”: “A Directory named ‘Avengers’
already exists.”,!
 “developerMessage”: “A directory named
‘Avengers’ already exists. If you have a stale
local cache, please expire it now.”,!
 “moreInfo”: “https://www.stormpath.com/docs/
api/errors/40924”!
} !

Security

Avoid sessions when possible
Authenticate every request if necessary
Stateless

 
Authorize based on resource content, NOT URL!

Use Existing Protocol:

Oauth 1.0a, Oauth2, Basic over SSL only

Custom Authentication Scheme:

Only if you provide client code / SDK
Only if you really, really know what you’re doing

Use API Keys instead of Username/Passwords

401 vs 403
•  401 “Unauthorized” really means

Unauthenticated

“You need valid credentials for me to respond
to this request”

•  403 “Forbidden” really means
Unauthorized  

“I understood your credentials, but so sorry,
you’re not allowed!”

HTTP Authentication
Schemes

• Server response to issue challenge:  

WWW-Authenticate: <scheme name>
realm=“Application Name”  
!
• Client request to submit credentials:  

Authorization: <scheme name> <data>

API Keys
• Entropy
• Password Reset
•  Independence
• Speed
• Limited Exposure
• Traceability

IDs

•  IDs should be opaque
• Should be globally unique
• Avoid sequential numbers (contention,

fusking)
• Good candidates: UUIDs, ‘Url64’

HTTP Method Overrides

POST /accounts/x7y8z9?_method=DELETE!

Caching &  
Concurrency Control

Server (initial response):  
!ETag: "686897696a7c876b7e”  

 
 
Client (later request):  

!If-None-Match: "686897696a7c876b7e”  
 
 
Server (later response):  

304 Not Modified !

Maintenance

Use HTTP Redirects

Create abstraction layer / endpoints
when migrating

Use well defined custom Media Types

 .com
• Free for developers
• Eliminate months of development
• Automatic security best practices

Sign Up Now: Stormpath.com

