
Dennis Gustafsson  
Mediocre

Constraint fluids in Sprinkle

Presentation outline
●Background and motivation
●Simulating fluid with constraints
●Implementation in Sprinkle
●Rendering and performance consideration

Experiments in 3D

Experiments in 3D

Experiments in 3D

Experiments in 3D

Simulation paradigm

SPH particle ≠ droplet

SPH particle ≠ droplet

Traditional SPH solver recap
1. Find particle neighbors
2. Compute density at each particle
3. Compute and apply pairwise interaction

forces
4. Integrate forces to new particle positions

Rigid body solver recap
1. Find body neighbors
2. Setup velocity constraints
3. Sequential impulse solver: Apply impulses

at contacts until all are separating*
4. Integrate velocities to new position and

orientation

Conceptual differences

●SPH: Particle positions affect interaction
forces. Forces are integrated.

●Rigid body: Velocity of other bodies affect
impulses. Velocity is integrated.

Expriment

What would a rigid body simulator look like if
implemented the same way as SPH?

Penalty method
●Springy behavior
●Rigid bodies are supposed to be rigid

●Liquids are not rigid
●…but liquids are incompressible

How can we model fluid motion as a velocity
constraint?

Pair-wise interaction is not enough

A fluid particle is not a point mass.
It’s a discretization of a field.

Fluid can flow through the particle

Incompressible flow
●Fluid can flow through a particle, but the
density should remain constant.
!

Motion of neighboring particles affect the
change in density.

Constrain the motion of neighboring particles
so that the net change in density is zero.

The particle itself is the constraint

Pressure as impulse

Constraint formulation
Rigid body: Find the impulse magnitude, to apply
to both bodies, so that the relative velocity at the
contact point is zero.

Fluid constraint: Find the pressure, to apply to all
neighboring particles, so that the net change in
density at the particle position is zero.

Example

Example

Example

Example

Use a smoothing kernel to avoid
discontinuities.

w=1-d

Iterative solvers aren’t perfect
!

Rigid body simulators compensate for
geometric errors (inter-penetration)
!

The same can by done with a fluid constraint
by compensating for deviations in density.

for each particle p
 bias[p] = (restDensity-density)*baumgarte
 for each neighbor n
 d = distance/smoothingLength
 weight[n] = (1-d^2)^3
 A[p] += 2 * weight[n]^2
 next
next

Constraint setup

Solver iteration
for each particle p

 for each neighbour n

 dv = dot(direction[n], vel[n]-vel[p])

 dpSum += weight[n]*dv

 next

 target = dpSum + bias[p]

 magnitude = max(0, target / A[p])

 for each neighbour n

 vel[n] += dir[n] * magnitude * weight[n];

 vel[p] -= dir[n] * magnitude * weight[n];

 next

end

measure
density
 change

Solver iteration
for each particle p

 for each neighbour n

 dv = dot(direction[n], vel[n]-vel[p])

 dpSum += weight[n]*dv

 next

 target = dpSum + bias[p]

 magnitude = max(0, target / A[p])

 for each neighbour n

 vel[n] += dir[n] * magnitude * weight[n];

 vel[p] -= dir[n] * magnitude * weight[n];

 next

end

compute
pressure
impulse

Solver iteration
for each particle p

 for each neighbour n

 dv = dot(direction[n], vel[n]-vel[p])

 dpSum += weight[n]*dv

 next

 target = dpSum + bias[p]

 magnitude = max(0, target / A[p])

 for each neighbour n

 vel[n] += dir[n] * magnitude * weight[n];

 vel[p] -= dir[n] * magnitude * weight[n];

 next

end

simplified!

Solver iteration
for each particle p

 for each neighbour n

 dv = dot(direction[n], vel[n]-vel[p])

 dpSum += weight[n]*dv

 next

 target = dpSum + bias[p]

 magnitude = max(0, target / A[p])

 for each neighbour n

 vel[n] += dir[n] * magnitude * weight[n];

 vel[p] -= dir[n] * magnitude * weight[n];

 next

end

apply
pressure
 impulse

1 iteration

2 iterations

4 iterations

Sub-optimal implementation in Sprinkle

Box2D FluidBox2D Fluid CollisionBox2DBox2D

Spatial binning with quadrants

Spatial binning with quadrants

Spatial binning with quadrants

Local quantized cell coordinates

●Compact 8-bit representation
●Determine quadrant by analyzing sign

(89, -50)

Collision detection
●Reuse binning grid cells
●Box2D broad phase to collect shapes
●Dual representation for convex shapes -
bounding planes

Solving collisions
●Rigid body interaction as body/particle
constraint
●Solve contacts after fluid constraints

Memory layout
struct Particle

{

 vec2 position;

 Neighbor neighbors[MAX_NEIGHBORS];

 int neighborCount;

 Precomputed stuff;

};

struct Neighbor

{

 int index;

 float weight;

 vec2 direction;

};

Memory layout
Particle particles[MAX_PARTICLES];

vec2 velocities[MAX_PARTICLES];

Memory layout
velocity 1

velocity 2

velocity 3

velocity 4

velocity 5

velocity 6

velocity 7

velocity 8

particle 1

particle 2

particle 3

etc

Rendering

We have a lot more information than just
particle position!
!

 Density — particle size
Pressure gradient — particle orientation

Particle orientation

Particle orientation

Particle orientation

Particle orientation

Splashes
●No fluid simulation
●Ballistic motion
●Full collision detection
●Removed upon collision

Particles

Particles
Resize

Particles
Resize
Stretch

Particles
Resize
Stretch
Refraction

Particles
Resize
Stretch
Refraction
Edges

Particles
Resize
Stretch
Refraction
Edges
Splashes

Particles
Resize
Stretch
Refraction
Edges
Splashes
Bubbles

Particles
Resize
Stretch
Refraction
Edges
Splashes
Bubbles

Thank you
dennis@mediocre.se
http://tuxedolabs.blogspot.com

